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ABSTRACT
This paper reports an application of trajectory analysis in which
forensics and video surveillance techniques are jointly employed
for providing a new tool of multimedia forensics. Advanced video
surveillance techniques are used to extract from a multi-camera
system the trajectories of the moving people which are then mod-
elled by either their positions (projected on the ground plane) or
their directions of movement. Both these two representations can
be very suitable for querying large video repositories, by searching
for similar trajectories in terms of either sequences of positions or
trajectory shape (encoded as sequence of angles, where positions
do not care). Preliminary examples of the possible use of this ap-
proach are shown.

1. INTRODUCTION
Digital forensics is a well-established discipline conveying ICT

(Information and Communication Technology), computer hardware
and software technologies for processing sensors-based and multi-
media data for forensics. The involved techniques and the imple-
mented tools are mainly based on manual intervention and feed-
back of humans involved in investigation actions. New researches
in the area of human-centered multimedia interaction can be useful
in forensics for multimedia data management, indexing, searching
and querying. A huge amount of annotated data must be available
and retrieved starting from partial and imprecise queries and often
visual information is particularly suitable, especially if presented in
the actual environment of the crime scene. Up to now the investiga-
tors was mainly oriented in the use of practical manual tools capa-
ble to extract precise measures from images, e.g. for people authen-
tication, face and fingerprint identification or other biometrics, 3D
scene reconstructions for ballistic measures, etcetera, by exploiting
more or less sophisticated computer vision techniques. For exam-
ple, several image processing techniques have been implemented
in a tool [6] for video filtering and data extraction for forensic ap-
plications. As a consequence of this interest, the name of video
forensics is now spreading, especially in commercial world. It is
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now the time that other fields involved in video analysis, in par-
ticular multimedia processing and video surveillance, step forward
to join with video forensics to re-use and better finalize paradigms
and models of data evaluations.

Multimedia technologies are mature enough for retrieving con-
cepts, data and events in videos. A good survey of event mining in
media streams is reported in [15], discussing the six common-sense
aspect 5W1H (who?, when?, where?, what?, why?, and how?) to
characterize events by journalism principles. At the same time,
video surveillance research has done a more-than-ten-year effort
in extracting similar knowledge from videos with the additional
challenge of the real-time requirements. In surveillance, the cor-
responding pioneering work of W4 (Who?, When?, Where? and
What?) [5] introduced for the first time similar concepts.

Focusing on video analysis for people information extraction,
video surveillance and video forensics share models and techniques.
People video surveillance aims at detecting and tracking the move-
ment of single person, group of people and crowds in order to rec-
ognize in real-time specific situations which could gather the at-
tention for security and safety purposes. Some examples are: the
growing of queues in public environments such as stations or met-
ros; the presence of single or group of people stopped in dangerous
areas, such as near train platforms; the suspicious paths and activi-
ties of people in open areas, such as in parking zones; the interac-
tion between people and objects, such as for abandoning packs or
luggage; and so on [12, 8].

In these situations, some tight requirements are the system re-
activity, the reliability on a 24/7 basis, and the high detection rate.
In synthesis, video surveillance looks for few well-defined mod-
els of behaviours which must be detected fully automatically and
with high reliability, possibly with limited false alarms. There
is a weaker interest in accuracy and people identification, so that
tracking techniques focusing on region of interest only are suitable
enough to cope with the limited requirement of target localization
in cluttered environments.

People video forensics, instead, aims at searching, identifying
and measuring people, actions, interactions and related objects which
could be of interest for investigations. A large effort is devoted to
image processing tools for improving visual quality to human anal-
ysis. Another specific area of interest is biometry for face, finger-
print and other visual feature recognition, if the frame resolution
and quality are satisfactory enough. A system where conventional
automatic video surveillance, object detection and tracking, and
biometric inspection, fingerprint recognition, synergistically coop-
erate for detecting unauthorized access is presented in [9].

Finally, an emerging area addresses the techniques for searching



and mining in large video repositories in order to find situations of
interest: here, efficient and fast techniques for video analysis are
required, where the time constraints are not bounded by the frame
rate but by the large amount of data.

One of the most emerging needs in forensic analysis is the pres-
ence of tools for automatic understanding of people behavior that
simplify significantly the investigation reducing the time spent in
searching for video segment containing sequences of interest. Among
the many different behaviors, people trajectories are one of the most
informative and can be reliably extracted automatically with con-
ventional video surveillance systems. The amount of this kind of
data could increase rapidly in crowded scenarios, becoming impos-
sible to be analyzed without the aim of automatic tools.

In this paper we propose a method for comparing trajectories
analyzing different characteristics: trajectories shape and trajecto-
ries positions in a given scene. The shape analysis is important
when infrequent or particular behaviors must be extracted without
the knowledge of where and when the event of interest occurs. Con-
versely, positional analysis is useful when a specified portion of the
scene should be analyzed and scene properties, such as entry or exit
zones, can be deduced directly from people activities.

2. TRAJECTORY MODEL FOR POSITIONAL
ANALYSIS

As stated in the previous Section, people trajectories can be mod-
elled by means of either the sequence of spatial locations or the se-
quence of directions. Both these representations can be useful in
forensic applications, depending on which type of analysis is re-
quired: spatial locations can be used to infer the passage on forbid-
den areas, the typical entry-exit points in the scene and for query-
ing by similarity given a certain path; directional representation,
instead, describes the shape of the trajectory and can be used to
search for similar paths.

2.1 Spatial Model
The people trajectory projected on the ground plane is a very

compact representation based on a sequence of 2D data
({(𝑥1, 𝑦1) , ⋅ ⋅ ⋅ , (𝑥𝑛, 𝑦𝑛)} coordinates), often associated with the
motion status, e.g. the punctual velocity or acceleration.

When large data are acquired in a real system they should be
properly modeled to account for tracking errors, noise in the sup-
port point extraction and inaccuracies due to the multi-camera data
fusion module. Positional trajectories must then be correctly ex-
tracted by the tracking system and analyzed in order to discriminate
or aggregate different kinds of people behaviors.

When observing a video surveillance scenario some paths are
considerably more common than others, and this can be very mean-
ingful in forensic analysis. Different path frequencies are mainly
due to two factors. First, the structure of the environment may con-
dition significantly the way people move. Second, according to the
scenario, people tend to reproduce frequent behaviors.

Given the 𝑘𝑡ℎ rectified trajectory projected on the ground plane
𝑇𝑘 = {t1,k . . . tnk,k}, where ti,k = (𝑥𝑖,𝑘, 𝑦𝑖,𝑘) with 𝑛𝑘 the num-
ber of points of trajectory 𝑇𝑘, a bi-variate Gaussian centered on
each data point ti,k (i.e., having the mean equal to the point coor-
dinates 𝝁𝒊,𝒌 = (𝑥𝑖,𝑘, 𝑦𝑖,𝑘)) and with fixed covariance matrix Σ
can be defined as:

𝒩𝑖,𝑘 = 𝒩 (𝑥, 𝑦 ∣ 𝝁𝒊,𝒌,Σ) (1)

An example of the fitting of Gaussians onto the trajectory points
is shown in Fig. 1, where (a) shows an exemplar trajectory, (b) the
3D plot of the superimposed Gaussians and the x-y projection.

The main motivation for this modeling choice relies in the fact
that when comparing two points belonging to different trajectories
small spatial shifts may occur and trajectories never exactly overlap
point-to-point. Using a sequence of Gaussians, one for each point,
allows to build an envelope around the trajectory itself, obtaining a
slight invariance against spatial shifts.

After assigning a Gaussian to each trajectory point, the trajec-
tory can be modeled as a sequence of symbols corresponding to
Gaussian distributions 𝑇 𝑗 =

{
𝑆1,𝑗 , 𝑆2,𝑗 , ..., 𝑆𝑛𝑗 ,𝑗

}
, where each

symbol 𝑆𝑖,𝑗 is modeled as in equation (1).

2.2 Angular Model for Shape Analysis
Using a constant frame rate, the sequence of (𝑥, 𝑦) coordinates

can be easily converted in directions/angles, in order to model the
single trajectory 𝑇𝑗 as a sequence of 𝑛𝑗 directions 𝜃, defined in
[0, 2𝜋):

𝑇𝑗 =
{
𝜃1,𝑗 , 𝜃2,𝑗 , . . . , 𝜃𝑛𝑗 ,𝑗

}
(2)

In order to analyze its shape, circular or directional statistics
[10] is a useful framework for the analysis. We propose to adopt
the von Mises distribution, that is a special case of the von Mises-
Fisher distribution [4, 1]. The von Mises distribution is also known
as the circular normal or the circular Gaussian, and it is partic-
ularly useful for statistical inference of angular data. When the
variable is univariate, the probability density function (pdf) results
to be:

𝒱 (𝜃∣𝜃0,𝑚) =
1

2𝜋𝐼0 (𝑚)
𝑒𝑚 cos(𝜃−𝜃0) (3)

where 𝐼0 is the modified zero-order Bessel function of the first kind,
defined as:

𝐼0 (𝑚) =
1

2𝜋

2𝜋∫
0

𝑒𝑚 cos 𝜃𝑑𝜃 (4)

and represents the normalization factor. The distribution is periodic
so that 𝑝 (𝜃 +𝑀2𝜋) = 𝑝 (𝜃) for all 𝜃 and any integer 𝑀 .

Von Mises distribution is thus an ideal pdf to describe a trajec-
tory 𝑇𝑗 by means of its angles. However, in the general case a
trajectory is not composed only of a single main direction; having
several main directions, it should be represented by a multi-modal
pdf, and thus we propose the use of a mixture of von Mises (MovM)
distributions:

𝑝 (𝜃) =
𝐾∑

𝑘=1

𝜋𝑘𝒱 (𝜃∣𝜃0,𝑘,𝑚𝑘) (5)

As it is well known, EM algorithm is a very powerful tool for
finding maximum likelihood estimates of the mixture parameters,
since the mixture model depends on unobserved latent variables
(defining the “responsibilities” of a given sample with respect to
a given component of the mixture). The EM algorithm allows the
computation of the parameters for the K components of the MovM.
A full derivation of this process can be found in [13].

Each direction 𝜃𝑖,𝑗 is encoded with a symbol 𝑆𝑖,𝑗 with a MAP
approach, that, assuming uniform priors, can be written as:

𝑆𝑖,𝑗 = argmax
𝑟=1,...,𝐾

𝑝 (𝜃0,𝑟, 𝑚𝑟∣𝜃𝑖,𝑗) = argmax
𝑟=1,...,𝐾

𝑝 (𝜃𝑖,𝑗 ∣𝜃0,𝑟, 𝑚𝑟)

(6)
where 𝜃0,𝑟 and 𝑚𝑟 are the parameters of the 𝑟𝑡ℎ components of the
MovM. With this MAP approach each trajectory 𝑇𝑗 in the training
set is encoded with a sequence of symbols 𝑇𝑗 =

{
𝑆1,𝑗 , 𝑆2,𝑗 , ..., 𝑆𝑛𝑗 ,𝑗

}
.



Figure 1: Example of the trajectory model.

3. SEQUENCE SIMILARITY MEASURE
In order to cluster or classify similar trajectories, a similarity

measure Ω
(
𝑇 𝑖, 𝑇 𝑗

)
is needed. Due to acquisition noise, uncer-

tainty and spatial/temporal shifts, exact matching between trajec-
tories is unsuitable for computing similarity. Thus, two sequences
of symbols can be compared by using an inexact matching tech-
nique. The main motivation resides in the fact that trajectories are
never equal both in number and position of points. Small changes
can occur between two similar sequences: for example, there may
be some time stretches that result in sequences having different
lengths; additionally, sequences may be piecewise-similar, sharing
some common parts, but they can be different in other parts. In
choosing the similarity measure it is desirable to gain control on
the amount of common points that two sequences must share in
order to be considered “similar”.

For these motivations, the best way to compare two sequences
is to identify the best alignment of the sequence data, based on a
given point-to-point distance metrics. Point-to-point comparison
can be made either directly on the data or by selecting a data rep-
resentation which assigns a symbol (with a given “meaning”) to
each data and performing a symbol-to-symbol comparison. How-
ever, the trivial model that simply performs a point-wise compar-
ison in the rectified Euclidean plane will result extremely impre-
cise. We decided to adopt a model that employs statistics to model
data points sequences, being consequently robust against measure-
ment errors and data uncertainties, but imposing some constraint
and limitation to achieve real-time performance. As stated in the
introduction, this permits to achieve a good trade-off between effi-
ciency and accuracy.

Once a sequence of data/symbols is achieved, we can borrow
from bioinformatics the method for comparing DNA sequences in
order to find the best inexact matching between them, also account-
ing for gaps. Then, we propose to adopt the global alignment,
specifically the well-known Needleman-Wunsch algorithm [11] for
comparing sequences of probability distributions. A global align-
ment (over the entire sequence) is preferable over a local one, be-
cause preserves both global and local shape characteristics. Global
alignment of two sequences 𝑇 𝑖 and 𝑇 𝑗 is obtained by first inserting
spaces, either into or at the ends of the sequences so that the length
of the sequences will be the same; by doing this, every symbol (or
space) in one of the sequences is matched to a unique symbol (or
space) in the other.

The algorithm is based on the concept of “modification” to the
sequence (analogous to the mutation in a DNA sequence). The
modifications to a sequence can be due to indel operations (inser-
tion or deletion of a symbol) or to substitutions. By assigning dif-
ferent weights/costs to these operations it is possible to measure the
degree of similarity of the two sequences. Unfortunately, this algo-
rithm can be very onerous in terms of computational complexity if
the sequences are long. For this reason, dynamic programming is
used to reduce computational time to 𝑂 (𝑛𝑖 ⋅ 𝑛𝑗), where 𝑛𝑖 and 𝑛𝑗

are the lengths of the two sequences. Dynamic programming over-
comes the problem of the recursive solution to global alignment
by not comparing the same subsequences for more than one time,
and by exploiting tabular representation to efficiently compute the
final similarity score. Each element 𝑉 (𝑎, 𝑏) of the table contains
the alignment score of the symbol 𝑆𝑎,𝑖 of sequence 𝑇 𝑖 with the
symbol 𝑆𝑏,𝑗 of sequence 𝑇 𝑗 . This inexact matching is very use-
ful for symbolic string recognition and theoretically could be used
on whichever data have been organized in a sequence. However,
we do not adopt it directly on the data since they can be affected
by measurement noise, but on the pdf corresponding to trajectory
data. Thus, the one-to-one score between symbols can be measured
statistically as a function of the distance between the corresponding
distributions. If the two distributions result sufficiently similar, the
score should be high and positive, while if they differ significantly,
the score (penalty) should be negative.

The alignment is simply achieved by arranging the two sequences
in a table, the first sequence row-wise and the second column-wise,
starting from the base conditions:

𝑉 (𝑎, 0) = Ω (𝑆𝑎,𝑖,−)

𝑉 (0, 𝑏) = Ω (−, 𝑆𝑏,𝑗) (7)

where Ω represents a suitable similarity measures and − indicates
a zero-element or gap.

This is due to the fact that the only way to align the first 𝑘 ele-
ments of the sequence 𝑇 𝑖 with zero elements of the sequence 𝑇𝑗

(or viceversa) is to align each of the elements with a space in the
sequence 𝑇 𝑖.

Starting from these base conditions, the alignment is performed
exploiting the recurrent equation of global alignment that computes



the best alignment score for each subsequence of symbols:

𝑉 (𝑎, 𝑏) = max

⎧⎨⎩
𝑉 (𝑎− 1, 𝑏− 1) + Ω (𝑆𝑎,𝑖, 𝑆𝑏,𝑗)

𝑉 (𝑎− 1, 𝑏) + Ω (𝑆𝑎,𝑖,−)

𝑉 (𝑎, 𝑏− 1) + Ω (−, 𝑆𝑏,𝑗)

(8)

with 1 ≤ 𝑎 ≤ 𝑛 and 1 ≤ 𝑏 ≤ 𝑚 and where 𝑉 (𝑎, 𝑏) is the score of
the alignment between the subsequence of 𝑇𝑖 up to the 𝑎𝑡ℎ symbol
and the subsequence of 𝑇𝑗 up to the 𝑏𝑡ℎ symbol.

Assuming that two distributions are sufficiently similar if the co-
efficient is above 0.5 and that the score for perfect match is +2,
whereas the score (penalty) for the perfect mismatch is -1 (that are
the typical values used in DNA sequence alignments), we can write
the general score of alignment between two symbols/distributions
as follows:

Ω (𝑆𝑖, 𝑇𝑗) =

⎧⎨
⎩

2 ⋅ (𝑐𝐵) if 𝑐𝐵 ≥ 0.5
2 ⋅ (𝑐𝐵 − 0.5) if 𝑐𝐵 < 0.5
0 if 𝑆𝑖 or 𝑇𝑗 are gaps

(9)

where 𝑐𝐵 represents the cost of aligning two symbols. The follow-
ing Section will report the proposed way for computing this cost in
the two cases of spatial and angular data.

4. STATISTICS SYMBOL-TO-SYMBOL DIS-
TANCE METRICS

4.1 Distance in the case of Spatial Model
In the case of symbol sequences that represent spatial-Gaussian

probability distributions, a proper symbol-to-symbol similarity mea-
sure must be defined in order to perform the global alignment.
Among the possible metrics to compare probability distributions
we chose to employ the Bhattacharyya coefficient as in the case of
shape model, to measure the distance between the two normal dis-
tributions 𝒩𝑎,𝑘 and 𝒩𝑏,𝑚 corresponding to 𝑎𝑡ℎ and 𝑏𝑡ℎ symbols of
sequences 𝑇𝑘 and 𝑇𝑚, respectively:

𝑐𝑏 (𝒩𝑎,𝑘,𝒩𝑏,𝑚) = 𝑑𝐵𝐻 (𝒩 (𝑥, 𝑦∣𝝁𝑎,𝑘,Σ𝑎) ,𝒩 (𝑥, 𝑦∣𝝁𝑏,𝑚,Σ𝑏))

=
1

8
(𝝁𝑎,𝑘 − 𝝁𝑏,𝑚)𝑇

(
Σ
)−1

(𝝁𝑎 − 𝝁𝑏) +

+
1

2
ln

(
detΣ√

detΣ𝑎detΣ𝑏

)
(10)

where 2 ⋅ Σ = Σ𝑎 + Σ𝑏. Since in our case Σ𝑎 = Σ𝑏 = Σ, we
can rewrite the distance as:

𝑐𝑏
(
𝒩 𝑘

𝑎 ,𝒩𝑚
𝑏

)
=

1

8
(𝝁𝑎 − 𝝁𝑏)

𝑇 Σ−1 (𝝁𝑎 − 𝝁𝑏) (11)

As previously performed for the angular model this coefficient
can be injected in equation (9) to obtain the symbol to symbol sim-
ilarity measure used in the alignment process.

4.2 Distance in the case of Angular Model
When the data sequences is modeled using the Mixture of Von

Mises Model, Section 2.2, one possible symbol-to-symbol distance
between the univariate pdf associated to each symbol, following
the scheme of Fig. 1, is the Bhattacharyya coefficient between Von
Mises distribution,[7]. We can derive the 𝑂𝑚𝑒𝑔𝑎 score for the
Mixture of Von Mises Model; specifically, we measured the dis-
tance between distributions 𝑝 and 𝑞 using the Bhattacharyya coef-
ficient:

𝑐𝐵 (𝑝, 𝑞) =

+∞∫
−∞

√
𝑝 (𝜃) 𝑞 (𝜃)𝑑𝜃 (12)

Figure 2: In (a) and (b) is shown the training set used during the
learning stage. (c) shows the obtained most frequent behaviors
projected on the 𝐶1 view.

following the derivation in [13] for two univariate Von Mises dis-
tribution the analytic form of the coefficient results:

𝑐𝐵 (𝑆𝑖, 𝑇𝑗) = 𝑐𝐵 (𝒱 (𝜃∣𝜃0,𝑖,𝑚𝑖) ,𝒱 (𝜃∣𝜃0,𝑗 , 𝑚𝑗)) =⎛⎝√
1

𝐼0 (𝑚𝑎) 𝐼0 (𝑚𝑏)
𝐼0

⎛⎝
√

𝑚2
𝑖 +𝑚2

𝑗 + 2𝑚𝑖𝑚𝑗 cos (𝜃0,𝑖 − 𝜃0,𝑗)

2

⎞⎠⎞⎠
(13)

where it holds that 0 ≤ 𝑐𝐵 (𝑆𝑖, 𝑇𝑗) ≤ 1.

5. EXPERIMENTS FOR VIDEO FORENSICS
Once a proper similarity measure is available, sequences can be

compared according to either their position (Section 4.1) or their
shape (Section 4.2). In particular, it could be of interest to retrieve
all the sequences similar to a given exemplar (query problem) or the
most or least frequent sequence sharing shape or position character-
istics (clustering problem). In forensic applications, this could be
of undoubtful utility; sequences can be retrieved according to their
shape and then filtered according to their position or vice-versa.
Most common paths can also be extracted to synthesize a clear pic-
ture of normal and frequent (abnormal and unfrequent) behaviors
in a specific scenario. To group together paths sharing some com-
mon characteristics we choose to adopt the k-medoids [14] cluster-
ing algorithm using the similarity measures introduced in section 3.



Figure 3: The center figure shows the training set used for tra-
jectories shape clustering. The remaining figure shows the most
frequent behaviors according to their shape.

Hereinafter we use interchangeably the trajectory and its symbolic
representation in the Ω measure to keep the notation light, but the
similarity measure is obviously computed, as previously stated, on
the symbolic representation of the trajectory and consequently on
the chosen probability density funtction.

The adopted clustering algorithms, K-medoids, is a suitable mod-
ification of the well-known k-means algorithm which has the ap-
preciable characteristic to compute, as prototype of the cluster, the
element that minimizes the sum of intra-class distances. In other
words, let us suppose to have a training set 𝑇𝑆 = {𝑇1, ⋅ ⋅ ⋅ , 𝑇𝑁}
composed of 𝑁 trajectories and set 𝑖 = 0 and 𝑘(0) = 𝑁 . As ini-
tialization, each trajectory is chosen as prototype (medoid) of the
corresponding cluster. The k-medoids algorithm iteratively assigns
each trajectory 𝑇𝑗 to the cluster 𝐶𝑚̃ at the minimum distance 𝑑, i.e.
given 𝑘(𝑖) clusters 𝐶1, ⋅ ⋅ ⋅ , 𝐶𝑘(𝑖) and the corresponding medoids
𝑀1, ⋅ ⋅ ⋅ ,𝑀𝑘(𝑖), 𝑚̃ = argmin

𝑚=1,⋅⋅⋅ ,𝑘(𝑖)
𝑑 (𝑇𝑗 , 𝑇𝑀𝑚), where 𝑇𝑀𝑚 is the

trajectory corresponding to the medoid 𝑀𝑚. Once all the trajecto-
ries have been assigned to the correct cluster, the new medoid 𝑀𝑠

for each cluster 𝐶𝑠 is computed as that one which minimizes the
intra-cluster distances, i.e. 𝑇𝑀𝑠 ≡ 𝑇𝑝 = argmin

∀𝑇𝑝∈𝐶𝑠

∑
∀𝑇𝑟∈𝐶𝑠

𝑑 (𝑇𝑝, 𝑇𝑟) =

argmax
∀𝑇𝑝∈𝐶𝑠

∑
∀𝑇𝑟∈𝐶𝑠

Ω(𝑇𝑝, 𝑇𝑟). However, one of the limitations of k-

medoids (as well as k-means) clustering is the choice of 𝑘. For this
reason, we propose to use an iterative k-medoids algorithm. Then,
the following steps are performed:

∙ Step 1: Run k-medoids algorithm with 𝑘(𝑖) clusters

∙ Step 2: If there are two medoids with a similarity greater than
a threshold 𝑇ℎ, merge them and set 𝑘(𝑖 + 1) = 𝑘(𝑖) − 1.
Increment 𝑖 and go back to step 1. If all the medoids have a
two-by-two similarity lower than 𝑇ℎ, stop the algorithm

In other words, the algorithm iteratively merges similar clusters un-
til convergence. In this way, the “optimal” number 𝑘 of medoids is
obtained.

Performing the clustering on a given corpus of trajectories leads
to two main advantages. First, after the clustering, clusters cardi-
nality naturally represents by definition how often a specific path

occurs. Second, when the dataset grows dramatically in number of
exemplars, the one-to-many approach that consists of comparing
a query trajectory with all the trajectories previously stored, can
be extremely onerous in term of computational time. Adversely,
the adoption of clustering allows the classes to be represented by
their prototype, reducing the number of comparisons in the case of
query.

To keep this approach consistent when new data are presented to
the system the clusters must be updated every time a new sequence
is classified. More operatively, we can define the maximum simi-
larity between the new trajectory 𝑇𝑛𝑒𝑤 and the set of clusters C as

Ω𝑚𝑎𝑥 = Ω
(
𝐶

˜𝑗 , 𝑇𝑛𝑒𝑤

)
, where:

𝑗̃ = argmax
𝑗=1,...,˜𝑘

Ω(𝐶𝑗 , 𝑇𝑛𝑒𝑤) (14)

If this value is below a given threshold 𝑇ℎ𝑠𝑖𝑚 a new cluster 𝐶
˜𝑘+1

should be created with 𝑇𝑛𝑒𝑤 . The cardinality 𝒞 of each class (which
represents the prior for a classification normal/abnormal) is updated
to take into account the increased number of samples assigned to
the cluster:

𝐶
˜𝑘+1 = 𝑇𝑛𝑒𝑤 ; 𝒞 (

𝐶
˜𝑘+1

)
=

1

𝑁 + 1

∀𝑖 = 1, ..., 𝑘̃ ⇒ 𝒞𝑛𝑒𝑤 (𝐶𝑖) = 𝒞𝑜𝑙𝑑 (𝐶𝑖)
𝑁

𝑁 + 1

𝑘 = 𝑘 + 1 ; 𝑁 = 𝑁 + 1

where 𝑁 is the current number of observed trajectories.
Conversely, if the new trajectory is similar enough to one of the

current medoids, the trajectory is assigned to the corresponding
cluster 𝐶𝑗 :

𝑇𝑛𝑒𝑤 ∈ 𝐶𝑗 ; 𝒞𝑛𝑒𝑤

(
𝐶

˜𝑘

)
=

𝒞𝑜𝑙𝑑

(
𝐶

˜𝑘

) ⋅𝑁 + 1

𝑁 + 1

∀𝑖 = 1, ..., 𝑘, 𝑖 ∕= 𝑗 ⇒ 𝒞𝑛𝑒𝑤 (𝐶𝑖) = 𝒞𝑜𝑙𝑑 (𝐶𝑖)
𝑁

𝑁 + 1

𝑁 = 𝑁 + 1

Moreover, if the average similarity of the new trajectory with
respect to other medoids is smaller than the average similarity of
the current medoid 𝐶𝑗 , 𝑇𝑛𝑒𝑤 is a better medoid than 𝐶𝑗 since it
increases the separability with other clusters. Consequently, 𝑇𝑛𝑒𝑤

becomes the new medoid of the cluster.
We tested our system in a two cameras setup at our campus. Peo-

ple are extracted and tracked across camera streams using the multi-
camera tracking system described in [3, 2]. Once the trajectories
are reliably obtained, we first performed the clustering described
above on a dataset of 900 trajectories acquired during an ordinary
working day. In this way the most frequent behaviors in the chosen
scenario, as shown in Fig. 2, can be extracted according to their
position. In this case trajectories sharing similar shape and location
are clustered together and it is possible to easily detect the most
frequent activity zones of the scene, for example benches where
people use to stop. In Fig. 3 trajectories are clustered according
to their shape only. In this case it is possible to extract similar tra-
jectories, and most frequent ones as shown in the figure, that share
common directions and shape properties independently on where
they occur in the scene.

A typical reference application is shown in Fig. 4. Here it is de-
picted how the system could be useful in forensic application. First,
a query is performed on the trajectory shape, Fig. 4.a; second, sev-
eral exemplars having the desired shape are shown to the user. It is
then possible to choose a specific example, according to its position
in the scene, and the system will retrieve all the trajectories similar



Figure 4: Example of a possible Forensic Application of the trajectory analysis framework.

to the desired one (Fig. 4.c). Finally, it is possible to retrieve people
snapshots and trajectories information (such as creation time) that
could be of interest during the investigation process.

6. CONCLUSIONS
The proposed system allows the detection of people walking and

standing in surveilled areas and the extraction of their trajectories.
This approach can be directly applied in video forensics for extract-
ing valuable information about the paths and for comparing them
according to their shape or position. This system can be part of
a multimedia forensic tool that could improve and speed up the
investigation process. Results are promising and several additional
information could be incorporated in the presented model to extend
the range of possible queries that could be presented to the system.
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