
ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 18 no 4 Oct 1993 Page 44

USING OBJECT ORIENTED STRUCTURED DEVELOPMENT TO IMPLEMENT
A HYBRID SYSTEM

Federico Vazquez
Computer Sciences Corporation

15245 Shady Grove Road
Rockville, Md 20850

Abstract

Object Oriented Analysis, Design and
Programming are increasingly
impacting the development approach to
Computer Systems. Although these
methodologies are not new, their use
in industry is increasing and they
have had a large impact in both
System Analysis and System Design.
Some people think that object
oriented techniques will be the new
predominant methodologies used in the
90s and there is no relationship with
Structured Design. Others believe
that there is indeed a relationship
between Structured Analysis and
Object Oriented Design. During my
work with the development of computer
systems I have found a certain degree
of compatibility between Object
Oriented Analysis and Structured
Analysis. I did not however find
compatibility between Structured
Design and Object Oriented Design.
This paper deals with the use of both
techniques in a successful system
development effort with a hybrid
approach. It is possible to work with
hybrid systems where Object Oriented
and Structured development are
combined and complement each other.

Keywords : Object Oriented
Development, Object Oriented Design,
Object Oriented Analysis, Object
Oriented Programming, Structured
Development, Structured Analysis,
Structured Design, Object Oriented
Structured Development.

Introduction

Object Oriented Programming emerged
as a term associated with the
development of Smalltalk in 1982.
Object Oriented Design was attributed
to Grady Booch, although it was first
introduced by Russell Abbott [Abb83] .
OOD addresses preliminary design,
simulation, and detailed design.
Object Oriented Analysis is best
typified by the work of Coad and
Yourdon and is a method of analysis
that examines requirements from the

view of classes and objects found in
the Problem Domain. Structured
Analysis was introduced by Tom De
Marco and improved by Yourdon.
Structured Design is a Hierarchical
Decomposition Method introduced by
Yourdon and Constantine. Object
Oriented Structured Development
techniques have been introduced by
several authors [Kha89], [War89],
[Was89] and although a general
methodology is not yet complete, the
general principles for a top-down
bottom-up approach are common and
broadly accepted as a development
process.

Object Oriented Structure
Development

Structured Analysis (SA), Structured
Design (SD) and Structured
Programming (SP) are collectively
known as Structured Development
(SDV). All the many versions of SDV
are based on a philosophy of system
development that analyzes the system
from a functional point of view.
Constantine describes the point of
view as the main features of software
that are of interest to the analyst,
designer or programmer. The main
features are: what functions or tasks
the software must perform, what
subfunctions or subtasks are needed
to complete the overall functions,
what pieces or component parts will
perform various functions, how those
functions will be performed. The
structured project life cycle is
describe in Figure i.

Object Oriented Development (OODV)
composed of Object Oriented Analysis
(OOA), Object Oriented Design (OOD)
and Object Oriented Programming (OOP)
as a development philosophy has its
origin in OOP and evolved bottom up,
from programming to design to
requirements analysis. Thus, it is
helpful to be familiar with OOP to
understand the OODV paradigm.

Constantine describes the Object
Oriented paradigm. In this paradigm,

http://crossmark.crossref.org/dialog/?doi=10.1145%2F163626.163633&domain=pdf&date_stamp=1993-10-01

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 18 no 4 Oct 1993 Page 45

USER

FEASIBILITY
DOCUMENT

a ~ FUNCTIONAL "
/ SPECIFICATION USER

PERFORMANCE

HARDWARE
CONFIGURATION
DATA

PROCEDURE

FIG. 1 THE STRUCTURED PROJECT LIFE CYCLE

USER
REQUIREMENTS

FEASIBILITY
DOCUMENT BUDGET

SCHEDULE

OBJEC T PERFORMANCE SPECIE CATION NEEDS

HARDWARE
ORDER

FINAL FINAL
OBJECT CONFIGURATION

PROGRAM
SPECIFICATION

BOT1 [PIO~N

FIG. 2 THE OBJECT ORIENTED PROJECT LIFE CYCLE

data are analized first and
procedures complement this analysis;
functions are associated with related
data. Problems and applications are
looked upon as consisting of
interrelated classes of real objects
characterized by their common
attributes, the rules they obey and
the functions or operations defined
on them. The project life cycle for
OODV is show in figure 2.

The SD techniques are generally
associated with a top-down
development approach, whereas OODV is
essentially a bottom-up approach. The
"top" of a system structure contains
control modules representing the
activation of procedures of the
overall capabilities. At the "bottom"
are the basic facilities for defining
and manipulating the data, and for
hiding its structure from the rest of
the system. These concepts are
embodied in the idea of the "object"
OODV thus facilities a natural
bottom-up organization of software.

Object Oriented Structured Design

(OOSD) synthesizes top-down and
bottom-up approaches to software
design and various mixed approaches.
The top-down design uses functional
decomposition to partition a system
into modules. Structured Design
supports functional decomposition
that uses structure charts as a
design representation.

OOD identifies classes (templates to
create objects) that are appropriate
for a given system. These classes are
often derived from classes that have
been used in previous designs, and
thereby support reuse. Classes serve
as building blocks in the overall
design structure. The foundation of
OOSD is the Entity Relationship
Model. This approach permits
designers to add to their experience
with SD and evolve toward OOSD.

Entity-Relationship Model

The Software Engineering problems are
grouped on the basis of similar
characteristics. These are called
problem domains. Fortunately, there

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 18 no 4 Oct 1993 Page 46

are not many domains; a simple
classification can be real time
systems, on-line systems, reactive
systems and concurrent systems.

The entity relationship approach uses
the Entity Relationship Model [CHE76]
to categorize information from the
real world problem domain. It
recognizes that the system needs to
be considered at the logical level.
This information is conveyed by
defining the entities in the domain,
the interrelationships of those
entities, and attributes passed by
the entities. These concepts must
ultimately be mapped into a design
that can be implemented in computer
systems.

After reviewing several OOD methods
including Booch Object Oriented
Design [BOO86], General Object
Oriented Software Development (GOOD)
[SEI87] , Object Oriented Analysis
Systems Modeling [SHL88] , Object
Oriented Analysis Design [COA90] , it
was found that the Entity-
Relationship Model was the foundation
of these Object Oriented Methods.
Context Diagram is the foundation of
Structure Analysis. Although the
Entity-Relationship Diagram is not
the same as the Context Diagram, it
can be considered as a Context
Diagram. With this assumption we have
the Entity-Relationship Diagram as
the initial and common diagram for
OOA and SA.

After we have an abstraction of the
problem domain with the Entity-
Relationship Diagram we are able to
continue the OOA and SA, because we
base the analysis in the same Entity
Relationship Diagram, we expect to
find similarities between OOA and SA.

Object Oriented and Structure
Analysis

There are many articles and books
that describe how to identify both
objects and the nature of the
objects. Shaler and Mellor have made
a contribution in this area,
providing tools and concepts for
enumerating various categories of
potential classes.

Objects are the heart of OOA; the
behavior of the object, the way that
the objects are related, the
attributes of the objects, and their

derived services constitute the OOA.
SA uses Data Flow Diagrams (DFD) .
When you create a DFD you are
considering in the functionality of
the Design, the inputs to a process
and the corresponding output of this
process.

It is true that process (bubbles) in
the DFD are different from tlhe
objects in OA, but something that has
been shown is the relationship
between parts of the DFD and set of
objects in the OOA. When you
represent an object, you have to
analyze the behavior of the objects,
identify the operations and identify
relationships. The State Transition
Diagram and DFD are helpful diagrams
for this purpose.

SA is used to identify and clarify
objects in OOA. SA and OOA are
complementary of each other. The user
is able to relate a State Transition
Diagram and DFD to OOA Diagram. They
are also compatible when they are
derived from the same set of
specifications as often is the case.

Object Oriented and Structure
Design

The next step in the project life
cycle is the Design. The mapping from
OOA to OOD is not isomorphic. The
preliminary OOD is an extension of
OOA (more elaborate OOA diagram). In
the Detail OOD, the method addresses
static and dynamic behavior, parent
child and seniority hierarchies,
object class decomposition and is
tied or related to the target
language. If the target language is
Ada or Object Pascal, Booch uses one
set of notations; if the target
language is Smalltalk, CLOS, C++
Booch uses another set of notations.
Although Yourdon and Codd try to
create a Design independent of the
language, they acknowledge that
Detail Design should be related with
the target language. Ada is not an
Object Oriented Language. Booch calls
it an Object Based Language, because
the use of inheritance and Dynamic
Binding is not possible. There are
several articles like the one in
[Don90] ; in this article Donaldson
gives a way to implement these
properties of object oriented
languages, but the code needed to
implement these properties will
increase complexity and size of the

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 18 no 4 Oct 1993 Page 47

programs. The best way to resolve
these problems is to acknowledge the
Ada deficiencies with relation to the
Object Oriented languages and just
exploit the facts of encapsulation
and data abstraction. Ada is an ideal
language to implement these
properties. The OOA and OOD are an
effective approach for Ada
implementation of a system and the
Booch notation is very suitable.

SD can be derived from SA and the
implementation in a procedure
language is straight forward. The
notation used for the representation
of the SD is widely accepted and the
Central Transformation is a fact in
the process of conversion between SA
and SD [YOU89] .

There is no relationship between SD
and OOD because the philosophies are
different. C and C++ are different,
they share some common properties
inherent to programming languages,
but the way to code the same system
is different from C to C++ and
consequently is a different between
Procedure and Object Oriented
languages.

Object Oriented Structure
Implementation

Traffic Count is a hybrid system
(implemented using different
programming languages). It counts the
number of arrivals, departures and
type of airplanes for an air traffic

control facility or airport during a
certain period of time. The Traffic
Count System contains requirement
specifications (RS) written by
Software Engineering. The RS explain
the functionality of the system. An
example of requirements
specifications is shown in Figure 3.
These RS are the first step in the
development of the system and they
allow to have a general overview of
the design of the system.

After Analyzing the RS the System
Analysts develop Entity- Relationship
Models describing data to be recorded
(Flight Data Recorded). Then
additional requirements are derived.
Data Base files need to be created to
keep a historical track of the
traffic counts. A User Interface
(panels) is required to allow the
generation of Traffic Count Reports
and to allow user inputs of selection
criteria. A series of events is
identified which are necessary to
produce the Traffic Count Reports.
These events include the matching of
information of certain types of
airplanes (air carrier, general
aviation, military, air taxi).
Finally requirements for the
production of Traffic Count Reports
are defined as: types of airplanes,
report time periods, facility
identifiers and airports. A very
simplified Entity-Relationship Model
is shown in Figure 4.

TRAFFIC COUNT FUNCTION

The Traffic Count function accepts traffic count information and maintains the traffic count data
by aircraft operation category and flight type sub-category for each sector within a facility. Counts for,
airport operations, and the use of airways are also maintained.

The Traffic Count function provides the automatic traffic count display, statistical summary
reports and the generation of traffic count forms.

The following table provides the decomposition of this Function.

Function
type Function Name

Display
Reports
~eneration

Traffic Count Displm L
Statistical SunLmapj Heports
ueneration of iramc uount Forms

Fig. 3 Requirements Specifications

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 18 no 4 Oct 1993 Page 48

FLIGHT DATA

RECORDED

I
DATA BASE

FILES

USER
INTERFACE

]
~ T R A F F I C
"i COUNT

EVENT

I
I REPORTS

FIG. 4 Entity Relationship Model for Traffic Count Events

After the Entity-Relation Model is
completed, the second part of the
Analysis deals with the Detailed
Analysis of the Traffic Count System.
It is usually an OOSD implementation.
Some of the diagrams from the Entity-
Relationship Model are expanded and
the search for objects, attributes of

the objects, object operations and
object interfaces begins. Figure 5
describes a simplified OOA for
traffic count.

The functional approach of the
implementation is also considered
because the behavioral view from SA
describes the expected behavior of
the system. Ada is not a true Object
Oriented language, the programmers
are not true Object Oriented
programmers and the implementation of
the system is developed using several
target languages. In the DFD shown in
Figure 6, there is a simplified
functional representation of the
Traffic Count System. As mentioned
before, every part of the DFD has an
association in the OOA, and it helps
to understand behavioral capabilities
of the objects.

In the Object Oriented Structured
development, the design usually
consists of several phases. First a
General Design is developed with
iterative draft and latter Group Walk
Throughs. When this process is
completed a detailed design
inspection is held. Figure 7

REC ED

TYPE IRe JOB O
DEP, RE

AIRF TYPI =ANEL
FACl DiSF

DEL

USER INTERFACE

, I

UPDK1

"IMPS FFILE It AIF

IG SEt.B IN8 SORT

DATA BASE FILESi ... =

IJ 1 : 1

< ~ 0 : M

IC cou

DATA

REI

L~ RT
10N

PRINT

FIG 5. OBJECT ORIENTED ANALYSIS FOR TRAFFIC COUNT

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 18 no 4 Oct 1993 Page 49

DATA BASE
FILES

(DSF)

UPDATED

DATA BASE
FILES

FILES FOR

ROLLOVER
FILES

AIRCRAFT

FILES FOR
PURGING DB

G t N G ~ FLIGHT DATA
DSF RECORDED

! .

E

. 4 SER
COMMAND

COMMAND

ROLLOVER
FILES

~YPE OF FILES

ROLLOVER
FILES

TRAFFIC COUNT
EVENT

FILES

~'USER SELECTION USER
CRITERIA INTERFACE

REPORTS D 1

FIG. 6 STRUCTURE ANALYSIS FOR TRAFFIC COUNT

DATA BASE FILES

E

[.

f

N a c s ~

i

/ " \
FILE OPERATIONS
i

r ~

[.

FLIGHT DATA RECORDED RECORDS

IMu EBB,G,~
~ fGER~,CE REGUEBT~

(TR̂ RBADT,OR) i
FT~ERK--1 I FIX LENGTH ME*B J

i
I VAB LENGTH ME~$ i

<

UTILITIES l j

STRING I MAN'PULAT,ON I

DATA 'STRUCTURE ' iOPERA 'O : [_!

FIG. 7 O B J E C T ORIENTED DESIGN FOR DATA B A S E

AND FLIGHT RECORDED DATA

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 18 no 4 Oct 1993 Page 50

shows a simplified detailed design
for "Data Base" and "Flight Recorded
Data" of the Traffic Count Reporting
Area. We use the Booch notation to
reference the OOD. The relationships
among objects (interfaces), the
attributes, and the object operations
are clearly shown in Figure 7. This
part is implemented in Ada and the
conversion from a Detailed Design to
a Program Description Language is
isomorphic with help from the DFD.

The SD for the user interface is
shown in Figure 8. This part was
targeted for implementation using
REXX. As REXX is not an Object
Oriented language, it does not make
sense to use an Object Oriented
approach here. In Figure 9 we have a
simplified structure chart for the
Traffic Count Event. This figure was
created with a tool to convert DFD to
structure charts. After a central
transformation is chosen and it was
implemented using Statistical Package
for Social Sciences (SPSS) .

The Detail Design includes a Program
Description Language (PDL) for each
object in. the OOD and a PDL for each

module in the Structure Chart are
generated. A rigorous inspection is
held to review the PDL, and after the
PDL is approved, the coding of the
module begins. After code is
completed another inspection is held
and the programs are unit tested and
later string tested.

In Figure i0, we have an example of a
Traffic Count Report program. As is
obvious from the figure, this program
(called a macro) is just one
procedure containing the inputs to
the Object (procedure) and the
outputs from the object (procedure).
The report generated from this
procedure is shown in Figure ii.

Object Oriented and Structure
Development Compatibility

James Martin in his book "Object
Oriented Analysis and Design" [MAR92]
introduces several new methods where
he mixes Object Oriented and
Structured Approach (like Object Data
flow Diagrams). Ward has written a
brief tutorial showing that there is
no inherent conflict between the two

PROCESS I
L 7 PANEL]

DATA ~ I=N'rI=R I I"SELECTIO~".~ ~ ' ~ . ~ CRITERIA
~ " . I " CRITERIA ~ ~ "

GET ENTE,~ ~ROCESS • I PUT TYPE I:g~J.~, R DATA / ~DATA ~ I OEFLES J ~ y ~ . /
ENTER , / \ .~ OUTPUT OATA \,COMMAND

USER _ ~ ~ ~ OUTPUT

GET USER i SELECT]
COMMANDS COMMAND

~ t ~ SELECT
SELECT ~ I ~ COMAND

COMMANDJ /SELECT , I HELP " ~
~ SAvECOMMAND ,~. '~OMMAND'~.

. COMMAND

SAVE J HELP ~ END-CANCEL

FIG. 8 STRUCTURE DESIGN FOR USER INTERFACE

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 18 no 4 Oct 1993 Page 51

FIG. @ STRUCTURE DESIGN FOR TRAFFIC COUNT EVENT

* DECLARE FORMATS TO BE USED IN THE REPORT

- FORMATS BEGTIME ENDTIME (DATETIME20)/ SORTSTR (A14) CURTIME (TIMES)

* PRINT THE REPORT USING THE MERGED FILE

- REPORT FORMAT- AUTOMATIC l IST MISSING ' '

/STRING - DEPARTUR (' ' DEPARTURES ' ')

ARRIVALS (' ' ARRWALS ' ')

OVER (' ' O V E R ' ')

/VARS - ACDEP ' A C '
GADEP 'GA'
ATDEP ' A T '
MIDEP ' MI'
TODEP q'OTAU

ACARR ' A C '
GAARR 'GA"
ATARR ' A T '
MIARR ' MP
TOARR 'TOTAU

ACOVE ' A C '
GAOVE 'GA"
ATOVE ' A T '
MIOVE ' MI'
TOOVE 'TOTAU

/TITLE-LEFT ' ' ')DATE ' ')CURTIME '
' SELECTION CRITERIA'

START DATE, TIME :)BEGTIME'
!o_P D_AT.~ TIME ')ENp~'i:I.M_E'

~U.~..iM I I YI '~ ": } PLIr~JtM I Y'
'TRAFFIC COUNT AREA :)TRACOA'
TRAFFIC COUNTAREA ID : }TRACOP
RECORDING T Y P E :)RECOT'

/CENTER 'HOURLY TRAFFIC COUNT REPORT'
"RIGHT ' ' ' PAGE ' 'DRATCC-TCH'

FIG. 10 SPSS PROGRAM FOR TRAFFIC COUNT REPORTS

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 18 no 4 Oct 1993 Page 52

HOURLY TRAFFIC COUNT REPORT

01/01/92 PAGE 01
11 : 01 DRATCC-TCH

SELECTION CRITERIA
START DATE, TIME : 06/24/89, 210000
STOP DATE, TIME : 06/24./89, 230000
FLIGHT TYPE : DOMESTIC
TFIAFFIC COUNT AREA : FACILITY

TRAFFIC COUNT AREA ID : ZAB
RECORDING TYPE : SYSTEM GENERATED

DEPARTURES

TIME AC GA AT MI TOTAC

21:00 10 08 12 05 45 20
22:00 25 18 15 08 66 30
23:00 55 45 28 16 144 72

ARRIVALS

GA AT MI TOTAC

OVERS

GA AT MI TOT

15 05 05 4 5 1 0
20 15 10 75 11
35 25 15 14745

08 10 07 35
14 12 10 47
30 22 12 109

AC = AIR CARRIER
GA - GENERAL AVIATION

AT = AIR TAXI
MI - MILITARY

TOT = TOTAL

FIG. 11 OUTPUT OF THE SPSS PROGRAM

approaches [WAR89] . Jalote proposes
an "extended object oriented design
methodology" which incorporates a
top-down, step-wise refinement
approach [JAL89]. Bailin describes a
method for combining Structured
Analysis with the Object Oriented
approach for requirements
specifications [BAI89] . Constantine
has written two papers that address
the topic of the integration of the
methods.

The application of a similar
methodology as used in this article
is reported by [KHA89], [WAR89] and
[SHU91]. It has been found that
other authors do not accept
compatibility, like Firesmith [FIR91]
who enumerates several unfounded
risks (risk associated with complex
data flow, requirements traceability
and changing the paradigms in the
middle of the project). Brodman
considers OOSD as an SA and SD
technique with artificial Object
flavor [Brogl] . Reed who only sees
complementary design between Jackson
System Design and OOD and others who
could consider DFD as a tool to

analyze the behavior, identify
operations and interconnections
among objects.

O u t l o o k

In the development of this system
there are many professionals with
different backgrounds. Many have
worked with different consultant
companies and used less common
methodologies. All these approaches
are brought to the table in some way
as the system is being developed. It
is interesting to note that several
programmers do not have an intrinsic
knowledge of the Object Oriented
Paradigm and consequently they do not
produce Object Oriented Programs.
They do however have a knowledge of
the programming language. They do
effectively use Ada to achieve
information hiding. Using non-object
oriented techniques they develop
procedures for SPSS and REXX. They
have the ability to visualize and
integrate various parts of the system
that have a non-object and object
oriented approach in their design and
programming. This proof that Object

SOFTWARE ENGINEERING NOTES vol 18 no 4 Oct 1993 Page 53 ACM SIGSOFT

Oriented and Structured Development
are complementary of each other. This
paper describes a process to
implement an information system with
SD as a complementary technique for
OOD and it shows that a real problem
needs to be addressed with several
design techniques.

Unfortunately the mathematical theory
behind OOD and SD is almost null.
Several authors are using Petri Nets
because Petri Nets have a
mathematical base; other authors
including myself are trying to
formalize these methodologies and
find a common mathematical theory
that pushes the theory of knowledge
for System Development to a higher
level and facilitates the evolution
of more coherent and useable methods.

Acknowledgment. The author wishes to
thanks Myron Shear for their valuable
comments in this paper.

References

[Abb83] Abbott, R. J., "Program Design by
Informal English Descriptions", Communications
of the ACM, Vol. 26 No. ii, (1983) pp. 882-
895.

[Bai89] Bailin, S. C., "An object oriented
requirements specification method", CACM, Vol.
32, No. 4 (1989) pp. 608-623.

[Boo86] Booch, G., "Object-Oriented
Development", IEEE transactions on Software
Engineering, Vol. 12 No. 2 (1986) pp. 211-221.

[Boy87] Boyd, S., "Object-Oriented Design and
PAMELA", Ada letters, vol. VII, No. 4 (1987)
pp. 68-78.

[Brogl] Brookman, D., "SA/SD vs OOD", Ada
letters, Vol. XI, No. 9 (1991) pp. 96-99.

[Che76] Chen, P. "The Entity- Relationship
Model -- Toward a Unified View of Data", ACM
Transactions on Database Systems, Vol. i, No.
1 (1976), pp. 9-36.

[Che91] Chen, M.J. and C.B. Chung,
"Restructuring Operations for Data-Flow
Diagrams", Soft. Eng. J. (1991), pp. 181-195.

[Coa90] Coad, P., E. Yourdon, Object-Oriented
Analysis, Englewood Cliffs, NJ, Yourdon Press,
1990.

[Don90] Donaldson, C.M., "Dynamic Binding and
Inheritance in an Object- Oriented Ada
Design", J. of Pascal, Ada & Modula-2 (1990)
pp. 13-18.

[Fir91] Firesmith, D. "Structured Analysis and
Object-Oriented Development are not
compatible", Ada letters, Vol. XI, No. 9
(1991) pp. 56-66.

[Gan82] Gane, T. and C. Sarson, Structured
System Analysis, MCDonnell Douglas, 1982.

[Jal89] Jalote, P. "Functional Refinement and
Nested Objects for Object-Oriented Design",
IEEE Transactions on Soft. Eng (March 1989).

[Kha89] Khalsa, G.K., "Using Object Modeling
to transform Structured Analysis into Object
Oriented Design", Proceedings of the sixth
Washington Ada Symposium (1989) pp. 201-212.

[Kha88] Khalsa, G.K., Usinq three System
Perspectives to transform Structured Analysis
into Object-Oriented Desiqn. Arizona State
University, Temple Arizona.

[Mar84] Martin, J., System Desiqn From
Probably Correct Constructs: The Beqinninqs of
true Software Enqineerinq, Englewood, Cliffs,
NJ, Prentice Hall 1984.

[Mar92] Martin, J. and James J. Odell, Object-
Oriented Analysis & Desiqn, Englewood, Cliffs,
NJ, Prentice Hall, 1992.

[Loy90] Loy, P.H. ~"A comparison of Object-
Oriented and Structured Development Methods",
Soft. Eng. Notes (1990) pp. 44-48.

[Pre87] Pressman, R.S., Software Enqineerinq A
Practitioner's Approach, Singapore, Mc Graw-
Hill, 1987.

[Sod91] Sodhi, J., Software Enqineerinq
Methods, Manaqement and Case Tools, Blue Ridge
Summit, Pa, TAB Professional and Reference
Books 1991.

[Sei87] Seidewitz, E. and M. Tracks, "Towards
a General Object-Oriented Software Development
Methodology", Ada Letters Vol. VII No. 4
(1987) pp. 54-67.

[Sh188] Shlaer, S. and S.J. Mellor, Object-
Oriented Systems Analysis: Modelinq the World
in Data, Englewood Cliffs, NJ, Prentice Hall
1988.

[Sh192] Shlaer, S. and S.J. Mellor, Object
Life Cycles Modelinq the World in States,
Englewood Cliffs NJ, Yourdon Press, 1990.

[Shugl] Shumate, K. "Structured Analysis and
Object-Oriented Design are Compatible", Ada
Letters, Vol. XI, No. 4 (1991) pp. 78-90.

[Sutgl] Sutcliffe, A.G., "Object-Oriented
Systems Development: Survey of Structured
Methods", Information and Software Technology,
Vol. 33, No. 6 (1991) pp. 433-442.

[sPsg0] SPSS Inc, SPSS Reference Guide, SPSS
Inc., 1990.

[War89] Ward, P.T. "How to Integrate Object
Orientation with Structured Analysis and
Design", IEEE Software, (1989) pp. 74-82.

[Was89] Wasserman, A.I., P.A. Pircher and R.J.
Muller, "An Object-Oriented Structured Design
Method for Code Generation" SIGSOFT Software
Engineering Notes, Vol. 14, No. 1 (1989), pp.
32-55.

[You89] Yourdon, E., Modern Structured
Analysis, Englewood Cliffs, NJ, Prentice Hall,
1989.

