
Modeling Chunk Availability in P2P Swarming Systems

Daniel Sadoc Menasché
University of Massachusetts

Antonio A.A. Rocha
Federal Univ. of Rio de Janeiro

Edmundo de Souza e
Silva

Federal Univ. of Rio de Janeiro

Rosa M. Meri Leão
Federal Univ. of Rio de Janeiro

Don Towsley
University of Massachusetts

Arun Venkataramani
University of Massachusetts

1. INTRODUCTION
Peer-to-peer swarming systems à la BitTorrent are usually

deployed for the dissemination of popular content. Popular
content naturally gets highly replicated in the network and
capacity scales with demand ensuring high performance for
peers requesting popular content.

Nevertheless, the behavior of swarming systems in the face
of unpopular content and small populations of users also de-
serves attention. First, it is important to understand what
is the popularity threshold above which the use of swarm-
ing systems is most beneficial for a publisher. The second
reason is economic. With the monetization of BitTorrent
clients such as Vuze (previously known as Azureus), and sur-
veys showing a huge demand for legal P2P content [2], pub-
lishers need to identify how to best allocate their resources
across multiple swarms. For that purpose, it is imperative
to identify whether a swarm is self sustaining or not. This
is particularly evident in a market where enterprises that
can make “everything available, with small costs”, thrive
[1]. Third, models focusing on small user populations may
provide insight on when and if coding, bundling [6] or other
techniques can help to make unpopular swarms last longer
without the support of a publisher.

For large populations, Massoulie and Vojnovic [5] used a
coupon collector model to show that rarest-first guarantees
almost uniform distribution of chunks across the population
leading to a robust system. Fan et al. [4] considered the
large population regime, and used fluid approximations and
stochastic differential equations to model the dynamics of
a population of users. Qiu and Srikant [8], also considered
large populations and concluded that the efficiency of the
system is always high.

For small populations we have Markov Chain (MC) mod-
els [10] that provide insights on the performance of the sys-
tem but that do not consider the problem of chunk avail-
ability.

In comparison, the goal of this paper is to analyze, espe-
cially for a small population of users, how chunk availability
varies as a function of different system parameters such as
arrival rate of peers and download capacity.

2. AVAILABILITY MODEL
In this section, we present our availability model. We

consider an infinite population of users that arrive according
to a Poisson process with rate λ and whose download rate
is µ chunks/second. The file is divided into b chunks. The
distribution of chunks across users is uniform, which can
be realized in practice using rarest-first. Consider a user

that has h chunks of a file. The probability that this user
holds any given combination of h chunks equals 1/Cb

h where
Cb

h = b!/[h!(b − h)!].
Our model is hierarchical: in the upper layer we charac-

terize the population of users, and in the lower layer the
distribution of chunks.

2.1 Upper Layer
We consider a Jackson network of b+1 M/G/∞ queues in

series. The number of customers in queue i, ni, represents
the number of users that have i chunks of the file. The
state of the system is characterized by a (b + 1)-tuple, σ =
(n0, n1, n2, . . . , nb).

Peers arrive according to a Poisson process with rate λ to
queue 0 and transit from queue i to queue i+1 (0 ≤ i ≤ b−1)
with rate µ. The bth queue captures the mean time that
peers remain in the system after completing their downloads,
1/γ. Making γ → ∞ models the case when all peers leave
the system immediately after completing the download.

The steady state distribution of the queueing system has
product form and is given by π(n0, . . . , nb) =

Qb
i=0 πi(ni) =

Qb
i=0 [

ρ
ni
i

ni!
e−ρi] where ρi = λ/µi and µi = µ for 0 ≤ i < b

and µi = γ for i = b.

2.2 Lower Layer
Given the current state σ = (n0, n1, n2, . . . , nb) of the

upper layer’s queueing system, we compute the probability
that at least one chunk is not available in the system.

2.2.1 Distribution
We first consider the case where all the users have the

same number of chunks, h, i.e., nh > 0 and ni = 0 for all
i 6= h. There is a total of hnh chunks in the system.

A user u is characterized by its signature su, which is a
binary number of b bits where the ith bit, bi, is set to 1 if
the user has chunk i and 0 otherwise. There are Cb

h possible
signatures.

We now describe the sample space of the model’s lower
layer, which we denote by Ω. Each element s ∈ Ω is char-
acterized by the concatenation of nh user signatures. Once
an ordering of the nh users is established, an element of the
sample space is fully specified by the string of zeros and ones
s = s1 · s2 · . . . · snh where · denotes concatenation,

Ω = {(s1 · s2 · . . . · snh)}, |Ω| = (Cb
h)nh (1)

Since the distribution of chunks across users is assumed to
be uniform, each element in the sample space is equiprob-
able. We are interested in the event U corresponding to

at least one chunk being unavailable. Let Ui be the event
corresponding to chunk i being unavailable,

P{U} = P{U1 ∪ U2 ∪ . . . ∪ Ub} = NU/|Ω| (2)

where NU denotes the number of elements in Ω where at
least one chunk is unavailable.

Using the inclusion exclusion principle, one can show that

NU =

b−1
X

i=1

(−1)i+1Cb
i (Cb−i

h)nh (3)

with the convention that Cm
k = 0 if m < k.

We denote by E(z) the generator function of the number
of states in which exactly i chunks are missing. [9, Section

4.2] yields E(z) =
Pb−1

i=0 Cb
i (Cb−i

h)nh(z − 1)i. Note that
E(0) is the number of states where no chunk is missing and
NU = |Ω| − E(0) (equation (3)).

Recursion: Inspired by [3, Figure 1], we derive a recur-
sion to compute NU . Let e(n, u) be the number of states
in which u chunks are left unavailable after n users get h
chunks each. Then,

e(n, u) =

b−h
X

i=u

e(n − 1, i)Ci
i−uCb−i

h−(i−u) (4)

where Ci
i−u counts the number of ways in which i−u chunks

of the nth user can be distributed without overlap with the
chunks of the first n−1 users and Cb−i

h−(i−u) counts the num-

ber of ways in which h − (i − u) chunks can be distributed
overlapping with previously distributed chunks.

The initialization step consists of setting e(1, b− h) = Cb
h

and e(1, j) = 0 for j 6= b − h. After evaluating e(n, u), 1 ≤
n ≤ nh, 1 ≤ u ≤ b−h, the number of configurations in which
at least one chunk is missing is given by NU =

Pb−h
i=1 e(nh, i).

Assuming that the binomial coefficients are precomputed,
the complexity of the dynamic program is O(b2nh). Note
also that the dynamic program only involves additions of
positive numbers, which avoids numerical problems.

Extension to heterogeneous population case: We now
consider the case where different users may have different
numbers of chunks. Once an ordering of the n =

Pb
i=1 ni

users is established, an element of the sample space is fully
specified by the string of zeros and ones s = s1 · s2 · . . . · sn

where · denotes concatenation, Ω = {(s1 · s2 · . . . · sn)}, |Ω| =
Qb−1

i=1 (Cb
i)ni . Hence,

NU =

b−1
X

i=1

(−1)i+1Cb
i

b−1
Y

j=1

(Cb−i
j)nj . (5)

Substituting (5) into (2) we obtain the probability of at
least one chunk being unavailable.

The recursion presented above can be adapted to an het-
erogeneous population as follows.

1) For the n1 users that have one chunk we initialize the
dynamic programming table T1 as described above and com-
pute e(n, i) using equation (4) (h = 1).

2) Varying h from 2 to b,
2.1) For the population of nh users that have h chunks,

build a new dynamic programming table, Th, initializing its
0th row using the last line of Th−1. The first row of Th is
then obtained from the 0th row after adding Cb

h to e(0, b−h).
The other rows are obtained using (4).

3) The number of configurations in which at least one

chunk is unavailable is
Pb

i=1 e(nb, i) (table Tb).
Note that if at least one user has all the chunks (nb > 0)

the output of the procedure above is 0. Otherwise, it is the
sum of all but the first element of the 0th row of table Tb.

2.2.2 Expectations
In this section we take the expected number of distinct

chunks as being the measure of content availability. First,
we consider the homogeneous case where there are nh users
in the system all of them possessing h chunks of the file.
We are interested in the expected number of distinct chunks
available in the system, E[N], E[N] = E[11] +E[12] + . . .+
E[1b] = bE[1i], where 1i is an indicator random variable
equal to 1 if chunk i is available and 0 otherwise. Let p
be the probability that chunk i is available, p = E[1i] =

1 −
“

b−h
b

”nh

.

The minimum number of users n?
h such that E[N] ≥ b− ε

is

b
h

1 −
“ b − h

b

”n?
h

i

= b − ε; n?
h =

log(b/ε)

log(b/(b − h))
(6)

where n?
h = Θ(log 1/ε). We refer to n∗

h(ε) as the threshold
for self sustainability since, for small enough ε, if the average
number of peers in the system is greater than n∗

h(ε) content
is fully available even in the absence of a seed.

From [7, Theorem 1] we can show that

P{|pb − N | > ξb} ≤ 2e
−ξ2b2
2nhh (7)

Eq. (7) is useful if the number of chunks b is large. For
example, if we let b = 15000, h = 1000, ε/b = 0.01, n?

h =
66.75, and E[N] = 14850. From (7), setting ξ = 0.05 and
for n?

h peers, the probability that the peers have less than
95% of all distinct chunks of the file is at most 0.03. For
small values of b the recursion previous developed should be
used. Nevertheless, E[N] provides a good estimate for n?

h.
Extension to heterogeneous population case: For a hetero-

geneous population of users, ni users owning i chunks of the
file, σ = (n0, n1, n2, . . . , nb),

E[Nσ] = b
h

1 −
b

Y

i=0

“ b − i

b

”ni
i

(8)

where Nσ denotes the number of distinct chunks available in
the system when the upper layer’s state is σ. As discussed

above,
“

b−i
b

”ni

is the probability that none of the ni users

that have exactly i chunks owns a given tagged chunk.
Applicability of the model: Once the threshold for content

availability, ε, is fixed we assume that content is available in
states σ where E[Nσ] > b − ε and not available otherwise,
and the fraction of time that all chunks are available, A, is

A =
X

σ=(n0,n1,...,nb)

1E[Nσ]>b−ε

b
Y

i=0

[
ρni

i

ni!
e−ρi] (9)

3. NUMERICAL EVALUATION
Our goal in this section is to illustrate how availability

depends on different system parameters. To this end, we
consider a file of 4Mb chopped into b = 16 chunks of size
256Kb each. Figure 1(a) depicts n∗, the minimum number

 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21

 1 2 3 4 5 6 7 8 9

n
u
m

b
e
r

o
f

p
e

e
rs

ε ⋅10
4

h=9
h=8
h=7

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5 10 15 20 25

p
ro

b
a

b
ili

ty

distinct chunks

b=14
b=16
b=18
b=20
b=22
b=24

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

P
(N

<
=

x
)

x

b=14
b=16
b=18
b=20
b=22
b=24

(a) (b) (c)

Figure 1: (a) Minimum number of peers necessary to attain E[N] = 16 − ε (eq. (6)); (i) probability mass
function of the number of available chunks (eq. (4)); (ii) CDF of the number of available chunks.

of users necessary to attain E[N] = b − ε = 16 − ε distinct
chunks in the system, as a function of ε (eq. (6)). The red,
green and blue curves correspond to a homogeneous popula-
tion of users, each one owning 9, 8 and 7 chunks of the file,
respectively. For instance, if each user owns 9 chunks (red
curve) and the population size is 12, the expected number
of distinct chunks in the system is 16 − ε = 16 − 9 × 10−4.
We will return to this scenario in the end of this section.

Note that for a fixed value of ε, n∗ decreases in h. For
a fixed value of h, moving from right to left in Figure 1(a),
a decrease of one order of magnitude in ε corresponds to
an increase by only 10 peers in n∗. This reflects the fact
that a small increase in the population size may lead to a
significant increase in the availability level.

We now illustrate the distribution of the number of dis-
tinct chunks in the system. To this end, we consider a pop-
ulation of 8 users each one owning 5 chunks, varying the file
size b from 14 to 24 in increments of 2. The expected number
of chunks in the system, E[N], is 13.59, 15.20, 16.67, 17.99,
19.20 and 20.29, respectively. The distribution of the num-
ber of distinct chunks in the system is shown in Figure 1(b)
and its CDF in Figure 1(c).

Note that the probability mass function is relatively con-
centrated around its mean. If b = 20, for instance, the mode
is 18 (Figure 1(b)), the probability of finding less than 17
chunks in the system is around 0.3 and the probability of
finding less than 15 chunks is smaller than 0.02 (Figure 1(c)).

To ground the numerical evaluation presented above we
consider preliminary results from a PlanetLab experiment.
In our controlled experiments, we deployed 100 BitTorrent
clients in a private swarm, each downloading a file of size
s = 4MB (16 chunks of size 256KB each), each node offering
capacity µ = 100KBps. A seed joins the system at time
t = 0, leaves at t = 80s and never returns. Peers leave the
system as soon as they conclude their downloads. We varied
the arrival rate, λ, of peers from 1/60 to 8/60 peers/s and
conducted 50 runs for each arrival rate. When λ ≤ 4/60,
in all the conducted experiments some chunks were missing
after 5000 seconds. The scenario drastically changed for
λ? ≥ 7/60, when almost all the swarms were active even
after 10000 seconds, time at which we stopped the runs.
The measured expected number of peers for λ? is around
12. Our model suggests that 12 is the self sustainability
threshold, for instance, in case each user owns 9 chunks and
ε = 9 × 10−4 (See Figure 1(a)). It is interesting to note
that, for λ? and using the upper layer model, the expected
number of peers in the system is 12. In addition, there is a

high probability (0.96) that at least 2 peers have downloaded
9 or more chunks and, from the recursion, the probability of
a missing chunk is negligible (1.2 × 10−7).

4. CONCLUSION AND FUTURE WORK
In this paper we used a two layer model to study how

chunk availability varies as a function of the number of users
in the system. With our model we have shown that relying
on relatively small populations of users may be enough to
have all chunks available almost all the time, a result corrob-
orated by our preliminary PlanetLab experiments. Refining
the model and performing thorough validations is a future
work. We believe that our work sheds light on the impor-
tant but not very explored problem of chunk availability in
unpopular swarms.

Acknowledgement: This work was supported in part by
the NSF under awards CNS-0519922 and CNS-0721779, fel-
lowships from CAPES and grants from CNPq and FAPERJ
(Brazil).

5. REFERENCES

[1] Anderson, C. The Long Tail: Why the Future of
Business is Selling Less of More. Hyperion, 2006.

[2] British Music Rights. Huge demand for legal P2P,
2008. http://torrentfreak.com/.

[3] Burger, A. P., and van Vuuren, J. H. Balanced
minimum covers of a finite set. Discrete Mathematics
307 (2007), 2853–2860.

[4] Fan, B., Chiu, D.-M., and Lui, J. Stochastic
differential equation approach to model peer to peer
systems. In ICC (2006).

[5] Massoulie, L., and Vojnovic, M. Coupon
replication systems. In SIGMETRICS’06 (2006).

[6] Menasche, D., Rocha, A., , Li, B., Towsley, D.,
and Venkataramani, A. Bundling builds availability
in Bittorrent. UMass TR UM-CS-2009-010 (2009).

[7] Mitzenmcher, M. Compressed bloom filters. In
PODC (2001).

[8] Qiu, D., and Srikant, R. Modeling and performance
analysis of BT-like P2P nets. In SIGCOMM (2004).

[9] Wilf, H. Generatingfunctionology. Acad. Press, 1994.

[10] Yang, X., and De Veciana, G. Service capacity of
peer to peer networks. In INFOCOM (2004).

APPENDIX
Proof of equation (7): The proof relies on Azuma’s inequal-
ity and Doob’s martingale. Pick an ordering for the hnh

chunks owned by the users, which leads to a sequence {S1, S2,
. . . , Snnh} of chunks, where each Si is a discrete random
variable with support 0 . . . b − 1. In what follows, we show
how to construct a martingale based on this sequence. Let
Yj be the expected number of chunks unavailable given that
j chunks were distributed (0 ≤ j ≤ nnh). Yj = E[b −
N |S1, . . . , Sj]. In particular, Y0 = E[b−N] and Ynh = b−N .
The sequence {Y0, . . . , Yj} is a special case of the Doob’s
construction, which always leads to a martingale. Finally,
note that the addition of a chunk in the system may in-
crease the number of available chunks by at most 1, hence
|Yj+1 −Yj | ≤ 1. The rest of the proof is a direct application
of Azuma’s inequality to the sequence {Y0, . . . , Yhnh}. ¤

