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ABSTRACT

In this paper we study the problem of detecting and group-
ing multi-variant audio tracks in large audio datasets. To
address this issue, a fast and reliable retrieval method is
necessary. But reliability requires elaborate representations
of audio content, which challenges fast retrieval by similar-
ity from a large audio database. To find a better trade-
off between retrieval quality and efficiency, we put forward
an approach relying on local summarization and multi-level
Locality-Sensitive Hashing (LSH). More precisely, each au-
dio track is divided into multiple Continuously Correlated
Periods (CCP) of variable length according to spectral sim-
ilarity. The description for each CCP is calculated based on
its Weighted Mean Chroma (WMC). A track is thus rep-
resented as a sequence of WMCs. Then, an adapted two-
level LSH is employed for efficiently delineating a narrow
relevant search region.The “coarse” hashing level restricts
search to items having a non-negligible similarity to the
query. The subsequent, “refined” level only returns items
showing a much higher similarity. Experimental evaluations
performed on a real multi-variant audio dataset confirm that
our approach supports fast and reliable retrieval of audio
track variants.

Categories and Subject Descriptors

H.3.3 Information Systems]: Information Search and Re-
trieval; H.3.1 [Content Analysis and Indexing]: Index-
ing methods; H.5.5 [Information Systems]: Sound and
Music Computing

General Terms

Algorithms, Performance, Experimentation

Keywords

Multi-variant musical audio search, local audio summariza-
tion, multi-level LSH

1. INTRODUCTION

Musical audio content represents a significant share of the
user-generated content on the Web. In many cases (for ex-
ample www.secondhandsongs . com or www.midomi . com), such
content corresponds to popular songs that are interpreted,
recorded and uploaded by different people, in various moods
and sometimes from different countries. The resulting col-
lections of multi-variant audio tracks are found interesting
by many users. For example, statistics' show that a site like
secondhandsongs.com is visited by approximately 12,400
people every month. Archives storing large audio databases
would like to provide relevant similarity-based retrieval ser-
vices to the users. These archives would also appreciate
being able to structure their content by grouping together
the different interpretations of a same song. Unfortunately,
to find the variants of a song, one cannot rely on textual
metadata since the annotations are often in different lan-
guages or simply missing. Furthermore, the direct compar-
ison of audio-based content descriptions is challenging be-
cause there may be significant differences between versions
and also because of the high cost of comparing with many
long sequences of high-dimensional audio descriptions.

The effective and efficient detection of multi-variant audio
tracks is thus a motivating topic in Music Information Re-
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significant research interest, see e.g. [1, 2, 3, 4]. The pre-
vious proposals rely on comparing either sequences of audio
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frame descriptions (feature sequences) [1, 2] or on extract-
ing very compact descriptions of entire audio sequences [6,
7]. The use of feature sequences (denoted by {r; ;}) leads to
more accurate retrieval but does not scale well to large au-
dio databases because matching long sequences is expensive.
Alternatively, very compact descriptions of entire audio se-
quences (where an entire feature sequence {r; ;} is summa-
rized by a single vector V;) support good scalability but the
accuracy of the descriptions (and, consequently, of retrieval)
is limited. An important challenge in detecting and group-
ing multi-variant audio tracks is to achieve a good balance
between accuracy and efficiency over large audio datasets.

To address this challenge, we put forward in this paper
a Local Summarization (LS) method and a multi-level Lo-
cality Sensitive Hashing (LSH) scheme. Based on a prior
study of audio features that can support the detection of
multi-variant audio tracks, each audio track is divided into
Continuously Correlated Periods (CCP). A Weighted Mean
Chroma (WMC) description is computed for each CCP and
can be seen as a local summary. The sequence of WMCs
describing the consecutive CCPs is a concise yet relatively
precise representation of the entire audio sequence. It helps
improve the accuracy of variant track retrieval without re-
quiring expensive computation. We further suggest a two-
level LSH scheme for efficiently delineating a narrow rele-
vant search region. At the first level, a “coarse” hashing
is performed in order to restrict search to items having a
non-negligible similarity to the query item. To find those
items that are highly similar to the query, a subsequent “re-
finement” hashing is used. This significantly accelerates re-
trieval by similarity of multi-variant audio tracks, while pro-
viding good recall and precision. The proposed method can
first be employed for directly answering user queries sent to
the server, by returning the top k£ most similar tracks, among
which the variants should rank well. The same method can
serve for grouping together the different variants of the audio
tracks in the database, either offline for the entire database
or online if the answers to some query contain variants of
one or several audio tracks. To show that the method is rel-
evant for real-life applications, we run our algorithms over a
large musical audio dataset with real multi-variant queries
recorded by different users. The evaluation results show
that the proposed method has a better tradeoff between
retrieval speed and quality than other methods, especially
when queries are shorter than their covers in the database.

This paper is organized as follows. We report the research
background and the related work in section 2 and describe
the structural analysis based on Chroma in section 3. In
section 4, we present the main components of our approach,
first introducing the idea of local summarization relying on
spectral similarity, and then explaining how to build an
adapted locality sensitive mapping exploiting Chroma en-
ergy in order to assign the hash values. An analysis of the
algorithm is also provided. Performance evaluation of the
proposed approach is conducted over a large dataset. The
experimental setup and analysis of the results are given in
section 5. We conclude with a summary of our proposals
and findings.

2. RELATED WORK

In MIR, query-by-content consists in searching the database
using the audio itself as query. This can be performed by
directly looking for audio tracks whose content descriptions

are similar to the description of the query [2, 3, 4], according
to some relevant similarity measures. It is also possible to
first map the query music to some related category (e.g. to
genre [8] or emotion [5]) based on its audio content, and then
return the tracks that belong to the selected categories. For
musical content, similarity can be defined in many different
ways depending on the search intent, personal opinion or
interest, cultural background, etc.

The detection of multi-variant musical audio tracks is con-
sidered in previous work (see [1, 2, 3, 4]) as a sub-topic of
query-by-content in MIR. It is an interesting and motivat-
ing subject, especially with more and more unknown au-
dio recordings being uploaded to User Generated Content
(UGC) websites. More specifically, the systems that were
proposed take an audio track as query, perform search by
similarity and return the resulting tracks in a list ordered
by decreasing similarity to the query. In this domain, the
main research issues are about finding the appropriate rep-
resentation of music content and the organization of audio
track descriptions in order to support fast and accurate re-
trieval. Regarding the first issue, the aim is to improve the
accuracy of multi-variant audio track detection and the dif-
ferent proposals rely on pitch [9, 10], Mel-Frequency Cep-
stral Coefficients (MFCC) [11, 12, 13] or Chroma [2, 14].
With regard to the latter research issue, the goal is to accel-
erate the retrieval by similarity and the existing proposals
include tree structures [7, 15, 16], other hierarchical struc-
tures [17], LSH [4, 11, 18], Exact Euclidean LSH (E*LSH)
[3, 4] and other variants of LSH [6, 11]. It is however clear
that the two research issues are not independent, since more
accurate detection requires more elaborate representations
of audio content, with a negative impact on scalability.

Some research has focused on the extraction of better mu-
sic features and performs a complete audio sequence compar-
ison on the entire dataset. Sequences of Chroma features [2,
14] were successfully used in matching multi-variant music
sequences. They provide good retrieval accuracy, but require
rather expensive sequence comparisons. Log-Frequency Cep-
stral Coefficients (LFCC) and chromagram features [3] were
also successfully used for nearest-neighbor music searches.
LSH was applied in many cases in order to accelerate the re-
trieval of similar sequences from large repositories. Shingles
were created by concatenating consecutive frames and used
as higher-dimensional features. Then E*LSH was adopted to
retrieve candidates that are similar to the query [3]. In [4],
with LSH or E2LSH to support similarity-based retrieval,
the resulting Short Time Fourier Transform (STFT) features
are reorganized into partial sequences and compared with
the query by either Dynamic Programming (DP) or Sparse
DP (SDP). In [11], MFCC are employed and multi-probe
LSH is introduced in order to investigate multiple buckets
that are likely to contain items similar to the query. In [15],
the features that are based on the Discrete Fourier Trans-
form (DFT) are grouped by Minimum Bounding Rectangles
(MBR) and indexed using a spatial access method. Yang [18]
used random sub-sets of STFT features to compute hash val-
ues for parallel LSH hash instances. With a query as input,
the relevant features are matched using hash tables. For
bucket conflict resolution, a Hough transform is performed
on these matching pairs to detect the similarity between the
query and each reference song by linearity filtering.

Other research has rather considered extracting a single
compact vector feature from each entire audio sequence and



then comparing the resulting vectors. In [7], a composite fea-
ture tree (using e.g. timbre, rhythm, pitch) was proposed
to facilitate the search for the k nearest neighbors (kKNN).
A summary is generated from a feature sequence, by using
multivariable regression and Principal Component Analysis
(PCA). In [6], weights are assigned to frequently employed
features like MFCC, Chroma, Mel-magnitudes, based on a
principle of spectral similarity invariance. A long audio fea-
ture sequence is summarized as a compact single Feature
Union (FU). Then SoftLSH is employed for better locating
the relevant search region.

From the existing work it can be concluded that a fea-
ture sequence as representation for a musical audio track
has a high description accuracy but poor conciseness. At
the opposite, a global feature summary is a very compact
representation but its accuracy is comparatively low. In
this work, we focus on the generation of local summaries in
order to find a better tradeoff between accuracy and con-
ciseness in the representation of musical audio sequences
for multi-variant track detection. The coefficient of spec-
tral correlation between adjacent audio frames is computed
and compared against a pre-determined threshold to seg-
ment a musical audio track into Continuously Correlated
Periods (CCP). We summarize each CCP by its Weighted
Mean Chroma (WMC) features.

The WMC descriptions are then mapped to hash keys
with the help of locality sensitive hash functions. To delin-
eate a narrow relevant search region, an adapted two-level
LSH scheme is proposed, based on the relative energy of the
12 semi-tones in the WMC. The positions of several major
bins (i.e. bins having high energy) are used to determine the
hash keys identifying the buckets in the first-level hash table.
The WMC features in each bucket have a non-negligible sim-
ilarity. A specific quantization of the actual energy values of
the major bins allows dividing each bucket in the first-level
hash table into non-overlapping blocks that can be regarded
as a second-level hash table. The WMC features in each
block have a high similarity. Queries are answered by multi-
probing several similar blocks, which results in a good recall
with almost no negative impact on precision. The second-
level hash tables can be refined in order to further speed up
retrieval and reduce the amount of inactive storage space.

3. MUSIC REPRESENTATION

Since the audio collections are very rich datasets, a major
task in music signal processing is to extract a representative
audio profile that depicts the acoustic-related music content
of each song. Appropriate features should allow to distin-
guish among songs and, at the same time, be insensitive to
the differences between the variants of a same song. More-
over, compact representations of the musical audio informa-
tion should support more efficient retrieval and require less
additional storage. In this section we review some typical
music representations and present the reasons for choosing
Chroma as the base feature.

3.1 Representation of Music Signals

Unlike other kinds of audio, music has strong descriptive
composition. Different music pieces usually have different
scores (sheet music). The score represents the most concise
description of a song. However, translating an audio signal
to a score is quite difficult for polyphonic songs. Most rep-
resentations are based on some audio features and can be
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Figure 1: Accuracy-conciseness tradeoff.

categorized as follows:

(i) Sequence of features. Music signals have regular spec-
tral structures that are highlighted by their scores. This is
why spectral features, such as MFCC [11], STFT [18], pitch
[9], and Chroma [14], have been widely exploited in music
retrieval. A music signal is only stable for a short period
of time. Hence, a signal is often divided into short frames,
from which some features are extracted and represented as
multidimensional vectors. Although the sequence of features
retains a large share of the information present in a music
signal, using it directly to retrieve music can be expensive
due to its high temporal length.

(ii) Global summarization. One way to reduce the compu-
tation cost is to summarize the audio signals. In [6] audio
signals are represented by statistics of a set of frequently
used features. Although summarization effectively reduces
the volume of data, a large part of the temporal information
is lost and the accuracy decreases when the summaries are
used for retrieval. For this scheme to work well, one has to
make sure that a query has almost the same statistics as its
relevant tracks in the dataset.

(iii) Local summarization is the focus of this paper. A
music signal is divided into multiple segments so that the
statistics of each segment remain almost unchanged along
the segment and can thus be used as a local summary with
little information loss.

As shown in Figure 1, (i) and (ii) are two extremes of mu-
sic signal representation: (i) has the highest accuracy but
a large amount of redundancy and (ii) is very concise but
also loses significant information since it exclusively relies on
global statistics. It is obvious that a tradeoff is necessary.
In the following we adopt local summarization, which is ade-
quate since the musical audio signal is short-term stationary.
It was reported in [19] that adjacent frames corresponding to
the same note are highly correlated. In this work, the music
signal is divided into multiple stable periods, each generat-
ing a local summary. This approach is also very efficient
since the redundancy is significantly reduced.

3.2 Spectral Properties of Chroma

Chroma plays an important role in music perception [20],
and is often used in content-based musical information recog-
nition and detection [1, 2, 6, 14]. Since Chroma features only
capture tonal information, they are invariant to some differ-
ences among multi-variant audio tracks. In the following we
further investigate some spectral properties of Chroma to
give the reasons why we can use the statistical properties of
Chroma energy distribution.

The spectrum of music signal is structured, showing a cer-



tain number of harmonics. The entire frequency band of mu-
sic signal can be divided into 88 sub-bands in such a way that
the central frequency of each sub-band is 2'/'? times of its
previous one. Each sub-band corresponds to a note/pitch.
Frequencies that are one octave apart (frequency ratio 2:1)
represent harmonics and constitute a frequency family. As a
result, there are 12 distinct note families. When pitch is used
as the feature, the note with maximal energy is extracted.
In such cases, harmonics are not discriminative and it is not
easy to determine which of a frequency family reflects the
real pitch. Therefore, sub-harmonic summation is exploited
to explicitly distinguish a note from its harmonics.

Notes belonging to the same family are perceived as be-
ing similar to each other. Hence, it is unnecessary to dis-
tinguish harmonics. Chroma is an interesting and power-
ful representation for musical audio, in which the energy of
each frequency family is calculated separately. It is a 12-
dimension vector corresponding to the 12 distinct frequency
family. Since, in music, frequencies exactly one octave apart
are perceived as particularly similar, knowing the distribu-
tion of Chroma, even without the absolute frequency, can
give useful musical information about the audio and may
even reveal a perceptual musical similarity that is not ap-
parent in the original spectrum. Please refer to [2] for details
regarding Chroma features.

By definition, each bin of Chroma represents the total
energy of the corresponding frequency family. It can be
calculated from the power spectrum by applying 12 discrete
windows. MFCC also considers the human auditory system,
but Chroma is different: MFCC focuses on the continuous
frequency band while Chroma focuses on discrete harmonics.

4. PROPOSED APPROACH

Content-based musical audio retrieval involves both mu-
sic signal processing and audio content indexing. In this
section we present a multi-level LSH scheme based on a lo-
cal summarization method. They are both designed to sat-
isfy the requirements of scalable retrieval of multi-variant
audio tracks. We describe the representation of an audio
signal with local summaries, the computation of WMC fea-
tures based on the Chroma spectral energy distribution, the
conversion of WMC sequences into hash values, the organi-
zation of local summaries of audio tracks with the two-level
LSH structure, and the overall retrieval process.

4.1 Local Summarization

As mentioned earlier (see also [19]), spectral features of
adjacent frames corresponding to the same note are highly
correlated. Spectral similarity is used as the main metric to
determine continuously correlated periods (CCP). Let ¢; be
the Chroma feature of the i'" frame of a song. The corre-
lation between two Chroma features ¢; and c¢; is calculated
according to Eq.(1), where < -, > is the inner product be-
tween two vectors.

B < ¢, c5 >
N V< i, ¢ ><cj, ¢ >

p (1)

Figure 2 shows an example of correlations between ad-
jacent frames. The piece of audio signal was divided into
19 frames. The numbers on top of the figure are correla-
tion coefficients between the Chroma features of adjacent
frames. By comparing these correlation coefficients against
a pre-determined threshold p:,, CCPs can be found. For
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Figure 2: Local summarization.

example, frames 2 to 7 form the first CCP and frames 10
to 16 form the second CCP. A CCP represents the stable
period of a note. Between two CCPs there are also frames,
such as 8 and 9, having low correlation with adjacent frames.
These frames represent unstable (transitory) periods and are
neglected in our summarized representation.

Each CCP j has arun length L;. Frames in the same CCP
correspond to the same note and have almost the same spec-
tral structure. Let the k' frame in CCP j be c;x. Instead
of keeping all the frames in a CCP, their common informa-
tion is extracted as a prototype. The spectrum is the most
stable in the middle of a CCP. Therefore, the features of all
the frames in a CCP are weighted by a triangle window of
length Lj, as shown in Egs. (2-3). This produces a weighted
mean Chroma (WMC) feature, regarded as the summary of
this CCP. By segmenting the signal into CCPs using the
similarity threshold p;; and keeping only the WMC for each
CCP, the resulting feature sequence is compact while keep-
ing significant temporal information of the audio track. The
impact of local summarization is discussed in section 5.2.

T”‘{ (L; — k)/Ly, k> L2 @
WMC; = Zk Tik - cjk 3)

4.2 Quantization of WMC

Each audio track is represented by a sequence of WMC
after summarizing the original Chroma features of the song.
To organize the WMCs in the database we define an adapted
LSH scheme. Hash values are calculated from the quantized
WMC. To retain the perceptual similarity in the quantiza-
tion stage, an investigation of some characteristics of the
WMC features is presented below.

Each Chroma feature has V' = 12 dimensions (or 12 bins).
These bins represent energies of semi-tones, or frequency
families. It is known that in monophonic song there is a
primary note, while in polyphonic songs there may be sev-
eral notes simultaneously initiated. Anyway, the number of
simultaneous notes is usually limited and the energy of each
Chroma feature concentrates on few major bins.

We study the energy distribution over different bins in
each Chroma feature. The dimensions in each Chroma fea-
ture are sorted in the descending order of their energy and
these bins are called 1°® major bin, 2"¢ major bin, and so on.
The energy of first k (1%, 274, ... k") major bins is cal-
culated and normalized by the total energy of the Chroma
feature. Figure 3 shows the cumulative density function of
these normalized energies when k = 1,2, --- , 6, respectively.
This allows to see that the energy of Chroma features con-
centrates on few bins, with the L = 4 major ones represent-
ing more than 80% of the energy. The energies of the other
bins are too low to have a significant contribution to the
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similarity and these bins can be safely neglected. Therefore
only the first four major bins (L = 4) are kept.

The major bins of Chroma should also be quantized in
order to calculate integer hash values. A major property
of audio spectrum is that the perceptual similarity is de-
termined not by the absolute strength of the spectrum, but
rather by the relative strength. In other words, the order of
major bins arbitrates the perceptual similarity. Therefore,
instead of performing accurate quantization, we take the rel-
ative strength into account and decide to assign weights to
the selected L major bins. The actual weight depends on the
relative strength of each major bin, as shown in Figure 4.
The energies of 1°¢, 2"¢, 37¢ 4" major bins are averaged
over all Chroma features and normalized so that the energy
of the 1°* major bin equals 1. The weights are selected to
fit the normalized energy and, at the same time, reflect well
the relative strength. The chosen weights are 2F =1 — 1 for
the " major bin, i.e. 15, 7, 3 and 1 for L = 4. To each of
the other V — L bins, a weight of 0 is assigned.

4.3 Two-Level LSH Structure

LSH is a hash-based method employed in approximate
search and retrieval schemes [3, 4, 6, 11, 21, 22] to find all
the items similar to a query. More specifically, features are
extracted from items and regarded as similar to one another
if they map to the same hash values. Locality sensitivity
ensures that similar items collide in the same bucket with a
high probability. But not-so-similar features can also share

the same bucket. To improve the precision, a post-filtering
is required. The filtering stage takes much time in LSH
schemes and depends on the percentage of non-similar items
in the same bucket. In addition, with a single hash instance,
recall values can relatively be low. Usually, several parallel
hash instances are used to improve recall values. This fur-
ther increases computation costs. In most LSH schemes,
a single-level structure is used and it is difficult to find a
trade-off between retrieval quality and computation cost.

In the following, we address this problem by designing a
two-level hash structure in the light of Chroma energy dis-
tribution. Dividing the hash tables into two levels facilitates
the design of LSH functions. In the first level hash table,
each bucket contains features with non-negligible similar-
ity. Each bucket is further divided into blocks and forms
a second-level hash table. Features in the same block have
higher similarity. To meet the different similarity require-
ment, different LSH functions are used at the two levels.

Organizing the music features in the database via LSH
requires computing the hash values from the features. Al-
though the random selection of sub-dimensions or the ap-
plication of random linear functions to the WMC generates
hash values, we do this in a different way, better adapted
to the nature of the WMC features. In the previous sec-
tion, we showed that from the i WMC, L major bins
P, =< pi,pi2,--- ,pir > are assigned non-zero weights
H;, =< hi1, hia, -+ , hir >. Two WMCs with some common
non-zero positions share some frequencies and are similar to
some extent. If the assigned weights are also the same, the
similarity degree increases. Therefore, the hash values in
the first hash table are calculated from the positions of the
L major bins. Hash values in the second hash table are cal-
culated from the weights of the L major bins. Because two
WDMCs may only share part of the non-zero frequencies, a
subset of P; (with C positions, C < L) determines a bucket
in the first hash instance.

Similar to the parallel hash instances in general LSH schemes,

some redundancy is necessary to ensure a relatively high re-
call in the proposed scheme. Let P;; be the 4" subset of
the position set P; and H;; the corresponding subset of the
weight set H;. In this way, each WMC appears in several
buckets in a first level hash instance and the number of oc-
currences depends on the number of subsets P;;. In the
second level hash instance, there is no overlapping between
blocks. Each block is associated to a subset Hj;.

Figure 5 shows an example of the two-level LSH structure
where L = 4 and C = 3 (a, b, ¢, f are the hexadecimal
notations for 10, 11, 12 and 15 respectively). The weights
belong to {1,3,7,15}. Two WMCs are represented. WMC1
is assigned weights H1 =< f,3,1,7 > at positions P; =<
2,4,6,9 >. WMC?2 is assigned weights Hy =< 3,1,7, f >
at positions P, =< 1,2,6,9 >. WMC1 and WMC2 collide
in the bucket associated with the position subset <2,6,9>.
The second level hash table has 24 blocks, each associated
with a permutation of the weights. In the second level hash
table, inside the bucket determined by the position subset
<2,6,9>, WMCI1 has the hash value Hi 17 =< f, 1,7 > while
WMC2 has the hash value Hz 13 =< 1,7, f >. Therefore,
they are stored in different blocks.

4.4 Multi-Probing

Blocks in the second level hash table are non-overlapping.
As a result, two WMCs with different weights cannot collide
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in the same block even if their similarity is high. Improving
the recall requires probing several blocks.

Each block is associated with a subset of weights and all
WDMCs inside the same block share these weights. The com-
mon weights can represent a block. Similarity between two
blocks is calculated based on these weights, as shown below.

o= ., min {H (i), Hs (i)}
2 max {H (i), Ha (i)}

If we use binary representations for the weights and con-
catenate these representations, then the above definition is
equivalent to the Jaccard similarity coefficient [23].

With multi-probing, when a query matches a block, not
only the features in that block, but also the features in the
relevant neighboring blocks are selected as candidates. A
neighbor of a block is relevant if its similarity with the block
is above a predefined threshold ;5. Since a block is defined
by a permutation of the weights, the relevant neighbors of
each block can be easily pre-determined.

Note that not all the blocks have the same number of
relevant neighbors. Figure 6 shows the total number of
blocks that should be probed for a query falling in one of
the 24 blocks (with the two-level hash scheme in Figure 5).
The horizontal axis gives the block ID; the block similarity
threshold is ¢, = 0.75. Different numbers can be obtained
for other thresholds.

(4)
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ond level hash table.

tracks (potentially versions of the query) from the database
follows these steps:

(i) The audio query ¢ is converted into a sequence, ¢1, g2, - - -
of local summaries (WMC features).

(ii) For each WMC feature ¢;, the positions and weights of
its major bins, P; and H;, are determined. For each subset
P;; of P; and H;j; of H;, the corresponding bucket and then
block are found. The WMC features in this block and in
the neighboring blocks are retrieved. These form the rough
candidates {rmn}.

(iii) Now ¢; is compared against {rmn } according to Eq.(1).
Only WMCs with a correlation coefficient higher than the
pre-determined threshold remain after this filtering. The
remaining matching pairs are {< ¢, Fmn, p >}.

(iv) Matching pairs found with all the WMCs in the query
are used to determine whether a candidate track is really rel-
evant. With all matching pairs of the same reference track,
a Hough transform is performed to check the linearity as in
[18]. Here, g; and rmy are local summaries and associated
with each is the offset of the corresponding CCP inside the
audio track; the actual offset is used in the computation.

4.6 Speedup Analysis

Assume that, after local summarization, there are N WMCs
in the database. Exhaustive search would require comparing
a query WMC to each of the N WMCs.

Let us now evaluate the cost of processing the query with
the two-level LSH scheme. In the first level hash table there
are (%) buckets and each feature appears in (%) buckets.
Therefore, on average, each hash bucket contains N-(%)/(&)
WMCs. Each bucket is further divided into (%) - C! non-
overlapping blocks at the second level of hashing. During
retrieval W blocks are probed. It follows that the ratio be-
tween the number of similarity computations with the two-
level hashing scheme and the number of similarity compu-
tations with exhaustive search is

(e)/Ce)r/Ie)e]] o

This is also the inverse of the expected speedup (accelera-
tion). In the above equation V is a fixed value defined by
the features employed, W depends on block similarity, while
L and C (C < L) are in principle adjustable parameters.
The second factor in Eq.(5) is the probing ratio, i.e. the
ratio of the number of probes to the total number of blocks
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Figure 8: Speedup with two-level hash structure.

in the second level hash table. Figure 7 shows the average
probing ratio for different numbers of major bins (L), with
the block similarity threshold set to 0.75. Although there are
more blocks as C increases (together with L), more blocks
are similar and thus need to be probed. Therefore the prob-
ing ratio does not decrease much. The inverse of the probing
ratio, [(&)-C!/W], reflects the speedup obtained by two-level
LSH with respect to single-level LSH.

Figure 8 shows the average acceleration following Eq.(5),
with the average probing ratio given in Figure 7. According
to Figure 8, when L = 4 and C' = 3, the two-level hash
structure can make retrieval 310.6 times faster. Although a
larger L could lead to a higher acceleration, this is not used
since the L = 4 major bins already contain the largest part
of the Chroma energy according to Figure 3.

4.7 Hashing Refinement

In Figure 6, the number of probes for 6 blocks equals
1, indicating that these blocks have no relevant neighboring
block. An investigation shows that these 6 blocks correspond
to the subset of weights {1,3,7}, i.e., they are associated
with a subset of weights with small values. A further study
confirms that these blocks can be safely removed, to reduce
both the storage and computation costs. Assume that two
WMCs, WMC1 and WMC?2, collide in some bucket/block
associated with <1,3,7>. This can happen in two cases:

(i) The position of the 1°* major bin in WMC1 and WMC?2
is different. Then the similarity between H; and Hz is of
only (143+7)/(1+3+47+15+15) = 11/41, which is much less
than the total similarity threshold. This matching pair can
be safely removed.

(i) The position of the 1°* major bin in WMC1 and WMC2
is the same. Then WMC1 and WMC?2 also collide in the
same block associated with <3,7,f> and can be retained for
the last filtering stage in virtue of this last collision. Hence,
the blocks associated with <1,3,7> are unnecessary.

In general, when the block similarity threshold is deter-
mined, some blocks can be omitted because they are associ-
ated with low-weight hash values.

5. EXPERIMENTAL RESULTS

We have conducted several experiments to evaluate the
retrieval quality and the efficiency of the proposed method
based on local summarization and multi-level LSH. We first
introduce the experimental setup in section 5.1. The real
audio datasets are described, then the ground truths, tasks

Table 1: Datasets description.

Dataset | Covers79 | ISMIR | RADIO | JPOP
#Tracks 1072 1458 1431 1314
Size 1.42GB 1.92GB | 1.89GB | 1.73GB

Number of groups

.
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Number of covers

Figure 9: Distribution of cover tracks in Covers79.

and evaluation metrics are presented. Four experiments are
performed to measure the effect of the spectral correlation
threshold and the block similarity threshold, the robustness,
and the effect of the query lengths, respectively.

5.1 Experiment Setup

Datasets. Our music collection (5275 tracks) consists of
four non-overlapping audio track datasets, as summarized in
Table 1. Covers79 is collected from www.yyfc.com and con-
tains 79 popular Chinese songs, each present in several ver-
sions (same song interpreted by different persons). A song
has on average 13.5 versions, resulting in a total of 1072 au-
dio tracks. Figure 9 shows the distribution of these tracks as
a function of the number of their covers (e.g., 12 songs have
11 covers each). The tracks in Cover79 were recorded by
different users with simple computer microphones, so back-
ground noise is present in the recordings. In other words,
the query is noisy, which makes the evaluation results mean-
ingful for real applications.

The RADIO dataset was collected from www . shoutcast . com,
while the ISMIR dataset was taken from ismir2004.ismir.net
/genre_contest/index.htm. JPOP (Japanese popular songs)
is from our personal collections. These three datasets are
used as background audio files in our experiments. To fur-
ther investigate the robustness of our algorithms, we also
collected a real noise dataset (denoted by RNoise) that can
be used as the queries’ background noise. RNoise contains
396 noise tracks recorded in public places, for example in a
bus on the highway, on the campus or in the subway.

Each track is 30s long in mono-channel wave format, the
sampling rate is 22.05 KHz with 16 bits per sample. The
audio data is normalized and then divided into overlapping
frames. Each frame contains 1024 samples and the adja-
cent frames have 50% overlap. Each frame is weighted by a
Hamming window and 1024 zeros are further appended. A
2048-point FFT is used to compute the STFT from which
the instantaneous frequencies are extracted and Chroma is
calculated, then the WMC features are obtained through
local summarization.

Benchmark. The ground truth is set up according to
human perception. We have listened to all the tracks and
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Figure 10: Storage and acceleration by local sum-
marization.

manually labeled them, so the retrieval results of our al-
gorithms should correspond to human perception in order
to support practical applications. Covers79 is divided into
groups according to the verses (the lyrics corresponding to
the main theme) to judge whether the tracks belong to the
same group or not. One group represents one song and the
different versions of the song are members of this group.
The 30 second segments in the dataset are extracted from
the main theme of the songs.

Tasks. We consider the problem of cover songs detection
or near duplicate detection of audio files, as in [1, 2, 3, 6,
14]. But we focus on the cases where the queries only match
a part of the relevant references in the database. With a
part of each track in Cover79 as the query, its cover versions
are retrieved. The extra noise recorded in public places is
also added to some queries to evaluate the robustness of the
proposed retrieval scheme.

FEvaluation metrics. We focus on recall as the main met-
ric. Indeed, we want to see whether the adapted two-level
LSH scheme we proposed is more selective (returns fewer ir-
relevant results) than baseline LSH but does not miss many
more relevant results. Given a query ¢ as musical audio in-
put, Sy is the set of items that are relevant to this query in
the database. As a response to the query, the system out-
puts the retrieved set K, in a ranked list. In the following
experiments |K,| equals |Sq|. Recall is defined as

recall = |Sq N Kq|/|Sq] (6)

5.2 Effect of Spectral Correlation Threshold

In the local summarization stage, each audio track is di-
vided into multiple CCPs, separated by isolated frames.
Each CCP has a length of at least 2. Frames that are
not similar to any adjacent frame are discarded (isolated
frames). The number of CCP (WMC) depends on the spec-
tral correlation threshold p:n. A large p¢n produces many
isolated frames and fewer CCP. On the other hand, with a
small p:p two adjacent CCPs may be merged together. A
proper pi, should maximize the number of CCPs.

A simulation result is shown in Figure 10, where the nor-
malized storage J is the ratio of the number of WMC (CCP)
to the number of original frames. The value of § reaches a
maximum of 0.15 for p:,= 0.75. Since the equivalent length
of each frame is 23 ms, the average duration of each CCP is
of about (23 ms /J) 150 ms.
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Figure 11: Percentage of matched pairs.
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Figure 12: Recall for different block similarity
thresholds.

Local summarization reduces the number of features not
only in the database but also in the query, so the computa-
tion cost is reduced by a factor of 1/62. The value of §2 is
shown in Figure 10 as the normalized computation cost. For
pen=0.75, 62 equals 2.37%, so retrieval is 42 times faster.

5.3 Effect of Block Similarity Threshold

Figures 11-12 show the results for different block similar-
ity thresholds. Each query is on average 10 seconds long, or
1/3 of the length of its relevant songs. A “rough pair” is a
pair that was found to match by the two-level LSH before
the final filtering. A “similar pair” is a rough pair that re-
mains after filtering. The numbers of rough pairs and similar
pairs in two-level LSH are normalized, i.e. divided by the
corresponding values in the baseline, single-level LSH. With
a good design we expect that the percentage of similar pairs
approaches 1 while the percentage of rough pairs approaches
0. As the block similarity threshold increases, both the per-
centage of rough pairs and similar pairs decreases. But for
all cases the percentage of similar pairs is significantly higher
than that of rough pairs, which confirms that the adapted
two-level LSH is more selective than baseline LSH.

Because the percentage of similar pairs decreases when the
block similarity threshold increases, the recall also decreases
(Figure 12). The recall of the two-level LSH is very close to
that of a single-level LSH when the block similarity threshold
is no more than 0.7. Although from Figure 11 it may seem
that the block similarity should be less than 0.65, the value
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Figure 13: Recall under different SNR with non-
white noise.

of 0.7 is reached in Figure 12 since the sequence comparison
using the Hough transform [24] also has a contribution.

5.4 Evaluation of Robustness

In real applications, the query musical signal may be mixed
with environmental noise, which raises a challenge with re-
spect to the robustness of our solution. In fact, several com-
ponents of the proposed retrieval scheme contribute to an
increased robustness. Specifically, WMC features are ob-
tained by the weighted temporal integration of Chroma fea-
tures during a CCP, which can reduce the sensitivity to im-
pulse noise. Furthermore, by only retaining the 4 major
bins, the quantization of WMC features can provide robust-
ness to noise whose spectrum does not replace or exchange
any of these bins.

To show the robustness of our scheme, 396 queries are ran-
domly selected from Covers79 and the 396 noise segments
from the RNoise set are respectively added to them, at sev-
eral values of the SNR (signal to noise ratio), to simulate
a real, noisy environment. Figure 13 shows that the re-
call at lower SNR is a little less than that at higher SNR.
In the evaluation, non-white noise is used and SNR is calcu-
lated from the ratio of average signal energy to average noise
energy. For a query with a low SNR, the spectrum of the
non-white noise may be stronger than the desired signal and
change the spectrum structure completely. Therefore the re-
call degraded slightly. However, for SNR above 10dB, the
recalls of both one-level LSH and two-level LSH approach
the steady value reached when no extra noise is added.

5.5 Effect of Query Length

Audio signals are not stationary, the statistic properties
change between different segments. This is why we suggest
the use of local summarization. Figure 14 shows recall val-
ues under different normalized query lengths. The length of
a query is normalized by dividing it by the length of its rele-
vant songs (variants) in the database. Here, “EllisPoliner07”
relies on comparing sequences of beat-synchronous Chroma
by exhaustive search [2]. “GlobalSum” is the scheme sug-
gested in [6], which exploits global summarization.

It is obvious that for global summarization, the recall
heavily depends on the query length, since the statistical
properties change. Recall is relatively low when a query has
a much shorter length than its variants in the database. But

0.8
W
0.6 %
=
g 04
GlobalSum+KNN
—s— LocalSum+OneLevelLSH
02 ---a--- LocalSumt+TwoLevel LSH
—-x~- EllisPoliner07
0 f f | | | | |

02 03 04 05 06 07 08 09 1
normalized query length

Figure 14: Recall for different query lengths.

when local summarization is employed, the performance is
less sensitive to query length. This is because the local sum-
marization provides a more complete representation of the
properties of a query and of its relevant tracks. Therefore,
the proposed scheme still achieves high recall even when the
query is very short. Figure 14 also shows that, with two-level
LSH, recall is very close to the value obtained with single
level LSH, especially when the query is relatively long.

Surprisingly, the two-level LSH scheme achieves a simi-
lar recall as EllisPoliner07 and even outperforms it a little
when the query length is short. This is due to two fac-
tors: (i) EllisPoliner07 heavily depends on beat detection
and uses cross-correlation instead of dynamic programming
in calculating the similarity. Thus, its performance degrades
if errors occur in beat detection. (ii) Our scheme is designed
to be robust. Even when the noisy version significantly dif-
fers from the original track, they are still likely to share the
same major bins over many frames, which ensures a rela-
tively high recall.

6. CONCLUSION AND FUTURE WORK

The presence of large collections of multi-variant musical
audio tracks on user-generated content websites and the in-
terest such collections have for many users motivate work
on the detection of the audio variants, either for directly
answering user queries or for structuring the content of the
collections. Since the textual annotations are frequently in-
appropriate or even missing, finding the variants of a song
must rely on the audio content itself. However, this is not
an easy task. The comparison of feature sequences get accu-
rate retrieval but does not scale well because matching long
sequences is expensive. Alternatively, very compact descrip-
tions of entire audio sequences support good scalability but
retrieval accuracy is limited. Achieving a good balance be-
tween accuracy and efficiency is an important problem in
detecting and grouping multi-variant audio tracks.

To obtain both accurate and efficient retrieval, in this
paper we proposed a new method combining local summa-
rization and multi-level locality-sensitive hashing. Based on
spectral similarity, we suggest dividing each audio track into
multiple continuously correlated periods of variable length.
By removing a significant part of the redundant informa-
tion, this provides support for more compact yet accurate
descriptions. Weighted mean Chroma features are computed



for each of these periods. Then, by exploiting the charac-
teristics of the content description, we define an adapted
two-level locality-sensitive hashing scheme for efficiently de-
lineating a narrow relevant search region. At the first level
a “coarse” hashing is performed in order to restrict search to
items having a non-negligible similarity to the query. To find
the items that are highly similar to the query, a subsequent
“refined” hashing is used.

Our analysis shows that a significant speedup can be ex-
pected. We believe that this multi-level hashing scheme can
be further improved by an adapted representation of bucket
content and by directly taking the longer-range temporal
information into account.

We presented evaluation results and compared the accu-
racy and efficiency of our method in retrieving multi-variant
audio tracks. We have shown the practical application of
the proposed algorithms via experiments on a multi-variant
music dataset, with a ground truth based on human per-
ception. The results of cover song detection demonstrate
that (i) local summarization far outperforms global summa-
rization; (ii) the adapted two-level LSH scheme significantly
improves query selectivity compared to conventional LSH.
Together, these proposals achieve a much better tradeoff
between retrieval accuracy and efficiency.

The method put forward here can be directly employed
for answering queries by example, but can also serve for
grouping together the different variants of the audio tracks in
the database. We believe this methodology can be extended
to other types of problems in music information retrieval, by
using adequate features and similarity measures.
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