
Harnessing the Power of “Favorites” Lists for
Recommendation Systems

Maryam Khezrzadeh
Dept. of Comp. Sci.
University of Victoria

PO Box 3055, STN CSC
BC, Canada V8W 3P6

maryamk@cs.uvic.ca

Alex Thomo
Dept. of Comp. Sci.
University of Victoria

PO Box 3055, STN CSC
BC, Canada V8W 3P6
thomo@cs.uvic.ca

William W. Wadge
Dept. of Comp. Sci.
University of Victoria

PO Box 3055, STN CSC
BC, Canada V8W 3P6
wwadge@uvic.ca

ABSTRACT
We propose a novel collaborative recommendation approach
to take advantage of the information available in user-created
lists. Our approach assumes associations among any two
items appearing in a list together. We calculate sum of
Bayesian ratings (SBR) of all lists containing an item pair
as the strength of item-item associations in that pair. SBR
takes into consideration not only the number of lists the
items have co-appeared in, but also the quality of the lists.
We collected a data set of user ratings for books along with
Listmania lists on Amazon.com using Amazon Web Services
(AWS). Our method shows superior performance to existing
user-based and item-based collaborative filtering approaches
according to the resulted MAE, coverage and F-measure.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Information Filtering

General Terms
Algorithms, Performance, Experimentation

Keywords
Recommender Systems, Collaborative Filtering, Association
Analysis, Bayesian Rating

1. INTRODUCTION
Over the years, various approaches to build recommen-

dation systems have been developed which utilize demo-
graphic, content or historical information. The collaborative
Filtering (CF) method (cf. [6]), which is one of the most
successful approaches to develop recommendation systems,
helps people make choices based on opinions of other like-
minded people. However, this classic CF approach, which is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RecSys’09, October 22–25, 2009, New York, USA.
Copyright 2009 ACM 978-1-60558-435-5 ...$10.00.

also known as user-based method, has some serious scalabil-
ity and quality challenges associated with it [1]. These chal-
lenges have led to the design of a similar item-based scheme
which utilizes item-item similarities rather than user-user
similarities. The item-based collaborative filtering recom-
mendation algorithms are claimed to address these two chal-
lenges simultaneously leading to the design of more accurate
and more scalable recommender systems [7]. However, both
user-based nad item-based CF suffer from common prob-
lems, such as sparsity and non-transitive item associations.
To alleviate these problems, some alternative model-based
recommender algorithms are explored which mainly aim at
generating denser user-item interaction matrix or seeking al-
ternative ways to drive item-item or user-user relationships.
Dimensionality reduction techniques [8] and Latent Seman-
tic Analysis [3] are two examples of such algorithms (refer
to [5] for more background and a full list of references).

Nowadays, lots of online e-commerce and entertaining rec-
ommender systems, enable the users to create and manage
lists of their favorite items. Many online music services like
Last.fm, iLike and Pandora allow the users to create custom
radio stations and playlists from any of the audio tracks in
their music library. Amazon, the biggest online retailer in
the US, recently has offered Listmania list creation service
where users can put together a list of related books, DVDs,
music, etc. MovieLens, Netflix, Youtube and many more are
other examples of websites offering such services.

Unlike user profiles, which are currently used in many
recommendation services, user-created favorites lists usually
have a unique theme, topic and taste. The effort a user
puts into creating a list is of great importance to the task
of recommendation. We can consider each favorite list to
represent a collection of highly related items. These rela-
tionships are approved by two groups of human experts: the
user who creates the list and the viewers who vote for the
list. A reviewer, signifies a list as helpful by voting yes to
the list and voting no in case the list is not appealing as a
related set of items. Incorporating the opinion of voters has
significant benefits towards distinguishing strong item as-
sociations versus weak, limited and unreasonable item-item
relationships.

There is no known research conducted to take advantage
of the valuable information provided by custom-created fa-
vorites lists. This paper offers a novel, efficient and flexible
way of extracting item-item relationships out of thees lists to
enhance the quality of recommendations generated for users
in such systems. We call this new approach, the Collective

u2 u3

i1 i2 i3

l1

l3

l2 l4

5 1 2

u1

3 4
Users

Items

Lists

Figure 1: The proposed list-base model comprising

user-item and item-item relationships

Intelligence ReCommendation (CIRC), since it draws upon
the intelligence of the users creating cohesive collections as
well as the opinion of the lists’ viewers. CIRC operates on a
preference model which comprises both user-items and item-
item relationships, and infers a weighted item-item graph
from the lists containing those items.

2. OUR MODEL
Figure 1 illustrates the proposed model consisting of

User, Item, and List layers. We denote the set of User

nodes by U = {u1, . . . , up}, the set of Item nodes by I =
{i1, . . . , iq}, and the set of List nodes by L = {l1, . . . , lr} .

The number of yes/no votes for each List is assumed to
be known. Therefore we have a set V = {(l1, y1, n1), . . . ,

(lr, yr, nr)}, where a triple (l, y, n) says that y and n are the
numbers of the “yes” and “no” votes, respectively, given to l.

An edge connecting a User and an Item node is a triple
(u, i, rui), where rui is the original rating that u has given
i in a 5-point scale range. The set of all items a user u has
already rated, is called the user’s basket. An edge connecting
an Item node and a List node is a pair (i, l) and it indicates
that l contains i. U , I, L along with (u, i, rui) and (i, l) form
our knowledge base K. Finally, we generate the set

AI = {(ia, ib, wab) : ia, ib ∈ I and wab ∈ R
+}

from item-list edges and list-vote triples. The weight wab is
calculated to reflect the strength of the association between
items ia and ib. The precise formula for calculating wab will
be given in the next section. Note that set AI can also be
considered as a weighted item-item graph representation.

3. CIRC
In this section we introduce our recommendation method

based on the model we described in the previous section.
Initially, we present the weight calculation for the triples in
set AI . The algorithm used to produce recommendations is
described in the next subsection.

3.1 Weight Calculation
The frequency of co-occurrence of items is a good indicator

of possible associations between items [5], however, it’s not
just the frequency of co-occurrence that counts, but it’s also
the quality of co-occurrence. In other words, a pair of items
which appears in a very desirable list is as significant as -
and sometimes more important than- a pair appearing in
many lists. Intuitively, if a user finds a useful and well put

together list of items (e.g. a good playlist), he’d rather rate
the list than creating a new list containing the same items to
express his interest. This way, items that are really related
will get more and higher votes and probably they will not
appear together in many other lists.

We define Sum of Bayesian Ratings (SBR) as the weight
describing the degree of association between two items. SBR
takes into consideration not only the frequency of co-occu-
rrence of the two items, but the number of votes that lists
have received by anonymous users as well.

Sum of Bayesian Ratings as wab. Sum of Bayesian
ratings of all lists l in L containing both ia and ib:

wab =
X

(ia,l)∈A and (ib,l)∈A

BR(l)

where Bayesian Rating BR(l) for a list l is defined as:

BR(l) =
C × M + Rl × Nl

M + Nl

and C, M , R and N are defined in the following table.

Data Type Number
C the average rating of all the lists in K
M the average number of votes given to

the lists in K
Rl the rating of list l

Nl the total number of votes given to list l

The rating of a list, Rl, is computed as the percentage of
yes votes out of total votes given to l. The more desirable
the list containing an item pair is, the more confident we are
that these two items are related to each other. However, the
desirability of lists can not be solely computed based on the
percentage of yes votes they receive. If there are only few
votes, then these votes should count less than when there
are many votes. In other words, the more votes a list has,
the higher the weight of these votes.

3.2 Producing Recommendations
Given a target user, we recommend items to users based

on the model we described in Section 2. In our algorithm
we have a parameter minW which denotes the minimum
accepted value of wab for the items ia and ib to be consid-
ered associated. This threshold can be flexibly configured in
CIRC for a specific application. Our algorithm is as follows.

Algorithm 1. RecommendItems

Input: A target user u, minW, a knowledge base K, and a
set of item associations AI .

Output: A list of (i, pui) item-prediction pairs for user u.

Method:

1. For each item i in the u’s basket do:

(a) Retrieve all neighbor items j of i in AI such
that wij ≥ minW .

(b) Let Ni be the set of these neighbors.

(c) For j in Ni do:

i. puj = PredictRating(u,j).

ii. Add (j, puj) to the result.

2. return result.

Function PredictRating generates the predicted rating of
item i for user u. This function computes the weighted av-
erage of ratings that the user has given to the items that are
in association with i according to AI :

P

(i,j,wij)∈AI
ruj · wij

P

(i,j,wij)∈AI
wij

.

4. EXPERIMENTAL EVALUATIONS
This section presents the experimental results on validat-

ing the ability of CIRC to produce high quality recommenda-
tions. We first describe the experimental settings and then
discuss the results.

4.1 Dataset
To evaluate the performance of CIRC we formed our data-

set using data gathered from Amazon.com through Amazon
Web Services (AWS). In the following table

we show the type of data gathered and some statistics
about this data.

Data Type Number
Item (Book) 405,238
User 530,160
List 58,618
User-Item-Rating 1,188,435
(l, i) 1,056,932

A pair (l, i), where l is a list and i is an item, indicates that i

is in l. Note that Since we focus on book recommendations,
we remove all non-book items from the dataset.

4.2 Method and evaluation metrics
We consider five sets (categories) of users based on the

number of items they have rated. We randomly selected a
5% of the users in each subset as target users (or sample
users). For each target user we use 80% of the items that
he/she has rated as input set whereas the rest of items as
examination set. The reason we chose the majority of items
in user’s basket as input set is the fact that it better corre-
sponds to the deployment of the system in practice where all
the ratings are used to produce recommendations and yet it
reserves reasonable number of items in examination set to
facilitate the evaluation process. Table 1 reports statistics
about the sample target users. The final results reported for
each category are averages over all users of that category.

Category # of ratings (R) Population Sample size
C1 R < 5 497,664 24,884
C2 5 ≤ R < 10 16,383 820
C3 10 ≤ R < 50 9,834 492
C4 50 ≤ R < 500 1,442 73
C5 R ≥ 500 28 2

Table 1: Averaged Statistics about the sample tar-

get users

Since CIRC recommends to the user the items s/he might
like, we only consider positive ratings in the input set to
produce recommendation. We call a rating on item p given
by user u to be positive if ru,p ≥ 4. For users who had
at least one positive rating in the input set and one in the
examination set, we generated recommendations. A recom-
mended item p to the user u is a successful recommendation

if p appears in the examination set for user u and ru,p ≥ 4.
For every target user, we recommend as many items as the
number of items in user’s examination set. To evaluate the
performance of CIRC we use the common metrics used to
evaluate recommendation algorithms [2, 4]: Mean Absolute
Error, F1 and Coverage.

4.3 Results and discussions
This section discusses experimental results on recommen-

dations produced by CIRC. For comparison purposes, we
have also included the results of both item-based and user-
based collaborative filtering recommendation systems which
employ the Pearson nearest neighbor algorithm. For these
two collaborative filtering algorithms we use 80% of the data
set as training set and 20% as test set. We have also imple-
mented and evaluated CIRC using frequency of co-occurance
as weight, but to to space constraints we do not report the
result here. The interested reader may refer to the long
version of this paper [5].

As it was mentioned before, CIRC has a parameter minW
which can be flexibly configured. To tune this parameter
we conducted an experiment which measures the quality of
recommendations produced by CIRC for different values of
minW. The results of this experiment which is reported in
[5] due to space constraints, shows that interesting pairs are
preserved by using SBR even when the threshold is high.
This means that SBR is a good indicator of existing asso-
ciations between items and successfully separates the inter-
esting items from the items the user might not like. We set
minW equal to 0.5 to get the best possible results CIRC
produces in the rest of the experiments that follows.

4.3.1 CIRC vs. item-based and user-based collabo-
rative filtering

We categorize CIRC as a model-based recommendation
approach which utilizes the information provided by users
in a new way to derive the item-item relationships. We be-
lieve that in applications where extra data from user-created
lists is available, CIRC can outperform commonly used user-
based and item-based approaches. Figures 2 - 4 report the
results of comparing the performance of CIRC with that of
user-based and item-based recommendation approaches. We
report F-measure as an indicator of system accuracy in find-
ing items the user will like, while MAE can be interpreted
as the confidence an algorithm has in recommendations it
makes and coverage measures the usability of the system to
the users by measuring the percentage of the the items in
a user’s basket for which a prediction was provided. This
computation is based on the leave-one-out method.

F-measure. It can be observed from the charts in Fig-
ure 2 that CICR provides more accurate recommendations
according to the reported F-measures. The distinction be-
tween our approach and two benchmark CF algorithms that
we have implemented becomes even more apparent for cat-
egories C3, C4 and C5 where users have rated more items.
We believe this happens partly because as the users rate
more and more number of items there is a risk of mixed
tastes in their generated neighborhood. Therefore, lots of
recommended items are of no or lower interest to the user.
CIRC on the other hand, remains on track by just looking
at quality item-item associations and is not confused by a
misleading neighborhood.

MAE. Figure 3 reports the quality of predictions made

F-Measure

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

C1 C2 C3 C4 C5

UB IB CIRC

Figure 2: Comparison of classification accuracy of

CIRC and user-based and item-based algorithms

MAE

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

C1 C2 C3 C4 C5

UB IB CIRC

Figure 3: Comparison of prediction accuracy of

CIRC and user-based and item-based algorithms

by each of three algorithms under examination. While user-
based algorithm always bears the worst prediction quality of
all three, item-based approach shows an interesting behavior
and even outperforms CIRC predictions in categories C3 and
C4. Starting from category C1 with lowest number of rated
items for each user, the quality of item-based predictions
increases as the sparsity of data set decreases. However, this
increase does not last and it stops at C3 which we believe is
the best case dataset for item-based algorithm.

Coverage. Figure 4 illustrates the usability of these three
recommender algorithms in terms of the coverage they pro-
vide for different user categories. Without any exception
CIRC outperforms item-based and user-based approaches.

4.4 Discussion
From the experimental evaluations of CIRC along with

two benchmark algorithms, we observe that CIRC is almost
always the winner except for the yielded prediction accuracy
of categories C3 and C4 in which item-based recommender
performs better. We believe in domains where list data is
available, CIRC can serve as a complimentary method to
other successful CF recommendation algorithms. It is im-
portant to note that all measures used to evaluate this work
suffer from the underlying biases as is suggested by Herlocker
et al [2].However, to alleviate this bias in our evaluations,
we only used the portion of the recommendations which also
appear in the target user’s examination set, otherwise, a rec-
ommender with high true recall and true precision may yield
low values on these measures because it recommends lots of
un-rated relevant items to the user. The comparisons, how-

Coverage

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

C1 C2 C3 C4 C5

UB IB CIRC

Figure 4: Comparison of coverage of CIRC and user-

based and item-based algorithms

ever, are absolute and show the prominence of our approach
over benchmark algorithms.

5. CONCLUSIONS
In this paper we presented a new model based on valuable

information in user-created lists which is usually overlooked.
We described and experimentally evaluated CIRC- a new
algorithm based on the proposed model- and showed that
CIRC outperforms commonly used user-based and items-
based CF methods while it is scalable and flexible at the
same time. All these results are very promising and suggest
that our work has successfully discovered a new potential to
extract item-item associations.

6. REFERENCES
[1] M. Deshpande and G. Karypis. Item-based top-n

recommendation algorithms. ACM trans. info. syst.,
22(1):143, 2004.

[2] J. L. Herlocker, L. G. T. Joseph A. Konstan, and J. T.
Ridel. Evaluating collaborative filtering recommender
systems. ACM trans. info. syst., 22(1):5, 2004.

[3] T. Hofman. Latent semantic models for collaborative
filtering. ACM trans. info. syst., 22(1):89, 2004.

[4] Z. Huang, D. Zeng, and H. Chen. A comparative study
of recommendation algorithms in e-commerce
applications. IEEE Intelligent Systems, 22(5):68–78,
2007.

[5] M. Khezrzadeh, A. Thomo, and B. Wadge. Harnessing
the power of favorites lists for recommendation
systems. Available at
http://webhome.csc.uvic.ca/ maryamk/Paper2.pdf.

[6] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herloker,
L. R. Gordon, and J. Riedl. Grouplens: applying
collaborative filtering to usenet news. Communications
of the ACM, 40(3):77–87, 1997.

[7] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl.
Item-based collaborative filtering recommendation
algorithms. In WWW ’01: Proceedings of the 10th
international conference on World Wide Web, pages
285–295, 2001.

[8] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl.
Application of dimensionality reduction in
recommender systems-a case study. In ACM WebKDD
2000 Web Mining for E-Commerce Workshop, 2000.

