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Abstract
Initial evidence is presented that explicitly parallel, ma-
chine-independent programs can automatically be trans-
lated into parallel machine code that is competitive in per-
formance with hand-written code.

The programming language used is Modula-2*, an ex-
tension of Modula-2, which incorporates both data and
control parallelism in a portable fashion. An optimiz-
ing compiler targeting MIMD, SIMD, and SISD machines
translates Modula-2* into machine-dependent C code.

The performance of the resulting code is compared to
that of equivalent, carefully hand-coded and tuned pro-
grams. On a MasPar MP-1 (SIMD machine with up to 16k
processors) the Modula-2* programs typically achieve 80%
of the performance of the hand-coded parallel versions.
When targeting sequential processors, the Modula-2* pro-
grams reach 90% of the performance of hand-coded se-
quential C. (There are no MIMD results yet.)

The effects of two major optimization techniques, syn-
chronization point elimination and data/process alignment
are also quantified.

1 Introduction

Effective programmability of parallel machines is one of
the most pressing problems in parallel computing. The key
aspect of this problem is efficiency-preserving portability.

The first major concern, portability, is as essential
for parallel computing as it is for sequential computing:
one simply cannot afford to rewrite parallel programs for
each machine. Portability can be achieved with machine-
independent programming languages that allow clear ex-
pression of parallel algorithms and are free of hardware
quirks that may differ from one computer to the next.

The second major concern is efficiency. Programs ex-
pressed in a high-level, portable language must be compi-
lable into parallel machine code of satisfactory efficiency
on a wide range of architectures. Efficiency is satisfactory
if the compiled code approaches the performance of hand-
tuned machine-dependent code.

This paper is primarily concerned with efficiency. It
provides a quantitative evaluation of the code produced by
a compiler for a high-level, portable programming language

with explicit parallelism. The language is Modula-2*, an
extension of Modula-2. The extensions are small and could
be incorporated into other imperative languages, including
Fortran. At present, the compiler targets the MasPar MP-
1 series (large scale SIMD systems), LANs (medium scale
MIMD systems), and sequential workstations (SISD sys-
tems). Measurements of a set of benchmarks support the

Hypothesis: Explicitly parallel and machine-independ-
ent programs can automatically be translated into
machine-dependent parallel code that is competitive
in performance with optimized hand-written code.

This result is important for writing explicitly parallel pro-
grams and for converting existing sequential programs to
parallel ones. With good compilers, the manual conversion
of a sequential program can concentrate on finding paral-
lel algorithms, while ignoring machine-dependent details.
The necessary mapping to a given machine architecture
is performed completely automatically. The advantage of
this separation of concerns is not only that it simplifies
the conversion process, but it also assures that the result
of the conversion is a machine-independent program that
can be run on different machines after recompilation.

Furthermore, we present evidence that a compiler can
also produce highly efficient sequential code from paral-
lel programs. Sequential efficiency is important for sev-
eral reasons. First, it allows programmers to use parallel
language constructs even when targeting sequential ma-
chines. Parallel constructs free programmers from the task
of manually sequentializing an algorithm where parallel ex-
pression is more natural. Second, parallel programs can
be developed and tested on sequential machines without
incurring unjustifiable overhead. Finally, the fact that a
compiler for parallel machines produces efficient sequential
code when setting the number of processors to unity pro-
vides a good indication about the generality and scalability
of the code generation techniques employed.

In section 2, we briefly introduce Modula-2* while the
main features of our Modula-2* System (compiler, debug-
ger, libraries, runtime system) are described in section 3.
We present the benchmarks, experiments, and their results
in section 4 and conclude with a discussion of the quanti-
tative effects of two major optimization techniques.



2 Modula-2*

The programming language Modula-2* was developed
to allow for high-level, problem-oriented and machine-
independent parallel programming. As described in [19],
it provides the following features:

e An arbitrary number of processes operate on data in
the same single address space. Note that shared mem-
ory is not required; a single address space merely per-
mits all memory to be addressed uniformly, but not
necessarily at uniform speed.

e Synchronous and asynchronous parallel computations
as well as arbitrary nestings thereof can be formulated
in a totally machine-independent way.

e Procedures may be called in any context (sequential,
synchronous, or asynchronous) and at any nesting
depth. Furthermore, additional parallel processes can
be created inside procedures (recursive parallelism).

o All the abstraction mechanisms of Modula-2 are avail-
able for parallel programming.

Modula-2* extends Modula-2 with the following two lan-
guage constructs.

1. The FORALL statement, which has a synchronous and
an asynchronous version, is the only way to introduce
parallelism into a Modula-2* program.

2. The distribution of array data is optionally specified
by allocators, e.g. SPREAD, CYCLE. They do not have
any semantic meaning and are just layout hints for
the compiler.

Because of the compactness and simplicity of the exten-
sions, they could easily be incorporated into other imper-
ative programming languages, such as Fortran, C, or Ada.
In Modula-2* the syntax of the FORALL statement is:

ForallStatement =
FORALL ident ":" SimpleType IN (PARALLEL | SYNC)
[VarDecl+ BEGIN]
StatementSequence
END.

StmpleType is an enumeration or a possibly non-static
subrange, i.e. the boundary expressions may contain vari-
ables. The FORALL creates as many (conceptual) processes
as there are elements in StmpleType. The identifier intro-
duced by the FORALL statement is local to it and serves as a
runtime constant for every process created by the FORALL.
The runtime constant of each process is initialized to a
unique value of SimpleType. The FORALL statement pro-
vides an optional section for the declaration of variables
local to each process. These local variables lead to better
source code structuring, thus greatly increasing the read-
ability and efficiency of parallel code.

Each process created by a FORALL executes the state-
ments in StatementSequence. The END of a FORALL state-
ment imposes a synchronization barrier on the participat-
ing processes: termination of the whole FORALL statement

is delayed until all created processes have finished their
execution of Statement-Sequence.

The version of the FORALL statement (synchronous or
asynchronous) determines whether the created processes
execute StatementSequence in lock-step or concurrently.

Hence, for non-overlapping vectors X, Y, and Z the fol-
lowing asynchronous FORALL statement suffices to imple-
ment the vector addition X := Y + Z.

FORALL i : [1..W] IN PARALLEL
X[il := Y[i] + Z[i]
END

In contrast to the above, parallel modifications of overlap-
ping data structures may require synchronization. Thus,
irregular data permutations can be implemented as follows:

FORALL i : [1..N] IN SYNC
X[l := X[p(i)]
END

This program permutes the vector X according to the per-
mutation function p. The semantics of the synchronous
FORALL ensure that all rhs elements X[p(i)] are read and
temporarily stored before any lhs variable X[i] is written.

The behavior of branches and loops inside synchronous
FORALLs is defined with an MSIMD (multiple SIMD) ma-
chine in mind. This means that Modula-2* does require
any synchronization between different branches of syn-
chronous CASE or IF statements. The exact synchronous
semantics of all Modula-2* statements are defined in [19].

The synchronous version of this FORALL operates much
like the HPF FORALL, except that it is fully orthogonal to
the rest of the language: Any statement, including condi-
tionals, loops, other FORALLs, and subroutine calls may be
placed in its body. Thus, the language explicitly supports
nested and recursive parallelism. There is no concept of
asynchronous parallelism in HPF.

3 The Modula-2* System

The Modula-2* System currently targets the MasPar MP-
1 series of massively parallel processors (SIMD), heteroge-
nous LANs of Unix workstations (MIMD), and single stan-
dard Unix workstations (SISD). The Modula-2* System

consists of
1. an optimizing and restructuring compiler,
2. a machine-dependent runtime system,

3. libraries of scalable parallel operations (enumeration,
reduction, scan, etc.),

4. a parallel debugger.

Below, we describe each part of the Modula-2* System in
some detail.



3.1 Compiler

General Architecture. To keep major parts of the
compiler machine-independent, Modula-2* programs are
translated to a general intermediate representation. Based
on a study of different parallel machines, we decided to
use C augmented with a set of macros as an intermediate
language [13]. Macros are expanded using target-specific
include files yielding the appropriate parallel C derivate.
Thus, retargeting the compiler only requires the exchange
of the macro package and some libraries.
Optimizations. On parallel machines, optimizations
tend to improve program runtime dramatically. There-
fore, the Modula-2* compiler performs various optimiza-
tions and code restructurings summarized below (for more
details see [17]). In the following subsections, we briefly
sketch the main optimizations that are implemented in our
Modula-2* compilers. In section 4.4 we show the quanti-
tative effects of these techniques.

Automatic Data and Process Distribution

On distributed memory machines, the distribution, i.e.
alignment and layout of data and processes over the avail-
able processors is a central problem.

Alignment is the task of finding an appropriate trade-
off between the two conflicting goals of (1) data locality
and (2) maximum degree of parallelism. Our automatic
alignment algorithm is descibed in [16] and briefly sketched
below by means of an example. Layoutis the assignment
of aligned data structures and processes to the available
processors. Desirable goals are (3) the exploitation of spe-
cial hardware supported communication patterns and (4)
simple address calculations. We use an automatic mapping
[15] of arbitrary multidimensional arrays to processors and
thus exploit grid communication if available and achieve
efficient address calculations.

To align arrays A and B of the following example, array
A is enlarged and shifted to the left. All index expressions
involved are transformed accordingly.

VAR A: ARRAY [1..90] SPREAD OF INTEGER;
B: ARRAY [0..100] SPREAD OF INTEGER;

FORALL i:[1..90] IN SYNC
A[i]l := B[i-1];
B[i] := 0

END

1

VAR A,B : ARRAY [0..100] SPREAD OF INTEGER;

FORALL i:[1..90] IN SYNC
A[i-1] := B[i-1];
B[i] := 0
END
The shift leads to the same index expressions on a per
statement basis. The enlargement decouples alignment
and layout. Since the resulting arrays have the same size,
the layout algorithm maps corresponding elements of the

array to the same processor. We allow for moderate stor-
age waste because the primary goal is execution speed.

Up to now we have only dealt with the data alignment.
Process alignment is also achieved by means of a source-
to-source transformation. During this transformation, the
FORALLs are attributed with an ALIGNED WITH clause that
directs the code generator to allocate each process where
the corresponding data element resides:

VAR A,B : ARRAY [0..100] SPREAD OF INTEGER;

FORALL i:[0..89] IN SYNC ALIGNED WITH A[il

A[i] := B[il

END;

FORALL i:[1..90] IN SYNC ALIGNED WITH B[il
B[i] := 0

END

The original FORALL has been split into two parts. In both
FORALLs the process with index i will be executed where
data element B[i] resides, resulting in local accesses. Lo-
cal accesses could not be achieved with a single FORALL.

Elimination of Synchronization Barriers

The semantics of synchronous FORALLs in [19] require a vast
number of synchronization barriers. Most real synchronous
FORALLs, however, only need a fraction thereof to ensure
correctness [9]. Redundant synchronization barriers can
be detected with data dependence analysis [22, 3].

To understand the techniques of automatic synchroniza-
tion barrier elimination consider the synchronous FORALL
statement below, followed by two possible translations.

FORALL i: [1..N] IN SYNC

Z[i] := z[i+1];

X[i] := X[2#*il;

Y[il := Y[p(i)]1;
END

FORALL i:[1..0] IN PARALLEL|FORALL i:[1..N] IN PARALLEL

H1[i] := Z[i+1] Hi[i] := Z[i+1];
END; H2[i] := X[2*i];
FORALL i:[1..W] IN PARALLEL| H3[i] := Y[p(i)]

Z[i] := H1[i] END;

END; FORALL i:[1..NW] IN|PARALLEL
FORALL i:[1..N] IN PARALLEL| Z[i] := H1[il;

H2[i] := X[2%i] X[il := H2[i]

END; Y[il := H3[i]

FORALL i:[1..N] IN PARALLEL|END;
X[i] := H2[i]

END;

FORALL i:[1..W] IN PARALLEL
H3[i] := Y[p(i)]

END;

FORALL i:[1..W] IN PARALLEL
Y[il := H3[i]

END

The translation on the left shows an equivalent program,
in which all synchronization points appear at the end of
asynchronous FORALLs. The compiler detects that four of
the six synchronizations are redundant and restructures
the code accordingly. The optimized result is shown on
the right.



Known Weaknesses

Currently, the compiler does not exploit the possibility of
grid communication on the MasPar. Non-local data is ac-
cessed with general communication. Although the neces-
sary information is present in the compilation process this
is not yet implemented.

On MIMD machines with high latency networks the
following optimizations, which are not implemented yet,
will improve performance: The combination of messages
that have the same source or destination will lead to larg-
er packets and less total latency. With pre-fetch or post-
store analysis Computation and communication can be
overlapped to hide remaining latency.

Furthermore, there are some performance problems
when translating nested parallelism. Work on better
scheduling strategies is in progress.

3.2 Runtime System

The Modula-2* runtime system performs the initialization,
maintenance, and cleanup of code sections executed in par-
allel. Runtime system functions are provided by efficiently
implementable, machine-independent macro interfaces.

The MasPar MP-1 series runtime system makes use of
the MasPar system library. The LAN runtime system is
built on top of p4 [4], a message passing parallel program-
ming system available for a variety of machines. Therefore,
we are able to target heterogenous LANs. The use of p4
should also make our LAN compiler a sound basis for a
future MIMD Modula-2* compiler.

3.3 Parallel Libraries

The Modula-2* parallel libraries comprise reductions,
scans and enumerations. They aim at scalability, porta-
bility, and efficiency of frequently used parallel operations.
Scalability means that the library routines operate on open
array parameters of arbitrary size. We ensure portability
by providing the same interfaces on all target machines.
To achieve efficiency, we exploit low-level features of each
target machine in the different library implementations.

Another interesting feature of these libraries is their
functional diversity. Wherever possible, normal, masked,
segmented, and universal (masked plus segmented) ver-
sions of the parallel operations are provided.

3.4 Parallel Debugger

The Modula-2* source-level debugger [7] allows for visual
interactive debugging under X-Windows. The central con-
cepts of debugging parallel Modula-2* programs are pro-
cess and data visualization. The debugger enables users
to trace activities executed in parallel by providing ab-
straction mechanisms like grouping, parallel call trees, and
simultaneous source code views in different windows. For

data visualization, 2D-slices of multidimensional distribut-
ed arrays can be displayed graphically in so-called “visu-
alizer windows”. Furthermore, the debugger is able to col-
lect rudimentary profiling data by counting statement or
subroutine invocations.

4 Benchmarks and Results

At the moment, our benchmark suite consists of thirteen
problems collected from the literature [1, 6, 11, 8, 5]. For
each problem, we implemented the same algorithms in
Modula-2*, in sequential C, and in MPL!. Then we mea-
sured the runtimes of our implementations on a 16K Mas-
Par MP-1 (SIMD) and a SparcStation-1 (SISD) for widely
ranging problem sizes. Measurements for LANs are not
yet available because the tedious and error-prone task of
implementing hand-coded versions is still in progress.
Modula-2* Programs. In Modula-2* we employ our
libraries wherever possible. A technical deficiency in our
current Modula-2* compiler forced us to manually “unroll”
two-dimensional arrays into one-dimensional equivalents.
This will no longer be necessary in the near future.
MPL Programs. In MPL we implemented the same al-
gorithms as in Modula-2* and carefully hand-tuned them
for the MasPar MP-1 architecture. The MPL programs
make extensive use of local access, neighborhood commu-
nication, standard library routines, and other documented
programming tricks. To ensure the fairness of the compar-
ison, the resulting MPL programs are as generally scalable
as their Modula-2* counterparts. Since scalability is not
restricted to multiples of the number of processors, bound-
ary checks are required in every virtualization loop.
Sequential C Programs. The sequential C programs
implement the parallel algorithms on a single processor.
We use optimized sequential libraries wherever possible.
In the following, we first compare the resource con-
sumption of these three program classes. Then we dis-
cuss their overall performance and present each problem
together with its specific performance results in some de-
tail. In section 4.4 we show the quantitative effects of the
optimization techniques.

4.1 Resource Consumption

The comparison is based on the criteria program space,
data space, development time, and runtime performance.
Program Space. Our compiler translates Modula-2*
programs via C plus macros to MPL or C. The result-

1 MPL [14] is a data-parallel extension of C designed for
the MasPar MP-1 series. In MPL, the number of available pro-
cessors, the SIMD architecture of the machine, its 2D mesh-
connected processor network, and the distributed memory are
visible. The programmer writes a SIMD program and a sequen-
tial frontend program with explicit interactions between the
two. MPL provides special commands for neighborhood and
general communication. Virtualization loops and distributed
address computations must be implemented by hand.



ing programs consume slightly more space than the hand-
coded MPL or C programs. Regarding source code length,
Modula-2* programs are typically half the size of their cor-
responding MPL or C programs.

Data Space. The memory requirements of the Modula-
2* programs are typically similar to those of the MPL and
C programs. Memory overhead, i.e. variable replication
into temporaries, occurs during synchronous assignments.
This replication, however, most often is also required in
hand-coded MPL. Furthermore, there is some additional
overhead involved in controlling synchronous, nested, and
recursive parallelism (16 bytes per FORALL).
Development time. Due to compiler errors detected
while implementing the benchmarks, we cannot give ex-
act quantitative figures on implementation and debugging
time. However, we estimate that the implementation effort

in Modula-2* is a fifth of the MPL effort.
4.2 Runtime Performance

MPL versus Modula-2*. The general relative perfor-
mance of Modula-2* is quite stable over all problem sizes
and averages to 80%. Modula-2* typically achieves 70%—
90%, with peaks at 100% of the MPL performance.
Sequential C versus Modula-2*. The general relative
performance of Modula-2* is again quite stable over all
problem sizes and averages to 90%. Modula-2* typically
achieves 70%—-90% of the sequential C performance, with
peaks at 100%.
For widely varying problem sizes we measured the run-
time of each test program on a 16K MasPar MP-1 and a
SparcStation-1. We used the high-resolution DPU timer
on the MasPar and the UNIX clock function on the Sparc-
Station (sum of user and system time). Below, 2« rep-
resents the Modula-2* runtime on either a 16K MasPar
MP-1 or a SparcStation-1 (as appropriate); ¢y gives the
MPL runtime on a 16K MasPar MP-1; ¢, stands for the
sequential C runtime on a SparcStation-1.

We define performance as problem size per time unit
and focus on performances -2 /% = tmpt/tmax and

tmox !t
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The overall distribution of relative performances proves to
be encouraging. The above histogram provides the number
of relative performance values falling into one of the classes
[0%-5%), [5%-15%), ..., [95%-100%)]. The numbers are
the accumulated sums over all problems and problem sizes
(all data points).

4.3 Benchmarks

The benchmark suite consists of thirteen problems collect-
ed from the literature [1, 6, 11, 8]. The problems 4.3.11,
4.3.2 and 4.3.8 have been defined in [5] to test the ex-
pressive power of parallel programming languages. Some
problems (4.3.1, 4.3.5, 4.3.12) are chosen from text books
on parallel programming [1, 6, 11]. The problem of finding
the longest common subsequence (4.3.3) is well known in
text processesing and computational biology [18]. The re-
maining problems have been introduced by other authors
and compiler groups [12, 8, 10]. The benchmark suite does
not contain standard numeric operations since we are con-
vinced that these routine will require low level library im-
plementation which is unlikely to be done by an end user
in Modula-2*.

In the problem descriptions below n is used as problem
size that occurs in the graphs.

4.3.1 Root Search

Problem: Determine the value of z € [a,b] such that
f(z) =0, given that f is monotone and continuously dif-
ferentiable.

Approach I: The problem is solved with multisection.
The interval [a,b] is equally divided over n processes.
If f has a root in [a,b] then there is exactly one pro-
cess p with f(zp—1) - f(zp) < 0. Update the interval
[a',b'] ;= [#p—1, Tp]. [terate until the error b’ —a’ < e.

Problem RootSearchI
T T T T T
t (mpl) /t (m2%)
t(c)/t(m2*) ----
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The main reason for the better runtimes of the hand-coded MPL
program is the way neighboring data elements are accessed. The
MPL program exploits the hardware supported XNET commu-
nication, whereas the Modula-2* compiler currently uses the
much slower general communication. Global communication
becomes slower with an increasing number of data packets in
the network, whereas XNET performance is independent of the




load. Thus, the performance ratio drops initially, until general
communication is saturated. With growing virtualization ratio
(> 2'%), an increasing number of accesses to neighboring da-
ta elements is local in both the MPL implementation and the

Modula-2* translation. Since the fraction of the overall run-
time spent in communication shrinks, the performance of the

Modula-2* program improves to 80%.

Approach II: Again, the interval [a,b] is divided evenly
over all processes. Then each process performs Newton’s
iteration. The algorithm terminates when a process finds
the root.

Note: This problem occurs frequently in science and en-
gineering applications [1].

Problem RootSearchII
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Since the implementations have total locality the performanceis
better than that of approach I. The Modula-2* compiler uses a
general translation scheme for the FORALL statement that allows
for nested parallelism. This generality, however, is more costly
than the straightforward implementation of virtualization loops
in the MPL program. For problem sizes < 2'% the loops are
iterated only once. For growing virtualization ratios, the loop
overhead becomes smaller compared to the work done in all
iterations, leading to growing performance of Modula-2*.

4.3.2 Doctor’s Office

Problem: A set of n patients, a set of doctors, and a
receptionist are given. The task is to model the following
interactions: Initially, all patients are well and all doctors
are in a FIFO queue awaiting sick patients. Then patients
become sick at random and enter a FIFO queue for treat-
ment by one of the doctors. The receptionist handles the
two queues, assigning patients to doctors in FIFO manner.
As soon as a doctor and patient are paired, the doctor diag-
noses the illness and treats the patient in a random amount
of time. After finishing with a patient, the doctor rejoins
the doctor’s queue to await another patient. The output
of the problem is intentionally unspecified (from [5]).
Approach: The random amounts of time that patients
are well and that doctors need to treat illnesses are counted
down in parallel. The FIFO assignments of doctors to
patients is done in parallel, too. The output is a list of
timestamps, indicating when patients became ill, and list
of pairings (doctor, patient, treatment time).

The curve of the MasPar performance is shaped similar to that

of problem 4.3.1 (approach I). However, the amount of compu-
tation dominates the effect of communication operations.

Problem doctor
T T

T T
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4.3.3 Longest Common Subsequence

Problem: Two strings A = aia2---a; and B =
b1bs - - - by, are given. Find a string C' = cic¢p - ¢p such
that C'is a longest common subsequence of A and B. (C
is a subsequence of A if it can be constructed by removing
elements from A without changing their order. A common
subsequence must be constructible from both A and B.)
Approach: The solution uses a wave-front implemen-
tation of dynamic programming. It causes intensive ac-
cess to neighboring data elements. The problem size is
n =max(l, m).

Note: The problem is presented in detail in [18]. The
parallel solution is based on [2].

Problem lcs

. . . . . .
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The curve of the MasPar performance is shaped similar to that
of problem 4.3.1 (approach I). The effect of global versus XNET
communication is smaller when few packets are sent (problem
size < 29). Due to limited memory, only problem sizes small-
er than 16k are considered. Thus, the expected performance
growth for bigger problem sizes is not visible.

4.3.4 Red/Black Iteration

Problem: Implement a red/black iteration, i.e., the ker-
nel of a solver for partial differential equations.
Approach: The implementation is straightforward. See



for example [1]. It almost exclusively references neighbor-
ing data elements ina n - n-matrix.

Note: This problem often serves as a case study for imple-
mentors of automatically parallelizing compilers, e.g. [10].

Problem RedBlack

. . . . .
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See the explanation for problem 4.3.1 (approach I). The

Red/Black problem is quadratic. Problem size 27 requires 2%

matrix elements and therefore corresponds to the machine size

of the MasPar (16k).

4.3.5 List Rank

Problem: A linked list of n elements is given. All ele-
ments are stored in an array A[l..n]. Compute for each
element its rank in the list.

Approach: This problem is solved by pointer jumping.
Note: Ranking the elements of a list is one of the elemen-
tary list processing tasks [11].

Problem ListRank
T T T T T
t(mpl) /t (m2*)
t(c)/t(m2*)

2%6 2”8 2”10 2%12 214 2%16 2”18 2720 2%22
problem size
The good result on the MasPar is caused by the fact that both
MPL and Modula-2* must use general communication.

4.3.6 Pairs of Relative Primes

Problem: Count the number of pairs (7,7) with 2 < i <
7 < n that are relatively prime, i.e. the greatest common
divisor of ¢ and j is 1.

Approach: The solution is based on a data-parallel imple-
mentation of the GCD algorithm followed by an add-scan.
Note: The problem was suggested by Hatcher [8].

Problem relprime
T T T T T

2%7
problem size

The parallel invocation of a GCD procedure with its parallel
while construct is the dominant cost producer in this exam-
ple. Since this is implemented almost identical in MPL and the
Modula-2* version on the MasPar, the same runtimes can be
measured.

4.3.7 Transitive Closure

Problem: The adjacency matrix of a directed graph with
n nodes is given. Find its transitive closure.

Approach: Process the adjacency matrix according to the
property that if nodes = and m as well as nodes m and y
are (transitively) adjacent, then = and y are (transitively)
adjacent. The algorithm is due to Warshall [21].

Note: The problem was suggested by Hatcher [8].

Problem warshall

273 2L4 2L5 2L6 2L7 218 219 2"10
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The good result on the MasPar is caused by the fact that both
MPL and Modula-2* must use general communication.

4.3.8 Hamming’s Problem

Problem: A set of primes {a,b,c,...} of arbitrary size
and an integer n are given. Find all integers of the form
a' b cF.. <nin increasing order and without duplicates.
Approach: For each given prime p compute the power set
{p'lp" < n}. Combine any two power sets to a new one,
while enforcing that the products remain < n. Repeat the
combination for all power sets.

Note: The problem has been suggested in [5].



Problem hamming
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4.3.9 Mandelbrot Set

Problem: Compute the well-known Mandelbrot set.
Approach: Perform all iterations in parallel.

Note: Performance is excellent due to the absence of com-
munication.

Problem apfel
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tlc) /e (m2%) ----
s 4
0.75 - 4
0.5 F 4
0.25 q
1 1 1 1 1 1 1
2%6 2%8 2%10 2%12 2714 2%16 2%18 2%20 222

problem size

The good result on the MasPar is caused by the fact that both
MPL and Modula-2* rely on total locality.

4.3.10 Estimation of P1

Problem pi
T T T T T
t(mpl) /t (m2*) —
tlc) /e (m2%) ----

2%6 2%8 210 2"12  2"14 2"16 2%18 2%20 2%22 2%24 226
problem size

Problem: Compute 7 using the equation = = fol 14:%'
Approach: Approximate the solution by computing
1 n—1

=D ico T3a7 (rectangular rule), where n is the problem

size parameter and z; = (1 + %)/n is the midpoint of the

1th interval.
Note: In [12], Karp employs this problem to study parallel

programming environments.

For problem sizes > machine size (214)7 the hand implementa-
tion of the reduction in MPL is slightly more efficient than the
library function used in the Modula-2* program.

4.3.11 Paraffins Problem

Problem: Given an integer n, output the chemical struc-
ture of all paraffin molecules for ¢+ < n, without repetition
and in order of increasing size. Include all isomers, but no
duplicates (from [5]).

Approach: The algorithm is partially based on [20] and
has similarities to the approach used by Andrews in [5].

Problem parafines
T T

T T
t(mpl) /t (m2*) —
t(c) /e (m2*) ----

1 1 1 1 1 1 1 1
277 2%8 2%9 2%10 2711 2%12 2%13 2714 2%15 216
problem size

The scan, enumeration, and reduction library functions used
in Modula-2* are more general than necessary for this problem.
This generality causes performance to degrade for problem sizes
> machine size.

4.3.12 Point in Polygon

Problem: A simple polygon P with n edges and a point
g are given. Determine whether the point lies inside or
outside the polygon. (A polygon is simple if pairs of line
segments do not intersect except at their common vertex.)
Approach: Draw a line from ¢ that is parallel to the ver-
tical axis. Count the number of intersections with P. The
point ¢ lies inside P if and only if this number is odd.
Note: This well-known algorithm from computational ge-
ometry appears in many text books.

Problem PointInPoly

t(mpl) /t (m2*) —
t(c)/t(m2%) ----

2%6 2%8 2%10 2%12 2%14 2"16 2%18 2%20 2%22 2%24
problem size

See explanation for problem 4.3.10.



4.3.13 Prime Sieve

Problem: Compute all prime numbers in [2..n].
Approach: We implemented the classical prime sieve.
However, rather than using a virtual process per candi-
date, the algorithm assigns a segment of candidates to each
processor. This adaptive version works much faster since
division can be replaced by indexing within each segment.
Note: The problem was suggested by Hatcher [8].

Problem primes
T T T T T
t(mpl) /t (m2%) —
t(c) /e (m2¥%) ----

2"6 2"8 2%10 2"12 2"14 2"16 2%18 2"20 2722 2%24 2%26
problem size

The MPL implementation of the parallel adaptive work loops
can take advantage of parallel register variables. Access to them
is much faster than memory access. The Modula-2* compiler
does not place the same variables into registers. Hence, for
growing adaptive work loops (problem size > 214) the perfor-
mance curve degrades.

4.4 Effect of the Optimizations

Alignment and Layout

Data locality obviously pays off since data access involving
communication is slower than access to local memory.
Problem average

T T T
MP-1: t(no align opt)/t(align opt) —

1 1 1 1 1
2%0 2%s 2"10 215 220 2725
problem size

In the above diagram we compare the runtimes of two ver-
sions. The first version (¢no—atign—opt) has no ALIGNED
WITH clause in the program text. The compiler produces
code that detects dynamically at runtime whether adresses
are local or not. In the second version (talign_opt), align-
ment optimization in the compiler has produced ALIGNED
WITH information. The code generator thus statically
knows about locality. The diagram shows the arithmetic

average of the ratios over all problems. Positive errect of
the alignment is indicated by the curve above unity. For
example, a curve around 2 shows that the optimization
halves the runtime.

On the MasPar, this optimization improves runtime
performance by 40% on average. The advantage of stat-
ically determined locality grows with the amount of data
accessed. No differences could be measured on a sequential
workstation, since all accesses are local.

Elimination of Synchronization Barriers

The elimination obviously pays off for machines without
synchronization hardware. Most MIMD machines, for ex-
ample, synchronize by message passing, which can be two
or three orders of magnitude slower than instruction execu-
tion. However, synchronization barrier elimination is even
beneficial on SIMD machines, because it reduces virtual-
ization overhead and the number of temporary variables
needed. Furthermore, it may improve register usage.

In the following diagram, we show the performance ra-
tio between runs without and with elimination of synchro-
nization barriers (tno—sync—opt/tsync—opt )-

Problem average
T T T T

MP-1: t(no sync opt)/t(sync opt) —

SUN4: t(no sync opt)/t(sync opt) ----

o e e ieblem e P Fwmo
Synchronization barrier elimination improves runtime by
over 40% on a MasPar and by over a factor of 2 on sequen-
tial workstations. Originally, the benchmark programs had
278 synchronization barriers which were reduced to 109 by
applying the optimization technique.

On SISD and MIMD machines, the performance im-
provement stems from the fact that fewer virtualization
loops and fewer temporaries are needed. On a workstation,
loop control and computation is done by the same proces-
sor. Without the elimination of synchronization barriers
more than 50% of the runtime is used for loop control and
memory access for additional temporaries. On the MasPar
MP-1, loop control is performed by the fast frontend pro-
cessor whereas the computation is done by the much slower
parallel processors. Since the optimization technique only
affects the frontend part the relative performance gain is
smaller than that achieved on a single workstation.



5 Conclusion

We presented evidence that compilers for explicitly paral-
lel machine-independent programs can produce competi-
tive code. The results were obtained by comparing com-
piled code with hand-written and hand-optimized code.
Our Modula-2* compiler presently produces code for the
MasPar MP-1 series that, on average, reaches 80% of the
performance of equivalent hand-coded programs. With ad-
ditional optimization techniques this ratio is likely to im-
prove even further.

High-level language compilers for parallel machines not
only provide portability for parallel programs. They al-
so simplify the task of converting sequential programs to
parallel ones because the machine mapping is done by the
compiler while the programmer can concentrate on finding
machine-independent parallel algorithms.

A SPARC/SunOS 4.1.1 binary version of the Modula-2*
compiler, the documentation, and the benchmarks are
available via anonymous ftp from iraunl.ira.uka.de under
pub/programming/modula2star. In order to keep track of the
Modula-2* community, we ask retrievers of our Modula-2* com-

piler to send us their full names and addresses. Send all corre-
spondence to msc@ira.uka.de.
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