
Analysis of the Split Mask Countermeasure
for Embedded Systems

Jean-Sébastien Coron Ilya Kizhvatov
Université du Luxembourg

6, rue Richard Coudenhove-Kalergi
L-1359 Luxembourg

{jean-sebastien.coron, ilya.kizhvatov}@uni.lu

ABSTRACT
We analyze a countermeasure against differential power and
electromagnetic attacks that was recently introduced under
the name of split mask. We show a general weakness of
the split mask countermeasure that makes standard DPA
attacks with a full key recovery applicable to masked AES
and DES implementations. Complexity of the attacks is the
same as for unmasked implementations. We implement the
most efficient attack on an 8-bit AVR microcontroller. We
also show that the strengthened variant of the countermea-
sure is susceptible to a second order DPA attack indepen-
dently of the number of used mask tables.

Categories and Subject Descriptors
E.3 [Data Encryption]: Code Breaking; Standards (AES,
DES); C.3 [Special-Purpose and Application-Based

Systems]: Real-time and embedded systems; Smartcards

General Terms
Security, Algorithms, Measurement, Experimentation

Keywords
cryptanalysis, countermeasures, DPA, masking, side channel
analysis

1. INTRODUCTION
Masking intermediate values of a cryptographic algorithm

with random data is a widely adopted method for reinforc-
ing its implementation in an embedded device against side-
channel attacks. Originally introduced into the scientific
community by Goubin and Patarin [14] and Chari et al. [6],
masking makes the side-channel leakage of a device running
the implementation independent of the processed sensitive
data at individual moments. It is an effective way of coun-
tering the differential power analysis introduced by Kocher

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WESS ’09, October 15, 2009, Grenoble, France
Copyright 2009 ACM 978-1-60558-700-4 ...$10.00.

et al. [17]. Using multiple masks for a single intermedi-
ate variable can also counter higher order DPA attacks, first
described in detail by Messerges [19].

Masking however notably increases implementation foot-
print and decreases performance, as additional variables are
introduced into computations. To maintain proper data
processing one must keep track of these variables (masks)
during the algorithm execution. This involves precomputa-
tions of intermediate masking values from a set of randomly
generated masks. Specifically, masked lookup tables must
be recomputed when a mask changes. Results of profiling
a masked AES implementation reported by Mangard et al.
[18] indicate that most part of the introduced overhead orig-
inates from the precomputations.

Hence, various resource-saving masking schemes for con-
strained devices are of great practical interest. Ways of re-
ducing the amount of precomputations and memory while
keeping resistance to higher order DPA are a target of re-
cent research. For example, Itoh et al. [16] suggested using
a limited set of masks, so that all possible masked lookup
tables can be precomputed once and stored in memory, thus
avoiding recomputations at all.

The split mask countermeasure analyzed in this work has
been proposed by Gebotys et al. in [10, 11, 12, 13]. The
general idea of this variant of resource-saving masking is to
mask each entry of a lookup table with a different output
mask. These output masks are split into several shares that
are stored in additional mask tables. The input of the ta-
bles is masked with a value that is fixed for a single key.
Recomputation of the tables under a single key is either not
performed at all or involves simple operations for modifying
the output masks. The countermeasure is applied to AES
[8] and DES [9] and is claimed to thwart DPA attacks1 of
order N when N mask tables are used.

We show that the approach followed in the split mask
countermeasure exhibits a general weakness. By exploiting
this weakness, AES and DES implementations with the split
mask countermeasure can be defeated by a standard DPA
leading to a full key recovery in the known plain- or cipher-
text model. Several attack paths are possible. The comple-
xity of the attacks is the same as for unprotected implemen-
tations. We implement the most efficient attack on an AES
implementation with the split mask countermeasure for an
8-bit Atmel ATmega16 microcontroller form the widely-used
AVR family. The attack requires about 400 traces for the

1Throughout this paper, we use the term DPA also with the
electromagnetic side-channel in mind.

full key recovery.
In [11] it was mentioned that the split mask countermea-

sure can be strengthened by changing table input masks
after a number of encryptions. We sketch a DPA attack of
order 2 against this strengthened variant that works for any
number N of mask tables.

2. THE SPLIT MASK
COUNTERMEASURE

We outline the general idea of the split mask by showing
how a single lookup table is masked based on the description
in the recent work of Gebotys [11].

S ′

M

x ⊕ n S(x) ⊕ rx

rx ⊕ m

Figure 1: S-box with the split mask countermeasure

Let S be an S-box with input x and output S(x) imple-
mented as a lookup table. The split mask implementation
of S, shown in Figure 1, consists of a masked table S′ and
a mask table M . These tables are defined as follows:

S′(x ⊕ n) = S(x) ⊕ rx,

M(x ⊕ n) = rx ⊕ m.
(1)

This means that the input of the S-box is masked with n,
and each output value is masked with an individual random
value rx. This gives the masked table S′. The set of output
masks rx is also stored in the mask table M so that

S
′(x ⊕ n) ⊕ M(x ⊕ n) = S(x) ⊕ m (2)

holds for every input x. In other words, m can be viewed
as the output mask of S that is split into two shares rx and
M(x⊕n), the splitting being individual for each table entry.

Masks m and n are fixed: they are randomlsy generated
when tables (1) are precomputed for a given encryption key
and then remain constant for different plaintexts. The set
of output masks rx is also randomly generated during table
precomputation and can be refreshed for different plaintexts,
as the table recomputations in this case are simple and fast.
Thus, the performance overhead introduced by the counter-
measure is small. Memory overhead can also be small if a
single masked implementation is shared by several identical
S-boxes of the algorithm, which is allowed by the original
description of the split mask.

The split mask countermeasure with a single mask table
is claimed to thwart the 1-st order DPA attack. For this, the
original description requires that (2) should never be com-
puted directly (i.e. appear as an intermediate value) during
an algorithm execution. A generalization of the method uses
N mask tables for splitting m into N +1 shares. In this case
a DPA of order N is claimed to be thwarted under a similar
condition.

In concrete AES and DES implementations the fixed masks
at the input of the S-boxes originate from the masked round
keys. Other details of concrete implementations can be
found in [10, 11, 12, 13]. In these papers the countermea-
sure is proposed for an optimized AES implementation with

8×32-bit lookup tables that are used to compute the S-box
and the diffusion simultaneously. We stress that this fact
does not influence our analysis and the considerations pre-
sented in the following sections are independent from these
implementation details.

3. WEAKNESS OF THE SPLIT MASK
First, we recall some details of the original DPA attack of

Kocher et al. [17]. To mount it against an implementation
of an encryption algorithm, one selects an intermediate bit
b such that:

1. this target bit b can be expressed as a function
D(C, b, Ks) of a known plaintext or ciphertext C and
a part Ks of the encryption key that one is willing to
recover;

2. the size of the subkey Ks on which b depends is suf-
ficiently small, commonly less than 32 bits (otherwise
the attack is rendered impractical mainly by a large
number of traces required to distinguish a correct sub-
key guess);

3. calculating D for an incorrect value of Ks yields the
correct value for the target bit b with probability about
1

2
;

4. power consumption of the device depends somehow at
some time on the value of b.

The selection function D is then used as a criterion to clas-
sify the collected power traces under all possible hypotheses
for Ks. For each hypothesis, a differential trace is calculated
as a difference of means of the two sets of power traces, one
corresponding to D = 1, another to D = 0. For an incorrect
guess of Ks, D is uncorrelated to the actual value of the tar-
get bit b computed by the device, and the differential trace
is close to the zero line. For the correctly guessed key, the
classification of power traces is performed based on the ac-
tual value of the target bit. Therefore, the differential power
trace should exhibit distinguished peaks at the time when
the power consumption of the device depends somehow on
the value of the target bit.

Now, it is easy to see that if a target bit is masked with
some fixed value then DPA still works. Mask 1 inverts the
classification, which just changes the sign of the peaks; mask
0 does not affect anything at all.

For the split mask countermeasure this means that if we
are able to find a target bit at the input of some layer of S-
boxes that is expressed as a function of a sufficiently small
number of key bits and a known plaintext or ciphertext, the
original DPA will immediately apply without any respect to
the number of shares into which the output mask is split.

In the next section, we describe concrete attacks on AES
and DES implementations with the split mask countermea-
sure that exploit this weakness.

4. ATTACKS DEFEATING THE
SPLIT MASK

Here we propose attacks on AES and DES implementa-
tions with the split mask countermeasure described in Sec-
tion 2. We will describe 2 general attacks, 2 attacks for AES,
1 attack for DES. An attack on the strengthened variant of
split mask is described in Section 6.

We consider a common security model in which an adver-
sary is allowed to access the cryptographic device and aims
to recover the secret key stored in it. She registers the power
consumption or electromagnetic emanations of the device at
the time it processes data. She also either passively regis-
ters the inputs or outputs (known plaintext or ciphertext
model) or submits her own inputs (chosen plaintext model).
An example of such scenario is when a smartcard of some le-
gitimate owner falls into the hands of a technically equipped
villain.

In the descriptions of the DPA attacks below, we will give
a number of differential traces that have to be calculated
in order to mount an attack. Complexity of calculating
a single differential trace is proportional to the number of
points in a power trace and to the number of collected power
traces, which strongly depends on the properties of the de-
vice and on measurement conditions. For simple microcon-
trollers without hardware countermeasures a standard DPA
typically requires hundreds of acquisitions [7, 5] to make the
success probability of the attack close to 1. Our experimen-
tal results presented in Section 5 show the same complexity.

4.1 General Attacks

4.1.1 Brute force against short mask
First, there is a general attack that applies to both AES

and DES implementations in case all S-boxes share the same
l-bit fixed input mask n. We recall that in our case “fixed”
means that it is the same for all plaintexts encrypted under
a single key.

This fixed mask for the input of the first round S-boxes
in DES and AES originates from the first round key. This
means that the first round key k0 is masked with the con-
catenation of identical l-bit masks:

k
′

0 = k0 ⊕ {n|n| . . . |n}

Therefore, there are only 2l possible values for the mask of
the first round key (28 for AES and 26 for DES).

We can recover k′

0 by performing a DPA on XOR of k′

0

with the known plaintext as described by Chari et al. [5].
In this attack, a single key bit is determined per target bit
by computing a single differential trace. Thus, the total
number of differential traces needed to recover k0 is equal
to the number of bits in k0, so post-processing complexity
is 128 calculations of differential traces for AES and 48 for
DES.

In case of AES k′

0 is the full key masked with one of the 28

possible masks, so we can determine the full key by a brute
force of 28 encryptions. In case of DES, the first round key
yields only 48 bits of the full 56-bit key and the brute force
complexity is 26 × 28 = 214. This attack is practical until
the effective size l of the key mask is made sufficient enough
(by increasing the number of different S-box input masks)
to make brute force complexity too large.

4.1.2 Side-channel collision attacks
This is is another class of attacks that apply both to AES

and DES implementations with the split mask countermea-
sure. They can be considered as a kind of simple power
analysis rather than as DPA and are based on the possi-
bility of detecting the equality of intermediate variables us-
ing a small number of power traces. The fact that the S-
box input mask is fixed for different plaintexts allows one

to detect collisions at the inputs of S-boxes just as in an
unmasked implementation (and with the same complexity).
Original collision attacks first addressed in detail in the work
of Schramm et al. [22] and employing byte collisions that
occur at the single S-box input in a pair of algorithm exe-
cutions, are possible if the masks at the inputs of different
S-boxes are not necessarily the same. This scenario also en-
ables impossible and multiset collision attacks proposed by
Biryukov and Khovratovich [2]. In case single fixed mask
is shared by different S-boxes, more efficient attacks with
the generalized collisions, introduced by Bogdanov [3] and
improved by Bogdanov et al. [4], are even possible.

Now we describe other attacks specific to AES and DES.
The attacks do not require all S-box input masks to be the
same. They require only that these possibly different in-
put masks remain fixed for all plaintexts under a single key,
which is the case of the split mask countermeasure.

4.2 Attacks on AES

4.2.1 Attack 1
This attack aims at the first two rounds. It is a DPA

attack at the inputs of second round S-boxes that are masked
with a fixed mask. The scheme of this attack is shown in
Figure 2.

We view an input byte sǫ to a second round S-box as a
XOR of a second round key byte k1,ǫ masked by a fixed mask
nǫ with a known function of the 4 plaintext bytes tα,. . . ,tδ

and corresponding 4 bytes k0,α,. . . ,k0,δ of the full encryption
key k0:

sǫ = k1,ǫ⊕nǫ⊕F (k0,α⊕tα, k0,β⊕tβ, k0,γ ⊕tγ , k0,δ⊕tδ). (3)

In Figure 2 we denote t ⊕ k0 by x, and to be precise, use
m̄ to denote fixed mask m transformed by SubBytes and
MixColums.

Values of k1,ǫ and nǫ are unknown but fixed for different
plaintexts. So F is in fact masked with the fixed value k1,ǫ⊕
nǫ. We select target bit b from sǫ (i.e. at the input of the
second round S-box layer) and perform a standard DPA as
described in Section 3 to recover the bytes k0,α,. . . ,k0,δ of
the full encryption key. By further selecting target bits from
another 3 S-boxes (chosen from different columns according
to diffusion properties of the AES round) we recover the
remaining parts of the key. But in this way we have to
guess 4 bytes of the key at a time, which demands a large
number of traces and long post-processing.

To make this attack practical, we employ the linearity of
AES MixColumns transformation that allows representing F

as as a XOR of the 4 known functions of individual first round
S-box input bytes, so that (3) becomes

sǫ = k1,ǫ ⊕ nǫ ⊕ F1(k0,α ⊕ tα)⊕

F2(k0,β ⊕ tβ) ⊕ F3(k0,γ ⊕ tγ) ⊕ F4(k0,δ ⊕ tδ). (4)

Now we choose the plaintexts that are fixed, say, in bytes
tβ, tγ and tδ (in terms of differential cryptanalysis, we leave
one active S-box). Then (4) can be viewed as

sǫ = u ⊕ F4(k0,α ⊕ tα)

where u is some unknown value that is fixed for different
chosen plaintexts. We apply DPA as above, selecting a tar-
get bit from sǫ, but have to guess now only a single byte k0,α

of the initial key. By repeating this step another 15 times

DPA target bit

S′

1, . . . , S
′

16 M1, . . . , M16

ShiftRows ShiftRows

MixColumns MixColumns

t

t0,α

t0,δ

k0,α ⊕ nα

k0 ⊕ n

k1 ⊕ n ⊕ m̄

x ⊕ n

S′

i(xi ⊕ ni) = S(xi) ⊕ ri,x Mi(xi ⊕ ni) = ri,x ⊕ m

s ⊕ n
sǫ ⊕ nǫ

S′

1, . . . , S
′

16
M1, . . . , M16

Figure 2: First AES rounds with the split mask

DPA target bit

ShiftRows ShiftRows

S′

1, . . . , S
′

16 M1, . . . , M16

xα ⊕ nα

S(xi) ⊕ ri,x ri,x ⊕ m

kR,β ⊕ mβ

cβ

Figure 3: Last AES round with the split mask

with the target bits sequentially chosen at different second
round S-box inputs and appropriately chosen plaintexts, we
recover the remaining 15 bytes of the full key byte by byte.
If plaintexts are chosen in a more sophisticated way to have
all the bytes in a single column active and all the remaining
bytes fixed, we can reuse them and thus reduce the total
number of required chosen plaintexts by a factor of 4. A
total of 16×28 = 212 differential traces are calculated in this
attack.

We note that Attack 1 works in the chosen plaintext model.
In the following, we describe another more powerful (and
actually simpler) attack that works in the known ciphertext
model only.

4.2.2 Attack 2
This attack aims at the last round S-box input and recov-

ers the last round key. Figure 3 illustrates the attack.
We recall that the last AES round does not include Mix-

Columns transformation. Therefore, a byte xα at the input
of the last S-box layer can be viewed as an XOR of the fixed
mask nα with the known function of a last round key byte
kR,β and a corresponding ciphertext byte cβ ,

xα = nα ⊕ S
−1(kR,β ⊕ cβ).

Again, nα is constant for different plaintexts. So choosing
the target bit from xα enables one to perform DPA in a
straightforward manner and obtain the last round key byte
by byte as if the implementation was not masked at all. As
in the previous attack, 16×28 = 212 differential power traces
have to be computed in total, but choosing plaintexts at the
stage of collecting acquisitions is not required.

4.3 Attack on DES
For DES implemented with the split mask, we simply ex-

ploit the same approach as described for AES. See Figure 4
that shows the attack path (dashed line) on the scheme of
the DES implementation with the split mask. We view a 6-
bit input s of a second round S-box as a XOR of a fixed 6-bit
part k2 of the second round key masked with a fixed mask
n, 6 bits of the left plaintext part L and a known function
of 6 bits k1,α,. . . ,k1,ζ of the first round key entering one of
the first round S-boxes and corresponding bits Rα,. . . ,Rζ of
the right plaintext part:

s = k2 ⊕ n ⊕ L ⊕ F (k1,α ⊕ Rα, . . . , k1,ζ ⊕ Rζ).

In Figure 4, k1 ⊕ R = x. As k2 ⊕ n is fixed for different
plaintexts and L is known, we can mount a DPA attack
with the target bit from s to recover 6 bits of the first round
key.

By attacking the inputs of different second round S-boxes
in a sequential way, all 48 bits of the first round key can
be recovered by 6-bit chunks at a time. In total we have
to compute 8×26 = 29 differential power traces. Remaining
8 bits of the full key can be determined by an exhaustive
search. The attack works in the known plaintext model.

Note that all attacks described above do not depend on
the number of mask tables used (i.e on the number of out-
put mask shares). They are also independent of dynamic
updating of the output masks rx that suggested in [11] to
strengthen the countermeasure. This updating is performed
after access of data from both S′(x) and M(x) by remasking
of these two entries with a newly generated random value.
In Section 6 we will show that another strengthened version

L R 0 0

k1 ⊕ n

x ⊕ n

α β ζ

S(x) ⊕ rx M(x) = rx ⊕ m

S′
1 S′

8 M1 M8

k2 ⊕ n ⊕ m rx ⊕ m

k2 ⊕ n ⊕ L ⊕ S(x)

S′
1 S′

8 M1 M8

R L ⊕ S(x) ⊕ rx 0 rx ⊕ m

Figure 4: First 2 rounds of DES with the split mask

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
−3

−2

−1

0

1

2

3

4
x 10

−3

Time, S-Box number

D
iff

er
en

ce
o
f
m

ea
n
s

correct key byte guess

sample power trace

wrong key byte guesses

Figure 5: DPA on the last AES round with the split mask countermeasure

of the countermeasure is not as secure as it is supposed in
[11] to be.

5. PRACTICAL ATTACK
IMPLEMENTATION

We performed the experimental verification of our attack
for the case of AES-128 with the split mask countermeasure.
The known-ciphertext Attack 2 on the last AES round was
implemented.

The target device is Atmel ATmega16 [1]. This is a mi-
crocontroller from the 8-bit AVR family. AVR is a RISC
core with most instructions taking 1 clock cycle. It follows
a Harvard architecture, having separate data and program
memories. ATmega16 has 16 KBytes of flash program mem-
ory, 1 KByte of SRAM and 512 Bytes of EEPROM. 8-bit
AVR microcontrollers are widely used in embedded devices
and smart-cards.

We added the split mask countermeasure to RijndaelFu-
rious AES-128 implementation of Poettering [20]. Both
masked and mask tables were stored in the program mem-
ory and accessed with the LPM instruction. SRAM was used
to store intermediate mask values. A trigger signal was set
by the implementation on a microcontroller’s pin at the be-
ginning of the last round.

The microcontroller was clocked at 3.68 MHz and supplied
with an operating voltage of 5V from a standard laboratory
power source. A shunt resistor of 5.6 Ohm was inserted into
the ground line of the microcontroller to observe the varia-
tions of the power consumption. The target board with the
microcontroller, the quartz oscillator and the shunt resistor
was placed into a Faraday cage made of copper foil to reduce

the electric field noise from the surrounding devices. Com-
munication with the controlling PC was performed via the
ATmega16 built-in USART controller and a MAX232-based
voltage converter at the transfer rate of 9600 baud. We note
that this measurement setup is just a reference one and is
neither noise- nor speed-optimized.

The measurements were performed with a LeCroy Wa-
veRunner 104MXi DSO equipped with ZS1000 active probe.
The DSO has 8-bit resolution, 1 GHz input bandwidth (with
the specified probe) and maximum sampling rate of 10 GS/s.
We captured the data at 10 GS/s to reduce the trigger jit-
ter, following suggestions from [23] and decimating traces
afterwards. Vertical resolution was set to 160 mV peak-to-
peak. With the given shunt resistor, variations of the con-
sumed current as small as 110 µA could be registered (while
the average power consumption of the microcontroller in the
given configuration was about 12 mA). The DSO, the power
source and the target device shared the common ground,
also connected to the Faraday cage.

Data acquisition was controlled by a host PC. LeCroy’s
ActiveDSO ActiveX component was used to control the DSO
remotely via 100 Mbit Ethernet connection, and serial in-
terface was used to communicate with the target microcon-
troller. The acquisition rate was about 12 traces per second.
The number of acquired traces was 400, so the total acqui-
sition time was about half a minute.

Following the acquisition, the traces were decimated by a
factor of 100 to reduce the amount of processed data. The
sampling rate was thus reduced to 100MS/s. The decimation
included low-pass filtering to avoid aliasing in the frequency
domain.

Figure 5 shows the result of Attack 2 on the input of the

1-st masked S-Box of the last AES round. Differential traces
for all 256 guesses of the corresponding last round subkey
byte are shown. The differential trace for the correct guess
is highlighted; a distinct DPA peak can be seen in it. Marks
on the horizontal axis locate individual S-Box executions
within a trace. Each S-Box takes 4 clock cycles, 1 for setting
the lookup address with the MOV instruction and 3 for the
lookup itself with the LPM instruction. A reference power
consumption trace is also shown above to help locating clock
cycles.

Remaining last round S-boxes are attacked in the same
way (reusing the power traces) to recover the full 128-bit
last round key, from which the full 128-bit AES encryption
key is easily derived. Thus, the attack can be performed
in practice with the success probability very close to 1 with
about 400 power traces. It requires about half a minute
for data acquisition, less than 1 MByte of memory for trace
storage and about a minute for post-processing.

6. ATTACKS ON THE STRENGTHENED
METHOD

In the most recent work [11] on the split mask countermea-
sure the existence of a chosen-plaintext Attack 1 for AES is
briefly mentioned and a solution to thwart it is suggested.
This solution extends the original split mask countermea-
sure so that the masks at the inputs of S-boxes are no longer
fixed. They are generated randomly or selected from a pre-
generated set of masks as in [16] after a large number of
algorithm executions, which is less than the number of ac-
quisitions required for the successful DPA attack.

We note that changing the S-box input masks infrequently
still allows for collision attacks that require only a small
number of side-channel signal acquisitions [4]. Therefore it
is reasonable to consider the modified split mask with the
S-box input masks modified for each plaintext, i.e. new
random masks for the S-box inputs are generated and the
tables are recomputed in the beginning of each encryption
run. First, this eliminates the performance advantage of the
split mask countermeasure over other existing masking tech-
niques. Second, in the following we show that this modified
method can be attacked with a second-order DPA attack
without respect to the number of mask tables used for split-
ting the S-box output mask.

Second order DPA attacks [19] exploit the fact that the
unmasked internal variable can be correlated to some com-
bination of two power consumption values: one correspond-
ing to processing of the masked variable and the other cor-
responding to the processing of the mask. To cope with
the noise, second order DPA attacks typically require more
power traces compared to a common (first-order) DPA at-
tack.

To attack the input of an S-box that is masked according
to the modified split mask countermeasure with a mask n,
we should look for points in a power trace that depend only
on the value of the mask n. Such points exist at the times
when the mask is generated by the device and when the
tables are recomputed. So the second order DPA attack can
be performed to recover the subkey byte corresponding to
that S-box entry.

Even if there were no points depending on the mask n

(imagine that the mask and the precomputed tables are just
loaded into the device prior to the algorithm execution),

we could create them by choosing proper plaintexts in the
following tricky way.

We assume that S-box input masks within one round are
all not necessarily the same, but all AES rounds share same
masked S-box implementations (as the original description
[11] allows). In other words, i-th S-box in any round has
the same input mask ni that is randomly chosen in each
execution as we are considering now the modified method.
We choose plaintexts that are fixed in i-th byte so that one
byte at the input of i-th S-box in the first round is fixed.
That means that the power consumption for this S-box input
depends only on the value of the mask ni. Thus, it can be
chosen as one of the points for the second order DPA attack.
The other point, corresponding to the masked variable, is at
the input of the i-th S-box of the second round, as it uses
the same input mask. To be able to guess only one byte of
the key at a time, we choose plaintexts with the additional
restrictions described in Attack 1 on AES.

Complexity of such second order DPA attack against the
strengthened variant of the split mask countermeasure is
higher than that of the standard DPA attacks described in
Section 4 for the original split mask method. It would re-
quire thousands of traces to be acquired. But we stress that
this attack does not depend on the number of mask tables
used. It has the same complexity for any number of shares
the output mask is split into. Thus, the claim in [11] that
the split mask countermeasure using N mask tables thwarts
an N-th order DPA attack does not hold.

This supports a general consideration that in order to
properly protect an implementation from an N-th order
DPA attack, every intermediate variable should be split into
N + 1 shares.

7. CONCLUSION
We showed that the split mask countermeasure does not

provide any protection against the standard DPA attack in-
dependently of the number of mask tables and of the pos-
sible modifications of the output masks. Several attack
paths were presented for the AES and the DES implemen-
tations protected with this countermeasure. The most ef-
fective DPA attacks require nothing more than selecting an
appropriate attack point, the technique and complexity of
these attacks being the same as for the attacks on the un-
masked implementations.

We verified this by implementing the attack on the last
round of AES against the AES implementation with the split
mask countermeasure running on an 8-bit AVR microcon-
troller. This practical full key recovery attack requires about
400 power traces acquired with a non-optimized measure-
ment setup.

The suggested attack paths should be true not only for
AES and DES, but also for the other cryptographic algo-
rithms protected with the split mask. Though for more
complex hardware like 32-bit platforms the complexity of
the attacks will increase, they will still work. This is due to
the fact that the attacks are caused by the general weakness
of the countermeasure. The weakness is in using fixed masks
that do not change for different plaintexts.

Modifying the countermeasure by introducing frequent
updates of the masks cancels its performance advantage over
other masking proposals and provides protection only against
1-st order DPA attacks. We have outlined a way to mount
a second-order DPA attack on this strengthened variant of

split mask with any number of mask tables.
To fix the weakness, any fixed masks should be avoided

and for N-th order DPA resistance every sensitive interme-
diate variable within the implementation should be split into
N + 1 shares. This will increase the performance overhead,
so a trade-off between security and performance should be
carefully chosen and combination with other countermea-
sures should usually be considered. Examples of the re-
cent practical masking schemes combined with hiding can
be found in [15] and [21].

8. REFERENCES
[1] ATmega16: 8-bit AVR microcontroller with 16K bytes

In-System Programmable Flash, revision S, May 2009.
Available from http://www.atmel.com/dyn/

resources/prod_documents/doc2466.pdf, accessed 6
August 2009.

[2] A. Biryukov and D. Khovratovich. Two new
techniques of side-channel cryptanalysis. In P. Paillier
and I. Verbauwhede, editors, Cryptographic Hardware
and Embeded Systems – CHES 2007, volume 4727 of
Lecture Notes in Computer Science, pages 166–180.
Springer, Heidelberg, 2007.

[3] A. Bogdanov. Improved side-channel collision attacks
on AES. In C. Adams, A. Miri, and M. Wiener,
editors, The 14th Annual Workshop on Selected Areas
in Cryptography (SAC 2007), volume 4876 of Lecture
Notes in Computer Science, pages 84–95. Springer,
Heidelberg, 2007.

[4] A. Bogdanov, I. Kizhvatov, and A. Pyshkin. Algebraic
methods in side-channel collision attacks and practical
collision detection. In D. R. Chowdhury, V. Rijmen,
and A. Das, editors, INDOCRYPT 2008, volume 5365
of Lecture Notes in Computer Science, pages 251–265.
Springer, Heidelberg, 2008.

[5] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. A
cautionary note regarding evaluation of AES
candidates on smart-cards. In Second Advanced
Encryption Standard Candidate Conference: AES2,
Rome, March 1999. Available from
http://csrc.nist.gov/archive/aes/round1/conf2/

papers/chari.pdf, accessed 6 August 2009.

[6] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi.
Towards sound approaches to counteract
power-analysis attacks. In M. J. Wiener, editor,
Advances in Cryptology – CRYPTO’99, volume 1666
of Lecture Notes in Computer Science, pages 398–412.
Springer, Heidelberg, 1999.

[7] C. Clavier, J.-S. Coron, and N. Dabbous. Differential
power analysis in the presence of hardware
countermeasures. In Ç. K. Koç and C. Paar, editors,
Cryptographic Hardware and Embedded Systems –
CHES 2000, volume 1965 of Lecture Notes in
Computer Science, pages 252–263. Springer,
Heidelberg, 2000.

[8] FIPS PUB 197: Specification for the Advanced
Encryption Standard, 2001. Available from
http://www.csrc.nist.gov/publications/fips/

fips197/fips-197.pdf, accessed 6 August 2009.

[9] FIPS PUB 46-3: Data Encryption Standard, 1999.
Available from http://csrc.nist.gov/

publications/fips/fips46-3/fips46-3.pdf,

accessed 6 August 2009.

[10] C. H. Gebotys. A split-mask countermeasure for
low-energy secure embedded systems. ACM Trans. on
Embedded Computing Systems, 5(3):577–612, August
2006.

[11] C. H. Gebotys. A table masking countermeasure for
low-energy secure embedded systems. IEEE Trans. on
VLSI, 14(7):740–753, July 2006.

[12] C. H. Gebotys, S. Ho, and C. C. Tiu. EM analysis of
Rijndael and ECC on a wireless Java-based PDA. In
J. R. Rao and B. Sunar, editors, Cryptographic
Hardware and Embedded Systems – CHES 2005,
volume 3659 of Lecture Notes in Computer Science,
pages 250–264. Springer, Heidelberg, 2005.

[13] C. H. Gebotys, C. C. Tiu, and X. X. Chen. A
countermeasure for EM attack of a wireless PDA. In
International Conference on Information Technology:
Coding and Computing (ITCC 2005), volume 1, pages
544–549, April 2005.

[14] L. Goubin and J. Patarin. DES and differential power
analysis: The “duplication” method. In Ç. K. Koç and
C. Paar, editors, Cryptographic Hardware and
Embedded Systems – CHES’99, volume 1717 of Lecture
Notes in Computer Science, pages 158–172. Springer,
Heidelberg, 1999.

[15] C. Herbst, E. Oswald, and S. Mangard. An AES smart
card implementation resistant to power analysis
attacks. In J. Zhou, M. Yung, and F. Bao, editors,
Applied Cryptography and Network Security – ACNS
2006, volume 3989 of Lecture Notes in Computer
Science, pages 239–252. Springer, Heidelberg, 2006.

[16] K. Itoh, M. Takenaka, and N. Torii. DPA
countermeasure based on the “masking method”. In
K. Kim, editor, Information Security and Cryptology –
ICICS 2001, volume 2288 of Lecture Notes in
Computer Science, pages 440–456. Springer,
Heidelberg, 2002.

[17] P. C. Kocher, J. Jaffe, and B. Jun. Differential power
analysis. In M. Weiner, editor, Advances in Cryptology
– CRYPTO’99, volume 1666 of Lecture Notes in
Computer Science, pages 338–397. Springer,
Heidelberg, 1999.

[18] S. Mangard, E. Oswald, and T. Popp. Power Analysis
Attacks: Revealing the Secrets of Smart Cards.
Springer, 2007.

[19] T. S. Messerges. Using second-order power analysis to
attack DPA resistant software. In Ç. K. Koç and
C. Paar, editors, Cryptographic Hardware and
Embedded Systems – CHES 2000, volume 1965 of
Lecture Notes in Computer Science, pages 238–251.
Springer, Heidelberg, 2000.

[20] B. Poettering. AVRAES: The AES block cipher on
AVR controllers, 2006. Available from
http://point-at-infinity.org/avraes, accessed 6
August 2009.

[21] M. Rivain, E. Prouff, and J. Doget. Higher-order
masking and shuffling for software implementations of
block ciphers. In C. Clavier and K. Gaj, editors,
Cryptographic Hardware and Embedded Systems –
CHES 2009, volume 5747 of Lecture Notes in
Computer Science, pages 171–188. Springer,
Heidelberg, 2009.

[22] K. Schramm, T. Wollinger, and C. Paar. A new class
of collision attacks and its application to DES. In
T. Johansson, editor, Fast Software Encryption – FSE
2003, volume 2887 of Lecture Notes in Computer
Science, pages 206–222. Springer, Heidelberg, 2003.

[23] H. Seuschek. DPA-Analyse von Implementierungen
symmetrischer kryptographischer Algorithmen.
Dimplomaarbeit, TU München, April 2005. (In
German.) Available from
http://www.torsten-schuetze.de/reports/diplom_

seuschek.pdf, accessed 6 August 2009.

