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1. Introduction 
The problem of computing sojourn time distributions in queuing networks is 
among the hardest in queuing network theory. Closed-form analytical solutions are 
the exception rather than the rule. Roughly speaking, the difficulties are brought 
about when overtaking is allowed to occur. This introduces complicated and subtle 
dependencies among the sojourn times of a customer at the individual nodes even 
though each sojourn-time distribution at a node is far more amenable to compu- 
tation. 

The basic and fundamental result was given by Reich [ 13] who showed that in 
a sequence of M/M/1 queues in tandem the stationary sojourn-time distribution 
is a sum of independent sojourn times at the nodes, each of which is exponentially 
distributed. Such sojourn times are referred to as simple. 
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A number of generalizations to the class of Jackson networks [5, 6] have emerged 
recently; these include branching networks [8] and overtake-free paths [11, 16]. 
Several counterexamples suggest that the scope of simple sojourn times cannot be 
further extended [15, 16]. Thus, approximation methods are called for to fill in the 
gap. 

In [ 12] we proposed a general methodology that uses the so-called randomization 
procedure to approximate first passage-time distributions in discrete-state Markov 
processes--sojourn times in queuing systems being a special case. 

The notion of randomization procedure has been known for some time [ 1-4, 7, 
9, 14] (Keilson [7] calls it uniformization procedure). Grassmann [2-4] and Barzily 
and Gross [ 1 ] have used randomization to compute transient solutions of Markov 
processes. Grassmann [2] was the first to use this methodology to compute waiting- 
time distributions in an M/M/1 queue. The relevant part of the methodology is 
summarized in the next section; for an excellent additional discussion by Gross 
and Miller, see [4a]. 

2. The Randomizat ion Methodology 

Let X--- {X(t) : t ___ 01 be a regular continuous time Markov process with a countable 
state space E and a bounded infinitesimal generator matrix Q. The elements of Q 
are denoted Q(x, y), x, y E E, and Q(x)  ~- ~ e - l x ~  Q(x, y), x E E, are the absolute 
values of the dements on the diagonal of Q. Furthermore, let ~t be the state 
probability vector of X(t); that is, ~t(x) = P{X(t) = x}, x ~ E. 

X models the evolution of a queuing system during the sojourn of a particular 
(tagged) customer in it. The states in E have two major components: the state of 
the queuing system and the location of the tagged customer. Let A be the subset of  
states that describe the queuing system before that customer departed it; further let 
B be the subset of states that describe the queuing system just after that customer 
departed it. 

Clearly A and B partition E, that is, A U B = E and A f) B = ~I,. Furthermore, if 
T is the time the process X spends in A up until hitting B (for the first time), then 
T is precisely the sojourn time of our tagged customer in the network. (An example 
showing how to construct A, B, and Q is deferred until Section 3.) 

We assume that Xwill eventually land in B with probability 1. Since the evolution 
of the system is irrelevant once the tagged customer departs, we may assume that 
B is a dosed set; that is, the process X cannot return to A from B. 

The quantity of interest is the distribution function ~,(t) of T. We observe that 

~-(t) a__ P I T  <- t} = e { x ( t )  ~ B} = 1 - e lX( t )  E A], t >>_ O, (2.1) 

because our assumptions ensure the equality of events {T ___ t} = {X(t) E B}. 
It follows from (2.1) that the problem of computing z(t) is equivalent to 

computing the transient distribution of X(t)  on A. Thus we need to compute the 
vector ~t, t >_ O. I f  Pt, t >__ O, are the transition matrices of X, then 

~, = ~0e , ,  t ___ 0 ,  ( 2 . 2 )  

where Pt has the representation 
oo /~ 

Pt = exp(Qt) & Y, ~ Q~, 
n=0 

t >_ 0. (2.3) 
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The so-called randomization procedure consists of using in eq. (2.2) an equivalent 
representation: 

Pt = exp(-at)exp at I + 1 =a exp(-a t )  ~ R", (2.4) 
C~ n-O 

where R ~ I + (1/a)Q is the randomized matrix, I the identity matrix, and a any 
positive number bounding from above all Q(x), x ~ E. 

Although eq. (2.4) appears more complex than (2.3), it does, in fact, enjoy 
favorable computational properties. Most important, Q is not a stochastic matrix, 
whereas R is. Consequently, the computation using (2.4) is stable, whereas that 
using (2.3) may be unstable. Furthermore, the randomization procedure has an 
interesting probabilistic meaning that proves useful in deriving bounds for r(t). 
Specifically, R being a stochastic matrix determines a discrete-time Markov process 
Y = {Y,: n = 0, 1, ...} provided we take Yo = X(0). With this stipulation, the 
relation between the processes X and Y is quite simple, as follows. 

Let us extend the discrete-time process Y to a continuous-time Markov process 
such that 

(1) the time intervals between jumps are independent identically distributed (iid) 
exponential random variables with mean 1/a; 

(2) the jumps themselves are governed by R. 

It can be shown that the resulting process is precisely the original process X; 
however, whenever we have a sequence of Y jumps from a state x E E to itself, it 
will be perceived in X as one long sojourn in the state x [12]. 

Thus, the randomization procedure can be thought of as sprinkling the process 
Xwith random dummy jumps in between substantive jumps. The resultant process, 
say )? (in which the dummy jumps are visible), has the same probabilistic structure 
as X but with one advantage: The sequence of jump instants in )? (dummy and 
substantive) now forms a Poisson process (this is not generally the case in X). 
Observe lhat Y, is the state of )? at the instant of its nth jump (dummy or 
substantive). Suppose now that)? hits set B on its nth jump. Given that, the sojourn 
time of)?  (and therefore also of X) on A is the sum of n independent exponential 
random variables each with mean l/a; that is, the sojourn time has an Erlang 
distribution of order n and parameter a (denoted E,,a(t)). 

Let h(n) be the probability that )? hits B on its nth jump. Further, let q~. denote 
the state probability vector of Yn; that is, 

4, = ~oR". (2.5) 

The quantities h(n) are given by two equivalent formulas: 

Y, ~o(X), n -- 0, 
h(n) = ,~B 

Y, Y~ cb,_,(x)R(x, y), n > 0; 
y~B 

(2.6) 

o r  

1 -  E ¢o(X), n = 0, 
xEA 

h(n) = ~] C , - l ( x ) -  Y, ¢,(x), n > 0. 
(2.7) 
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Given the probabilities h(n), we can write (recall that we assumed Y,~*-o h(n) = 1) 

r(t) = ~ h(n)E.,.(t) = l -  ~, h(n)E~,.(t), t >_ O, (2.8) 
n=O n~O 

where E.,~(t) ffi 1 - En,,(t) and Eo,~ assigns the probability atom 1 to t --- 0. Equation 
(2.8) can be formally derived from eqs. (2.1)-(2.5) as follows: 

j,~n ,,-o ~ j , ,  ~' 4,,,(Y) = e-"  ,,-o -~. k-O h(k) 

because ~yEa q~,(y) -- X~-o h(k) is the probability of hitting B in at most n jumps 
of.~; eq. (2.8) now follows by interchanging the summations. 

Equation (2.8) leads to simple bounds on r(t) which can, in principle, be made 
arbitrarily tight. For any integer K _ 0 define 

K 

LK(t) a= y, h(n)E.,~(t), t > O, (2.9) 
n=O 

Udt) = ~ 1 - 

whence we obtain the bounds 

K 

Y, h(n) E.,.(t), t _> O, (2.10) 
n=O 

Lr(t) <-- r(t) <_ UK(t), t > O. 

Furthermore, if for some ~ > 0, K is chosen as the stopping rule, 

K =  m i n { n _ 0 : k . O  ~' h ( k ) > l - , } ,  K((), (2.11) 

or, equivalently (because ~,~-o h(k) + Y,~_~ 4~(y) = 1, for all n >_ 0), 

J =  min{n  ___ 0:Y,y~4 ~"(Y)< '}  = J( ') '  (2.12) 

then it is straightforward to show that 

I r(t) - Lj(,)(t) I _ , and I ~(0 - U.,(,>(t) ] - ( 

uniformly in t >_ 0. 
The purpose of this paper is to discuss the computational aspects of these bounds. 

We shall also describe how these bounds may be combined to yield improved 
approximations. 

Notational Note. In the remainder of the paper ~b a is the subvector of 
4, restricted to elements in A, R A~ is the submatrix of R restricted to elements in 
A x A, and so on. 

3, The Approximation Paradigm with a Finite State Space 

We have seen from eqs. (2.9) and (2.10) that the computation of the bounds Lr(t)  
and Ur(t) of r(t) requires the computation of the probabilities h(n). These, in turn, 
require the computation of the vectors 4~, but only on the subset A of the state 
space. When the state space E is finite (as is the case in dosed queuing networks), 
both the h(n) and ~. can, in principle, be computed exactly (ignoring round-off 
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errors). The randomization-based paradigm to approximate ~-(t) for,tlain ease is 
summarized below. 

THE RANDOMIZATION-BASED PARADIGM TO APPROXIMATE 7(t): E FINITE 
(1) Input: 

(1.1) the infinitesimal generator Q, 
(1.2) the initial distribution vector ¢o of Y0, 
(1.3) the finite sets A and B which partition E, 
(1.4) some ~ > 0. 

(2) Computational procedure: 
(2.1) Let a = sup{Q(x) :x  E A} and form R = I + l/(aQ). 
(2.2) Set n ~ 0. 
(2.3) Compute h(n) using eq. (2.6) or (2.7). 
(2.4) If Y~x~ ¢,(x) < E (i.e., n = J(e), see eq. (2.12)), then stop; otherwise set 

n .-- n + 1 and go to Step (2.5). 
(2.5) Compute 4~ A = 47_1R A~. 
(2.6) Go to Step (2.3). 

(3) Output: 
(3.1) the lower bound Ls(,)(t) for ~-(t), computed via eq. (2.9); 
(3.2) the upper bound Us(,)(t) for ~'(t), computed via eq. (2.10). 

4. The Approximation Paradigm with a Truncated State Space 

In practice, the state space E is often infinite, or finite but prohibitively large. On 
such occasions it becomes necessary to truncate E to a finite subset/~ usually 
chosen to satisfy, for some prescribed ¢o > 0, 

2 ~bo(X) > I - Eo. (4.1) 
x~E 

The resul! is that another level of approximation is added since the h(n), 4>n, etc., 
must now be approximated. From now on we consistently denote the approximat- 
ing quantities by appending carets to the original symbols. Specifically we define 

_a A n /~ , /~  =a B n J~, and denote by R a__ ie .e  + (1/a)Q e'e the restriction of R 
to elements in /~  x/~. Let ~o = ~o ~ be the restriction of ¢o to elements in /~  and 
define 

¢, = ~,_,/~, n _> I. (4.2) 

Because transitions from E - / ~  into J~ are discarded, it is clear that, for all 
n_>0, 

<_ 4'n(X), X 

Furthermore, eq. (2.6) leads to a lower bound/z(n) on h(n) given by 

2 .  $0(x), n = 0, 
h(n) =a ~ s  

Y~ Y~ $,_,(x)k(x, y), n > O. 
y~B 

Thus, for each n > O, the quantity 

D, a 1 - ~ /~ (k) -  2.  q~n(x)~0 
k~0 

( 4 . 3 )  

( 4 . 4 )  
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may be appropriately termed the probability loss incurred in the nth step in view 
of the fact that the exact h(n) and 4~,~ satisfy 

h(k) + Y~ 4~n(x) = 1, n >_ O. 
k=O 

The presence of probability loss has several consequences. First, if we form the 
natural approximation/~(n) based on eq. (2.7), namely, 

1 - ~ ~o(X), n = 0, 

= - n > 0 ,  

then/~(n) and n~(n) are not equal. In fact, letting D_~ __a 0, we have 

~n(n) = ~(n) + Dn - D,-~ >- h(n), n >_ O. 

Moreover, 

(4.5) 

n 

?. a(k), n O, 
k=0 k=0 

so that the approximate distribution function induced by the ft(n) is an upper 
bound on the exact distribution function of the number of jumps to hit B. A 
second consequence of probability loss is that the stopping rules attendant on 
(2.1 l) and (2.12), namely, 

K?(~)--amin{n---0:~ /~(k) - - -1-~}  ' k = - o  (4.6) 

)(~)a_-min{n___0: Y~^~n(x)___,},~ (4.7) 

are also not equivalent. 
In fact, ~7(~) -> K(~) may not even be a viable stopping rule when Y~=o/~(n) < 1 

because the sum may never exceed 1 - ~. Fortunately, J(~) ___ J(~) is always a finite 
stopping rule and should be the one adopted in practice. 

Finally, the functions 
3(,) 

£)(,)(t) a__ ~ h(n)E~,,(t), (4.8) 
n~0 

3(,) 
U)(,)(t) =a 1 - Y, /~(n)E,,,(t), (4.9) 

n=0 

are still lower and upper bounds, respectively, for 7(t) albeit less tight than Ls(,) and 
UI(0. 

With the obvious notation for restricted vectors and matrices, we now summarize 
the approximation paradigm when truncation to a finite/~ is called for. 

THE RANDOMIZATION-BASED PARADIGM TO APPROXIMATE 7(t): E TRUNCATED 
TO/~. 
(1) Input: 

(l. 1) the infinitesimal generator Q, 
(1.2) the initial distribution 6o of Yo, 
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(1.3) the sets A and B that partition E, 
(1.4) some to > 0 and some ~ > 0. 

(2) Computational procedure: 
(2.1) Define a finite J~ satisfying Y ~  ~0(x) > 1 - ~0. 
(2.2) Let / ]  = A f3 ~,./~ = B N ~ , a  = suplQ(x) : x E ~]} and form the finite 

matrix k = I e'e + ( l / a ) Q  e'e. 

(2.3) Set n <--- 0. 
(2.4) Compute/z(n) using eq. (4.3). 
(2.5) If Y ~ i  ¢bn(X) < e (i.e., n = 3(~); see eq. (4.7)), then stop; otherwise set 

n ~ n + 1 and go to Step (2.6). 
(2.6) Compute ~, = ~,_,/~. 
(2.7) go to Step (2.4). 

(3) Output: 
(3.1) the lower bound L3¢o(t) for r(t), computed via eq. (4.8); 
(3.2) the upper bound 0Z(,)(t) for r(t), computed via eq. (4.9). 

5. Sojourn Times in Open Jackson Networks 

In this section we illustrate in some detail how to implement the approximation 
paradigm of the previous section in the context of sojourn times in open Jackson 
queuing networks [5, 6]. We also provide a storage scheme for the state space 
suitable for a computer implementation. 

Consider a stable Jackson network [5] with node set M = { 1, 2, . . . .  m}, external 
Poisson arrivals with rates X~, . . . ,  Xm, single exponential servers with rates t~, • • •, 
Urn, and a switching (substochastic) matrix P = [Pu ],j~t. The probability of  leaving 
the network from node i is P,o a 1 - ~ . M  p,j. 

We are interested in the sojourn-time distribution experienced by customers 
entering the system through some node, say node k*. 

Let Z = {Z(t) : t ___ 0} be the state process of  the network in which Z(t )  = (Z~(t), 
. . . .  Zm(t)) is the vector of customer totals at each node at time t. Let further C --- 
(K, S) be the process that tracks a tagged customer during his or her sojourn in the 
network; more specifically, K(t)  is the node and S( t )  the position in the queue at 
that node occupied by the tagged customer at time t. It is convenient to take (K(t), 
S(t))  = (0, 0) to mean that at time t the customer has already left the network. 
Thus, 

r(t) --- PI(K(t),  S(t))  = (0, 0)1. (5.1) 

The process Z is a Markov process with values in N~', N+ being the set of  
nonnegative integers. The process X = (Z, C) is also Markov with values in the set 

E = {((nl . . . . .  nm), (k, s)) : ( n ~ , . . . ,  nm) E N'g+, k E M,  nk > 1, 1 <_ S < nkl 
U {((nl . . . .  , nm), (0, 0)) : (n~ . . . . .  rim) E N$'} = A U B. (5.2) 

It is known that the stationary distribution of  (Z, C) just after an arrival at node 
k* is (see, e.g., Melamed [10]) 

I n L 1-I(l_pj)p~, ' if nk>0,k- -k*  and s=n~, 
¢o((n, . . . . .  nm), (k, s))= pk j=l (5.3) 

10,  otherwise, 
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where p, = 0,/ut are the relative traffic intensities at the nodes and the Oi solve the 
system of linear equations 

O, ---- ~i + ~ OjPji, i E M .  

To simplify the notation, we henceforth denote z ffi (ni ,  . . . .  rim) E N'~ so  that 
x ffi (z ,  k,  s)  ~ E.  Further let e, denote the m-dimensional unit vector along the ith 
coordinate. Let 6 denote Kronecker's delta, 6 _a 1 - $ be the complementary 
Kronecker delta and ~(n) A ~.,o. 

Observe that for the Markov process X 

Q(z, k, s) = Y~ [~,, +/~,[t3(n,)(1 - P,t)6,,k + ~,,kl], (Z, k, S) E E. (5.4) 
I~_.M 

Note that for nk - 1, the second term on the fight-hand side (RHS) of(5.4) should, 
in fact, vanish for i -- k (when the target customer resides alone in node k, service 
completions followed by feedback do not change the state). It is however, conven- 
ient to regard such service completions as state changing to simplify the ensuing 
eqs. (5.6) that take account of  this particular definition of Q(x). 

Now, choose 

a = max Y, [?~, + ut((l - P,,)~,k + 6,,k)]. (5.5) 
I~_k~_m t~_M 

The recursive computational scheme of the ~ becomes (for given ~o) 

,~b.(z, k, s) 
= ~ . _ t ( z , / ~ ,  s ) [ ~  - @ x ) l  

+ Y~ 
:~kl-lk} 

+ ~k~-l(z 
+ y~ 

JEM--Ikl 
+ 4~,-l(z 
+ 

i~.M-Ik} 

+ y, 
t~-..M-Ik} 

4~_, (z  - e,, k ,  s)X,~(n,)  

- ek, k, S)Xk~,,,k 

4~,-~(Z + e~, k, s)~tjp~o 

+ ek, k, s + l)u~kO 
2 4~,-t(z + ej - e,, k, s)#jpj,~(n,) 

.m-M-lkl 
s'~t 

¢b,-t(z + ek -- e,, k, s + 1)#kpk,/~(n,) 

(5.6.1) 
(5.6.2) 

(5.6.3) 
(5.6.4) 

(5.6.5) 
(5.6.6) 

(5.6.7) 

+ 4,,-1(z, k, s + l ) t ~ ' ~ , , k  (5.6.8) 

+ Y. 4~,-1(z + ej - ek, k, S)t~Pjk~,.k (5.6.9) 
~-M-lkl 

+ ~ 4~,-l(z + ej - ek, j ,  1)~jp~,,~ (5.6.10) 

for all x - (z, k, s) E A (5.6) 

The reader should note that these equations are correct whether or not nk ---- 1. 
In particular, for nk ---- 1, terms (5.6.1) and (5.6.10) combine to give the proper 
result since Q(x) - (5.6.10) is the correct transition rate. 

The derivation of the recursive scheme (5.6) requires careful analysis of  the 
jumps of X. In our case we have ten terms on the RHS that upon division by a 
become the probabilities of transitions of the Y process into state x due to 

(5.6.1): a dummy jump from x to itself, 
(5.6.2): arrivals at nodes other than k, 
(5.6.3): an arrival at node k, 
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(5.6.4): 
(5.6.5): 
(5.6.6): 
(5.6.7): 

(5.6.8): 

(5.6.9): 

(5.6.10): 

847 

departures from nodes other than k, 
a departure from node k, 
transfers within the network not involving node k, 
transfers from node k to nodes other than k not involving the tagged 
customer, 
transfers from node k to itself (feedback) not involving the tagged cus- 
tomer, 
transfers to node k from nodes other than k not involving the tagged 
customer, 
transfers due to service completion of the tagged customer. 

Note that the ¢~(n,) are in fact superfluous; they were included merely to make 
the scheme more amenable to programming as they represent a check for n, > 0. 
Likewise, ~s,,k and ~s,,k (which are not superfluous) represent the checks s -- nk and 
s < nk, respectively. 

Finally, the h(n) are obtained from the ¢,-i by 

h(n) = Y, Y, ¢,-i(z + ej, j, l)#,p~o. (5.7) 
z ~ . m m  

5.1. STARE SPACE TRUNCATION AND STORAGE. Since the state space E for 
open Jackson networks is infinite, a truncation of E to a finite subset J~ is obviously 
required for practical computation. To do that, we must  select for each node i a 
finite waiting room d,, 1 ___ i _ m, such that, for some prescribed ~o, 

E. ¢0(X)---- E. ~bo(X)--> 1 --4o, 
x E E  xt~A 

the equality above holding because Co(X) = 0, Vx $ A (see eq. (5.3)). 
Let us allocate an error eo/m to each node in the sense that 

d, = min {j :  Y,,,>j Co(X) = d, _< ~ }  ; 

that is, d, is the smallest integer j for which P{Z, >j}  _< eo/m, whence from (5.3) 

= [log(,o/m)] 
d, [" ~og-~ J '  1 <_ i <_ m. (5.8) 

Equation (5.8) determines/~ as 

/ ) =  {((nl . . . .  , nm), (k, s ) ) : 0 _  n, <_ d,, i E  M, k ~ M ,  nk >_ 1, 1 <_S<_ nk} 
O{((n, . . . .  ,nm), (0, 0)) : 0 <_ n, <_ di, i E 3/] = ~] t.J/~. (5.9) 

We now proceed to describe how to store the arrays $,  whose coordinates 
are indexed by ~]. Let [ A I be the cardinality of J and let V be a vector such that 
I V[ = 2 [A I. Our goal is to define two hashing functions C and C'  that map each 
state x = ((n~ . . . . .  n,,), (k, s)) ~ A into two coordinates C(x) and C'(x )  of the 
vector V. We require both C and C' to be injective, to have disjoint ranges, and 
to be mutually adjoint in the sense that the mapping 

f (C(x ) )  a C'(x) ,  x E ~l, 

also satisfies 

f ( C ' ( x ) )  = C(x), x e A. 
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Thu~ if we denote tiC(x)) ~ C'(x), adjointness means that C' (x )  = C(x),  
x E A .  

The rationale for C and C' should now be clear. The vector Vcan store successive 
pairs of the vectors ~n a M  ~n+~. Thus, initially the elements of ~o will be stored in 
the set of coordinates I C ( x ) : x  ~ 4} of V and as ~ is computed (from ~o) its 
elements will be stored in the set of coordinates { C ' ( x ) : x  ~ ti}. Next, ~2 is 
computed from ~ and stored in {C(x) : x E A}, etc. The computation proceeds in 
a ping-pong manner. Observe that for a fixed state x E 4,  the values ~n(x) are 
always stored in either coordinate C(x)  or C'(x) of V. 

We now proceed to define C and C'  and to show that they possess the requisite 
properties. 

Define the quantities u,, 1 _< i _ m + 1, by 

l --1 

u, = 1-1 (d~ + 1) where do _A 0. (5.10) 
j~0 

Note that the number  of states of Z restricted to lie in 4 is Um+~ -- II ,~ (d, + 1). 
I f4(k)  is the subset of 4 given that the tagged customer is at node k, then 

IA(k)l = d k + l a  Um+..______~l ~j=z= J = dk + (1 +2dk)dk = Um+ldk2 ' 1 <-- k <__ m. 

The total number  of states of ~] and in V (the storage complexity) is then 

~ Um+ldk m 
141--- - -  I VI = Y~ Um+,dk. (5.11) 

k~-I  2 ' k-~l  

Thus V can be partitioned into m successive blocks each of size 

bk = Um+~dk, 1 <-- k <- m. 

The kth block is used to store the C and C'  coordinates of states in A(k). 
The leftmost coordinates L(k) of the blocks are given by 

1 if k = 1, 
L ( k ) =  L ( k -  1 )+  Um+~dk-~ if k >  1, (5.12) 

and the rightmost coordinates R(k) are given by 

fUm+ldl if k = 1, 
R(k) = [ R ( k  - 1) + Um+~dk if k > 1. (5.13) 

Finally, define 

C((nb . . . ,  rim), (k, s)) ~ L(k) + ~ u,n, + Um+t[s - 11, (5.14) 

m 

C'((nl, . . . ,  nm), (k, s)) a= R(k) - Y~ u,n, - Um+i[s - -  1], 
tR l  

(5.15) 

which confirm that the coordinate of a state and its adjoint are both stored in the 
same block. 

PROPOSmON. C and C' are injective, have disjoint ranges, and are mutually 
adjoint. 
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note that 

m 
Z 
t=! 

whence 

Hence 
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Both C(x)  and C' (x )  are clearly 1-1. To show disjointness of  ranges, 

utd t  ~- U m + l  - -  1 (by summat ion  on 1 <_ i -< m in (5.10)), 

m 

R ( k )  = L ( k )  -~ Um+ldk - -  1 ~. L ( k )  + Y~ u , d ,  + U m + l [ d k  - -  11. 
l= l 

m 

C'((nl . . . .  , nm), (k, s)) = L(k)  + Y, u,d, + Um+l[dk -- 11 

m 

- Y. u , n , -  um+l[S-  11 

-- L(k)  + ~ u, Id, - nil + um+,[dk -- s]. (5.16) 

Let now x = ((nl . . . . .  nm), (k, s)) and x '  -- ((nf . . . .  , n ' ) ,  (k' ,  s ')) be both in i]. 
Suppose C ( x )  = C ' (x ' ) .  Then all coefficients o f  the u, in (5.14) and (5.16) must  
coincide. 

In particular, we must simultaneously have 

n k = d k - - n L  S - -  1 = d k - - S ' .  

Upon  subtraction, we get the relation 

nk--  S + 1 = s' -- n[,. 

Now, 

x E E = o s < n k = * S < n k +  1 = ~ n k - - S +  1 > 0  
= * s '  - n/, > 0 = .  s '  > n [ , = . x '  q~fl, 

which contradicts the assumption that x '  E i ] .  Conclude that the ranges o f  C(x )  
and C ' ( x )  are disjoint as claimed. 

Finally C"(x)  = C ( x )  for all x = (z, k, s) E i ]  follows from the fact that 

C(x)  + C ' ( x )  = L(k)  + R(k). [] 

Going back to eq. (5.6), we observe that if  C(z, k, s) is given, then 

C'(z,  k, s) = L(k)  + R(k)  - C(z, k, s), 
C(z +_ e,, k, s) = C(z, k, s) +- u,, 

C ( z  + e, - e,, k ,  s)  = C(z ,  k ,  s)  + ui - u,, 

C(z, k, s + 1) - C(z, k, s) + Urn+l, 
C(z + ej - ek, j, 1) = C(z, k, s) + uj - Uk + L ( j )  - L(k)  - (s - 1)Um+l. 

The corresponding formulas for C'(z,  k, s) are symmetric, with the R(k)  replacing 
the L(k), and vice versa. 

To sum up, the storage scheme for ~] is time and space efficient because 

(1) The multidimensional subset i] is "unraveled" into a vector; the overhead 
attendant on accessing a multidimensional array is largely avoided. 
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(2) The hashing functions C and C' allow an efficient access to coordinates of 
~n-I necessary for computing ~,. 

(3) All coordinates of Vare utilized so that no memory is wasted. 

We conclude by pointing out that this scheme is applicable to the case of multiple 
servers. Equation (5.6) can be easily modified to cover that case by assigning the 
first position numbers to servers and the remaining ones to the waiting line. 

6. Obtaining Improved Approximation 
A randomization procedure produces two boundings curves for a sojourn-time 
distribution. It is natural to try to improve on those curves in order to produce an 
approximation that is better than both. This is especially important when the 
truncation t o /~  produces a relatively high initial error, and the vertical spreads 
between L(t) and Off) are relatively large. 

Figure l displays the true sojourn-time distribution and the bounds on it 
produced in a network consisting of two M/M/1 queues in tandem with o -- 0.9 
(for further details, see [ 12]). The rightmost argument is tm~x, computed as tm~ = 
( l / a )  ( ) (0  + 4 x / ~ ) ,  that is, four standard deviations beyond the mean of the 
highest order Erlang distribution E3t,),~ used in the approximation. Requiring the 
initial probability loss to be bounded by ~o = 0. l produced a truncated state space 
of size 24795. 

We tried a number of improvement schemes. The resultant errors are tabulated 
in Table I, which we now proceed to discuss. 

6.1. STRICT BOUNDS. This entry corresponds to the bounding curves in Figure 
1. Note that the initial probability loss is very close to ~o = 0.1 and that the terminal 
probability loss is about 60 percent larger. The maximal deviations from the true 
curve are comparable and of the same order of magnitude as the terminal proba- 
bility loss. The deviations at t --- 0 are defined as L(t) - 7(0 and Off) - ¢(t), 
respectively. Notice that the first deviation is negative and the second positive. 

6.2. CONDITIONAL INITIAL DISTRIBUTION. In this case we eliminated the initial 
probability loss by conditioning the initial distribution on the event {Y0 E/~}; that 
is, by taking ~0(x) & ~o(X)/Y,~t ~0(y), x E /~. The randomization procedure 
produced new approximations h(n) for the h(n) giving rise to L(O and U(t) (see eqs. 
(4.7)-(4.9)). Compared with the strict bounds of Section 6.1, the attendant bounds 
almost halved the terminal probability loss. But the effect on these bounds is 
uneven: The maximal deviation of L(t) was just about cut in half, but that of/.J(t) 
remained about the same. Note that in this case the approximations L(t) and/.~(t) 
are no longer bounds on L(t) and U(O, respectively. Observe, for example, that 
L(t) has a positive maximal deviation. 

6.3. ALTERNATIVE FORMULA FOR h(n). Suppose we truncate E to /~ and 
compute the approximations ~n of the vectors ~n subject to the stopping rule (4.7) 
as in Section 4. Next, use the approximations ~(n) for h(n) ofeq. (4.5) to compute 
L(t) and U(t). Computationally, this has the effect of "reclaiming" the probability 
loss and funneling it into the ~(n), which explains why the terminal probability loss 
equals the initial one. Since Y.~0/~(k) _> Y~0 h(k), n >_ O, one can reasonably 
expect that putting the t~(n) in (4.8) and (4.9) will result in g(t) and U(t) which are 
compensated in part for the truncation of the infinite series (2.8) to J (0  terms. 
From Table I, we see that the at tendant/ . ( t )  and U(t) are comparable to those 
obtained in the previous case. 
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FIG. 1. Exact hmiting sojourn time CDF versus its computed strict bounds. Tandem model: p = 0.9, 
~0 = 0.10, ~ = 0.001. O = computed LB CDF; A = computed UB CDF; x = exact CDF. 

TABLE I. ERRORS PRODUCED BY BOUNDS AND APPROXIMATIONS OF THE SOJOURN TIME 
DISTRIBUTION IN A Two-NODE TANDEM QUEUING NETWORK 

Approxlma- Approxima- 
tions resulting tions resulting 

from condi- from alterna- 
tional initial tive computa- Approximations using 

Strict bounds distribution tion of h(n) weishted combinations of 
(Section 6.1) (Section 6.2) (Section 6.3) L(t) and U(t) (Section 6.4) 

L(t) Off) £(t) (J(t) £(t) Off) w(t) ffi L(t) W(t) = t=~ 

Maximaldeviation -0.142 0.161 0.068 0.145 -0.073 0.147 0.112 
Initial probability 0.092 0.092 0.000 0.000 0.092 0.092 0.092 

loss 
Terminalprobabil- 0.160 0.160 0.075 0.075 0.092 0.092 0.160 

ity loss 

0.054 
0.092 

0.160 

Note. Deviation = approximate value - exact value. 
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FIG. 2. Exact limiting sojourn time CDF versus its computed strict LB and corrected version. Tandem 
model linear weightingfn: p -- 0.9, c0 = 0.1, ~ = 0.001. O = computed LB CDF; A = corrected LB CDF; 
x = exact CDF. 

6.4. WEIGHTED COMBINATION OF THE BOUNDING CURVES. The idea is t o  

combine the strict bounds L(t) and Off) of eqs. (4.8) and (4.9) for each t >- 0 in a 
convex combination to produce a new approximation, 

$(t) -- w(t)U(t) + (1 - w(t))L(t), 

where the weighting function w(t) takes values in the interval [0, 1 ]. The problem 
is to choose an appropriate weighting function. 

An examination of Figure 1 reveals that ¢(t) lies close to L(t) in the left-hand 
re#on and is relatively close to Off) in the right-hand region. It switches from close 
proximity to L(t) to close proximity to Off) in the middle region. We observed this 
phenomenon in every model we ran, and the explanation is quite simple. The first 
few h(n) can usually be computed exactly since no truncated states enter into their 
computation. Since, for small values of t, these/~(n) = h(n) and En,,(t) dominate 
the sum in (2.8), we get L(t) = r(t) in the left-hand region. On the other hand, for 
t >> 0, we get U(t) = 1 = ¢(t), which explains why f.7(t) = ~-(t) in the right-hand side 
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FIG. 3. Deviations of strict and corrected bounds from exact hmiting sojourn time CDF. Tandem 
model linear welghtingfn: p = 0.9, *o = 0.1, ~ = 0.001. O = deviation ofLB CDF; A = deviation of UB 
CDF; x = deviation of correction. 

region. Thus it makes sense to choose a weighting function w(t) that assigns high 
weights (low weights) to L(t) (O(t)) in the left-hand region, and increasingly higher 
(lower) weights to the same as t increases in magnitude to the right. 

Two such weighting functions were tried out. First we observe that L(t) being an 
approximate distribution function behaves in precisely that way. Table I shows 
that this resulted in an improvement of  some 20 percent over £(t) itself. 

The second scheme used a linear function of  t, specifically the straight line 
through the points (0, 0) and (tm~x, ~,~t--')o ~(n)). The effect was to cut the maximal 
deviations of the strict bounding curves of  Section 6.1 to about one-third of  their 
values. 

Figure 2 depicts the corrected approximate curve resulting from the linear 
weighting function w(t) = [Y~,)~)o [~(n)/tm~x]t, the strict lower bounding curve /~(t) 
resulting from Section 6.1, and the true curve r(t). Figure 3 displays the deviation 
curves of  this correction from the true curve ~(t) and the same deviation curves of 
the strict bounds. 



854 B. MELAMED AND M. YADIN 

7. Discussion and Conclusions 

We have discussed computational aspects of randomization procedures when used 
to compute bounding curves for sojourn-time distributions in discrete-state Mar- 
kovian queuing networks. An optimal storage scheme was described for open 
Jackson-type queuing networks, and the corresponding computational paradigm 
was exhibited for Jackson networks with single-server nodes. Several schemes were 
tried to obtain improved approximations from the bounding curves produced by 
the randomization-based approximation paradigms. For the case of two nodes in 
tandem we found that a linear weighting function produces the best results. We 
feel that this method is a quick and cheap way to obtain improved approximations 
for sojourn-time distributions. 
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