
Beyond Static and Dynamic Scope

Éric Tanter ∗

PLEIAD Laboratory
Computer Science Department (DCC)
University of Chile – Santiago, Chile

http://pleiad.cl/etanter

Abstract
Traditional treatment of scoping in programming languages con-
siders two opposite semantics: static scoping, where the scope of a
binding is a block of program text, and dynamic scoping, where a
binding is in effect during the whole reduction of an expression to
a value. Static scoping and dynamic scoping are however but two
points in the design space of scoping mechanisms. As a result, most
proposed language mechanisms that rely on some notion of scop-
ing, such as variable bindings of course, but also more exotic ones
like aspects and mixin layers, adopt either one or the other seman-
tics. As it turns out, these two semantics are sometimes too extreme,
and a mixture of both is needed. To achieve this, language designers
and/or programmers have to resort to ad hoc solutions. We present
a general scoping model that simply expresses static and dynamic
scoping, and that goes further by allowing fine-grained exploration
of the design space of scoping. The model, called scoping strate-
gies, gives precise control over propagation and activation of lan-
guage mechanisms. While we have already studied it for aspects,
we hereby show that the model is not restricted to aspects, by treat-
ing in depth its application to the most standard kind of adapta-
tion: variable bindings. We also briefly discuss its application to
mixin layers, and program monitoring. We believe that research in
programming language constructs can benefit from a more flexible
notion of scoping that goes beyond the static/dynamic dichotomy.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features; D.3.1 [Programming
Languages]: Formal Definitions and Theory—Semantics

General Terms Languages, Design

Keywords Variable bindings, scope, lexical scope, dynamic
scope, adaptation.

∗ Partially funded by FONDECYT projects 11060493 & 1090083.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
DLS’09, October 26, 2009, Orlando, Florida, USA.
Copyright c© 2009 ACM 978-1-60558-769-1/09/10. . . $10.00

1. Scope and Adaptations
The notion of scope in programming languages is traditionally
associated with that of bindings. Following Moreau’s definition of
the terms [18], a binding is an association between a name (or a
variable) and a value. The scope of a variable binding is the text
where occurrences of this name refer to the binding. According to
lexical (a.k.a. static) scope, a variable in an expression refers to
the innermost lexically-enclosing construct declaring that variable
(i.e. the scope is a block of program text). On the contrary, a
dynamic binding is an association that exists and can only be used
during the dynamic extent of an expression. A variable bound
dynamically is also often called a dynamic variable, or a parameter.

Dynamic binding associates data with the current execution
context, and therefore allows to pass on data to functions without
having to explicitly declare this data in the interface of the func-
tion. As nicely put by Kiselyov et al., “in general, dynamic bind-
ing generalises global state and the singleton pattern to multiple
application instances that may coexist in the same execution en-
vironment” [16]. A particular feature of dynamic bindings is that
they are not captured in a lexical closure. This allows for a num-
ber of well-known benefits of dynamic binding, like conciseness,
modularity and adaptability [16, 18]. Typical examples are redirect-
ing the output of a program, defining exception handlers, handling
host-local state in a distributed system, etc.

The notion of scope is however not restricted to variable
bindings. It has also been studied for instance in the area of
Aspect-Oriented Programming (AOP) [15], first by Tucker and
Krishnamurthi when exploring what it means to provide point-
cuts and advice in higher-order languages, further refined by
Dutchyn and the same authors [7]. Recall that in the pointcut-
advice model of aspect-oriented programming [17, 24], as embod-
ied in e.g. AspectJ [14], crosscutting behavior is defined by means
of pointcuts and advices. A pointcut is a predicate that matches
program execution points, called join points, and an advice is the
action to be taken at a join point matched by a pointcut. An aspect
is a module that encompasses a number of pointcuts and advices.
The scope of an aspect is the set of join points the aspect sees,
i.e. against which its pointcuts are matched. In AOP, it is therefore
possible to define aspects with static scope—such that they only see
the join points in the lexical region on which they are deployed—
or with dynamic scope—such that they see all join points in the
dynamic extent of that region.

There is at least one other area where scoping is discussed, that
of class extensions. For instance, in ContextL, class definitions are
split into layers that can be dynamically (de-)activated for a certain
dynamic extent [5]. There are also proposals for statically-scoped
class extensions [3, 25].

3

adaptation semantics deployment expression scoping languages
binding occurrences of identifier substituted by bound value let lexical Scheme & co

dlet, fluid-let, ... dynamic Λd & co
aspect execution events matched by pointcuts, may trigger advice around lexical AspectScheme (AS)

deploy, fluid-around dynamic CaesarJ, AS
layer method and field lookup in extended class definition declaration lexical ClassboxJ, eJava

with-active-layer dynamic ContextL

Table 1. Adaptations and scoping.

Table 1 summarizes this brief overview of scoping in different
contexts. It shows a number of program adaptations, like variable
bindings, aspects, layers, and informally describes their semantics.
For each, it presents a number of expressions with which these
adaptations are deployed, their scoping semantics, as well as a
number of illustrative languages and systems.

The purpose of this non-exhaustive table is to setup a general
background for a discussion of scoping, as well as introducing our
terminology. Furthermore, it shows that many different language
mechanisms are tied to the lexical/dynamic dichotomy. We have
previously presented an expressive scoping model for aspects [22],
and showed how this model also allows for expressive scoping
of distributed aspects [23]. Recent discussions with researchers
outside the aspect community convinced us of the necessity to
distill the essence of expressive scoping and formulate it in general
terms, in order to do it justice.

To this end, this paper progressively introduces the model of
scoping strategies for the classical case of variable bindings1. Sec-
tion 2 introduces two dimensions of scoping, related to propaga-
tion of an adaptation. While simple, this model subsumes existing
semantics. We extend it in Section 3 by considering dynamic prop-
agation functions, and in Section 4 by introducing the notion of
activation of an adaptation. In Section 5 we present the formal op-
erational semantics of a language with scoped bindings, Λσ , and
its prototype implementation. Section 6 briefly discusses instantia-
tions of scoping strategies to aspects, layers, and debugging. Sec-
tion 7 discusses related work and Section 8 concludes.

2. Scoping Dimensions
The characterization of scoping usually refers to the notion of
the region of program where a binding is in effect2. If this region
is statically determinable, that is static (lexical) scoping. If not,
then it is dynamic scoping. We believe this characterization to
be insufficient to be able to precisely denote fine-grained related
“regions” of program execution. As a first step, we argue that
seeing scoping as a propagation problem is more expressive.

There are two obvious propagation dimensions in a program:

• propagation on the call stack: is a currently-available binding
made available in a subsequent stack frame?

• propagation in delayed evaluation: is a currently-available bind-
ing made available in a procedural value that is created?

1 In previous work, the model is called deployment strategy, but we now
find it clearer to separate the notion of deployment (related to the deploy-
ment expression, like let, deploy, with-active-layer, etc.) from the
scoping strategy that specifies the scope of the deployed adaptation (bind-
ing, aspect, layer, etc.).
2 From now on, we focus on variable bindings as a particular kind of
adaptation. The discussion can be generalized by replacing occurrences of
“binding” with “adaptation”.

We introduce the notion of a scoping strategy as a pair
σ = 〈c, d〉, where c denotes call stack propagation, and d denotes
delayed evaluation propagation. For now, we just consider c and
d to be boolean values. Though trivial, this model is already suf-
ficient to go beyond static and dynamic scoping. To justify our
expressiveness claim, we first note that static and dynamic scop-
ing are straightforwardly expressed as scoping strategies, and then
show two more interesting semantics that are not possible to obtain
otherwise.

2.1 Expressing static and dynamic scoping
Both static and dynamic scoping can be directly expressed as scop-
ing strategies.

Static binding A static binding, a.k.a. lexical binding, is available
only in the lexical region where it is deployed. This includes all
procedural values defined in that region. That is, a static binding
always propagates in procedural values. On the other hand, a static
binding is not necessarily visible in the dynamic extent of the body
of its deployment expression: it does not propagate on the call
stack. So, a static binding has scoping strategy σ = 〈false, true〉.

(define foo (lambda ()
(let ((x 2))

(lambda (a)
(lambda (b)

(lambda (c)
(average (+ a b c) x)))))))

Above, the binding x → 2 is available in all nested lambdas.
Similarly, since function parameters are also statically scoped, they
are also available in all the nested lambdas. Hence, the innermost
lambda in the example has access to all the bindings.

Dynamic binding A dynamic binding is in effect during the ex-
tent of the evaluation of the expression on which it is deployed.
That is, it always propagates on the call stack. However, a dynamic
binding is never captured in lexical closures. Hence, it has scoping
strategy σ = 〈true, false〉.

(define x 0)
(define foo (lambda (y) (+ x y)))
(define bar (lambda (z) (foo (- z 1))))

> (define f (dlet ((x 2))
(write (bar 5))
(lambda () (+ x x))))

6

> (f)
0

The binding x → 2 follows the call stack, such that it is available
in the body of bar, as well as in the body of foo. However, it is not
available in the body of f.

4

2.2 Beyond static and dynamic scope
In this first model a scoping strategy has two components, each
of which can be either true or false. This logically leads to four
possible combinations. We have seen that two of them correspond
to the well-known static and dynamic scoping semantics. We now
introduce the two other semantics, and illustrate their use.

Pervasive binding A pervasive binding is a binding that is in
effect during the whole extent of the reduction of the expression
on which it is deployed, like a dynamic binding. In addition, the
binding is also available for all the procedural values that are
created during that extent, as well as the procedural values created
by these values, and so on. In other words, a pervasive binding,
deployed with plet, propagates on both the call stack and delayed
evaluation dimensions: it has a scoping strategy σ = 〈true, true〉.

(define handler (lambda (e) (write "default")))
(define divide #f)
(define (init-divide)

(set! divide (lambda (x)
(lambda (y)

(if (eqv? 0 y) (handler ...)
(/ x y)))))

> (plet ((handler (lambda (e) (write "plet"))))
(init-divide))

> ((divide 10) 0)
"plet"

In the above example, the divide function is created in the dy-
namic extent of the plet body expression. As a consequence, when
applied, the handler that was active when the function was created
is used. Note that the pervasive binding is made available down to
the innermost lambda of the division, even though the body of the
plet expression is not under evaluation any more3

With only let and dlet, this semantics could only be achieved
by modifying the body of init-divide to re-deploy lexically
(with let) the binding of handler made available with a dlet.
Also, to be correct, all inner lambdas should reinstate the dynamic
binding for their body. Obviously, this intrusive approach does
not scale to more complex scenarios. With respect to expressive-
ness [9], it is easy to see that plet is not macro-expressible with
let and dlet, as the transformation described implies modifying
the code of all lambdas that may potentially create other lambdas
under the dynamic extent of the plet body as well as these lamb-
das themselves and so forth transitively—a non-local modification
indeed.

Flat binding A flat binding is a binding that is available only in
the lexical region where it is deployed, like a lexical binding, with
the additional restriction that it is not captured in lexical closures.
In other words, a flat binding, deployed with flet4, propagates
neither on the call stack nor on the delayed evaluation dimensions:
it has a scoping strategy σ = 〈false, false〉.

(define foo (flet ((x 3))
(let ((y (+ x 1))

(lambda (z) (+ x y z))))
> (foo 1)
unbound identifier: ’x

3 The way we simulate exception handling here is good enough to make our
point about the scope of bindings. It corresponds to the low-level layer of
exception handling provided in PLT Scheme [10], which does not reinstate
the context of the handler expression.
4 This flet construct has nothing to do with Common Lisp’s flet, which
is used for introducing local functions.

scoping strategy construct description
σ = 〈false, true〉 let lexical binding
σ = 〈true, false〉 dlet dynamic binding
σ = 〈true, true〉 plet pervasive binding
σ = 〈false, false〉 flet flat binding

Table 2. Four scoping strategies.

In the above example, x is bound and can be used to evaluate the
value bound to y, but it is not capturable by the lambda itself.
Therefore, applying the lambda results in an unbound identifier
error. This can be useful to enforce the discipline that certain
bindings are not meant to be captured by procedural values and
used later on, i.e. when they may not (or should not) even make
sense. flet cannot be expressed in terms of the other binding
constructs we have seen so far, without a global transformation.

Interestingly5, flet bindings are readily found in the Java pro-
gramming language, for instance. In Java [12], an anonymous in-
ner class only closes over final variables of the lexical environment,
but not over non-final variables. This basically means that in Java
all non-final local variables (including method arguments) are ac-
tually flet bindings. Only final variables have the semantics of
statically-scoped bindings in that they get captured appropriately.
Here, the motivation is rather one of efficiency, i.e. to avoid im-
plicit allocation on the heap, necessary for mutable bindings.

2.3 Summary
Table 2 summarizes the four scoping strategies we have expressed
thus far, using boolean values for c and d. The two first alternatives
are very well known and correspond to static and dynamic scope,
while the two last are more exotic, yet potentially useful, as illus-
trated previously.

A key point here is changing the point of view, from the di-
chotomy lexical/dynamic to a propagation perspective: bindings
(and more generally, adaptations) are available because they prop-
agate from their deployment site to another region (either a called
procedure, or a nested procedural value). This can be, and in fact
is in our model, a dynamic decision, as will be explained and illus-
trated later on.

3. Expressive Propagation
The scoping model we have presented in the previous section al-
ready goes beyond the lexical/dynamic dichotomy traditionally es-
tablished in programming languages. But it just extends the di-
chotomy with two more alternatives. We are interested in pushing
the model further, to support more flexible scoping strategies, ap-
plicable in more advanced scenarios. From now on, we consider
several extensions that allow us to illustrate advanced scoping in
module systems and context-oriented programming, among others.

Up to now, the components of a scoping strategy σ = 〈c, d〉 are
constants. As a result, if a binding propagates along one dimension,
it will always do so. Conversely, if we consider c and d as propaga-
tion functions, we obtain more flexibility by giving the possibility
of subjecting propagation to a dynamic condition.

3.1 Propagation functions
At each function application (resp. function creation), call stack
(resp. delayed evaluation) propagation is determined for each
currently-available binding. This is done by applying the c (resp. d)
function. If no information is provided as parameter to a propaga-

5 We thank Pascal Costanza for bringing this fact to our attention.

5

tion function, it can base its decision only on externally-accessible
information or on its own state6. It therefore becomes possible to
express that a binding propagates only a fixed number of times, or
whether a certain property holds, such as user preferences.

To illustrate this, we introduce a new binding construct, slet
(for “scoped let”), parameterized by the scoping strategy (a list
containing two propagation functions). That is:

(slet (list (lambda () #t) (lambda () #f))
((x val)...)

expr...)

is equivalent to (dlet ((x val)...) expr...).
In the example below, we deploy an “energetic binding” for

handler, i.e. a binding whose propagation functions c and d are
based on a notion of energy, decreased at each propagation step:

(define (energy init step)
(let ((my-energy init))

(lambda ()
(if (< my-energy init) #f

(begin (set! my-energy (- my-energy step))
#t)))))

(slet (list (energy 10 1) (energy 5 1))
((handler (lambda (e) ...)))

...body...)

3.2 Reflective propagation functions
The example above is admittedly artificial. It all becomes more in-
teresting and useful if propagation functions are reflective proce-
dures that can access reifications of their evaluation context [11]. In
particular, in order to be able to make meaningful decisions about
whether or not to propagate, it makes sense to provide a propaga-
tion function with a reification of the current execution point that
causes propagation. For instance, when a function is applied, a reifi-
cation of the function application event can be passed to the c func-
tion. In line with AOP terminology [13], we will call (the reification
of) an execution event a join point.

This model of non-constant propagation functions permits one
to express advanced strategies by characterizing the join points
upon which a binding should stop its propagation. The range of
applications allowed by this model depends on the expressiveness
of the reifications provided to the propagation functions.

For instance, consider the following program written in a
Scheme dialect with a simple module system:

(module A
(define (gee a) ... (write ...) ...))

(module B
(import A)
(define (foo x)

(slet fluid-same-module
((output-port my-file-out))

(bar x))
(define (bar x)

(write ...)
(gee x)))

(foo 1))

Module A provides a gee function that happens to write to the
standard output port. In module B, foo deploys a fluid binding
for the output port, available in bar, but not available in gee be-

6 More precisely, a propagation function that uses mutable state should
rather be named a propagation procedure.

cause the scoping strategy restricts propagation of the fluid bind-
ing to stay within the module boundaries. This is done using
fluid-same-module, simply defined as:

(define fluid-same-module
(list (lambda (jp)

(eqv? (f-module (jp-fun jp))
(f-module (jp-target jp))))

(lambda (jp) #f)))

As can be seen, this only relies on the ability of the join point
model to expose the applied function (jp-fun), the module in
which a function is defined (f-module), and the target function
of a function call (jp-target). Typical information that can be
provided in join points are function arity, name, type signature, and
actual argument values. This obviously depends on the considered
language. For example, in [23] we take advantage of this facility
to control propagation of aspects in a distributed system, using
reifications of host properties.

4. Beyond Propagation
In the previous sections, we have considered scoping as a propaga-
tion issue: delimiting the boundaries of where an adaptation such
as a variable binding is available. Orthogonal to this issue is the
question of whether or not an adaptation is active at a certain point
in time, within the boundaries specified by its propagation.

Thus, as a final refinement, we add a third component to a
scoping strategy, called activation function, or filter, denoted f . A
scoping strategy is now a triple σ = 〈c, d, f〉, where c and d are
propagation functions, as explained before, and f is the activation
function.

4.1 Activation function
Activation functions make it possible to express bindings that are
available only in certain conditions. For instance, in the following
the output port is redirected to /dev/null if the program is running
in an insecure context at the time the port is written to.

;; format the data, then write it
(define (write-data data)

(write (format data)))

;; process data (writing it at some point)
(define (process data)

(slet dlet-if-insecure ((output-port
(make-output "/dev/null"))

...(write-data data)...))))

> (process ’(1 2 3)) ;; in secure context
(1 2 3)

> (process ’(1 2 3)) ;; in insecure context

This example illustrates that activation is orthogonal to propa-
gation. While we are interested in refining the binding of the output
port for the dynamic extent of the process body, we want this
rebinding to be effective only in insecure contexts. Also, coming
back to the previous example with fluid-same-module: stopping
propagation on module boundaries implies that the binding is
not available if the control flow comes back within the module
(e.g. due to a callback). To handle reentrancy, it is necessary to use
activation (only active within the module) rather than propagation.

Similarly to propagation functions, an activation function can
take any reified information as parameter, such as the current join
point. This can be used to discriminate whether a binding is active

6

based on the join point properties. For instance, it could be that if a
function is called from an insecure module, the context is said to be
insecure. Therefore, an activation function could reflect upon the
current control flow, such as with AspectJ’s cflow construct. This
means we could define dlet-if-insecure as follows7:

(define dlet-if-insecure
(list (lambda (jp) #t) ;; dynamic binding prop.

(lambda (jp) #f) ;
(lambda (jp)

((cflow not-trusted) jp))))

where not-trusted is a pointcut defined as:

(lambda (jp)
(not (trusted? (jp-module (jp-fun jp))))))

4.2 More reflection
As of now, our reflective abilities have been limited to reifying the
current join point stack. In our experiments, we have actually gone
further by reifying environments as well. We now use this extra
reflective power to express a “soft” binding construct.

By default, we give priority to lexical bindings over dynamic
bindings. More precisely, bindings that propagate on the call stack
can be shadowed by bindings embedded in a closure. This default
is a pragmatic choice that mirrors the fact that, as history taught us,
lexical scoping is a more reasonable default than dynamic scoping.
However, a (sometimes undesirable) consequence of this default
is that it is impossible to dynamically rebind an identifier that has
been captured in a closure.

To relax this restriction, we propose a new binding construct,
called soft-let. A soft lexical binding is captured in a closure,
but can be shadowed by a dynamic binding, if any. In other words,
it reverses our default environment composition strategy.

(define x 0)
(define foo (soft-let ((x 10))

(lambda () x)))

> (dlet ((x 5))
(foo))

5

> (foo)
10

In the first application of foo, there is a dynamic binding available
for x, so it is used. In the second, note that the definition-time soft
binding of x is used.

soft-let is expressed simply as a scoped binding using an ap-
propriate activation function. The activation function reflects on the
current state of the environment. This implies appropriately pack-
aging the environment as a base value that can be manipulated.
This process is known as reification [11]. In line with Smith [21],
but contrary to Friedman and Wand [11], we provide a data struc-
ture reification of environments, in order to allow exploration of the
environment structures (ribs or frames). In addition, we provide a
set of primitive functions that together constitute a simple reflec-
tive API on (reifications of) environments. The API allows one to
get to the next frame of an environment env-next, and provides
searching functions, like env-check that checks whether a binding
is defined in a given environment. In addition, we introduce frame
marks, which are constants used to discriminate between bindings
coming from different sources:

7 For definitions of control flow operators in higher-order languages with
aspects, we refer the reader to [7, 22].

• l: binding just introduced by a let form.
• p: binding of a formal parameter.
• d: binding captured in a closure.
• c: binding propagated on the call stack.

We allow access to marks on reified environments, as well as
comparing marks, and an extended version of env-check with
an extra mark parameter, called env-check-mark. The activation
function used to express soft-let is then defined as follows:

(lambda (id)
(lambda (jp env)
(not (and (env-eq-mark env ’d)

(env-check-mark id (env-next env) ’c)))))

For a given id, this activation function deactivates a binding if
a) it was captured in a closure, b) there exists a binding above the
current one, which comes from call stack propagation. Note that
the activation function not only receives the current join point, it
also receives a reification of the environment where the binding is
being found.

To be more generic, we actually define soft as a strategy
transformer, able to transform any scoping strategy σ into a strategy
σ′ where the rule above is added to the propagation function. This
allows us for instance to provide soft-plet, the soft version of
the pervasive binding construct introduced in Section 2.2.

There is an interesting use case for soft-plet: to define by-
default exception handlers. Suppose we deploy an exception han-
dler over the dynamic extent of an expression, in a pervasive man-
ner. This means that a lambda created in that extent will capture the
handler, and will therefore be able to use it when applied later on,
even if this occurs outside of the original extent. Using soft-plet,
the binding of the definition-time handler is used only if there is no
newer handler deployed.

Consider the same code snippet as used in Section 2.2 to illus-
trate pervasive bindings, replacing plet with soft-plet. If we
now apply divide with another handler deployed, it shadows the
definition-time binding:

> (dlet ((handler (lambda (e) (write "soft-plet"))))
((divide 10) 0))

"soft-plet"

5. Semantics
We now formalize the semantics of our proposal of expressive
scoping strategies in a call-by-value lambda calculus called Λσ .
Similarly to the Λd language of Moreau [18] we use functions
instead of special forms to model binding constructs. That is,
let x = e0 in e is desugared as (λx.e) e0.

In his language, Moreau supports both functions with statically-
scoped parameters and functions with dynamically-scoped param-
eters, the former denoted λx.e and the latter λx̂.e. In our propo-
sal, we do not support only two scoping semantics: the scoping
semantics is specified by a scoping strategy σ. Therefore, we use
the following syntax for scoped lambda abstractions: λxσ.e. As a
consequence, slet(σ) x = e0 in e is syntactic sugar for a scoped
lambda application (λxσ.e) e0. Figure 1 presents the rest of the
syntax of our language Λσ .

Because we need to precisely account for the management of
bindings in the environment, we make the environment explicit
in the evaluation steps, similarly to lambda calculi with explicit
substitutions [1, 6]. The syntax of a closure value explicitly in-
cludes the captured environment ρ, and is denoted as dλxσ.e, ρe.
An environment ρ is a finite mapping from variables to values.
The empty environment is denoted ε. Bindings in the environ-

7

V alue v ::= dλxσ.e, ρe | σ | true | false
| bv | prim

Expr e ::= v | x | λxσ.e | e1 e2
| 〈e1, e2, e3〉

Env ρ ::= ε | [x 7→ v]σ | ρ1 : ρ2

ScopeStrat σ ::= 〈v1, v2, v3〉

Figure 1. Syntax of the Λσ language. Metavariable x ranges over
variables.

ment are annotated with their scoping strategy. A scoping strat-
egy is a triple of functions, as explained in the previous sections.
Since these functions have to be boolean predicates, the language
includes true and false as values. For instance, the value s of
〈λx.false, λx.true, λx.true〉8 is the lexical scoping strategy (recall
Table 2). Other (optional) values are basic values, bv, which model
integers, floats, etc., as well as primitive operations prim, which
model primitive operations on these different types of values.

5.1 Operational semantics
The operational semantics of our language is defined in Figure 2.
The small-step operatinal semantics is specified by a reduction
relation→r that reduces terms consisting of an expression and an
environment. The judgment 〈e, ρ〉 →r 〈e′, ρ′〉 says that the pair of
expression e and environment ρ takes one step of evaluation to a
new pair e′ and ρ′. We use→∗r to denote multiple reduction steps
at once. Evaluation starts in the empty environment 〈e, ε〉 and ends
either with a value v, or an unbound identifier error.

(abs) When a lambda expression is reduced to a procedural value,
the associated scoping strategy must be determined. For con-
ciseness, we use a big step in the definition of the rule, to ob-
tain the strategy σ. The closure captures part of its surrounding
environment ρ. An environment propagation function propd is
used in order to select the bindings whose delayed evaluation
propagation function d matches. The semantics of propd and
binding matching are given in Fig. 3 and explained below. ζ
is the reified information provided to the propagation function,
and is explained in Section 5.3.

(app) When a procedural value (obtained through (appL)) is ap-
plied to a value (obtained through (appR)), its body is evaluated
in a particular environment ρ′. This environment is first made
up of the bindings of the current environment ρ that propagate
on the call stack, obtained using the environment propagation
function propc (Fig. 3). The resulting environment is then ex-
tended by the closure environment ρ0, as well as the binding of
the formal parameter of the function. The scoping strategy for
the formal parameter is σ, the strategy specified when the func-
tion was defined. Note how the definition of ρ′ makes explicit
the fact that we give priority to the definition-time environment
ρ0 over the bindings that propagate dynamically with propc.

(var) When a variable has to be looked up, the most recent binding
of that variable is found. If that binding is active, as specified
by the activation function f of the scoping strategy, the expres-
sion is reduced to the value (varOk). If the binding is not active,
lookup proceeds in the rest of the environment (varOff); simi-

8 Note that we omit the scoping strategy of the formal parameter of these
functions, because they do not use it and their body is a value.

(abs)

〈eσ, ρ〉 →∗r 〈v1, v2, v3〉 = σ

ρ′ = propd(ρ, ζ) ζ ∈ V alue
〈λxeσ .e, ρ〉 →r 〈dλxσ.e, ρ′e, ρ〉

(appL)
〈e1, ρ〉 →r 〈e′1, ρ〉

〈e1 e2, ρ〉 →r 〈e′1 e2, ρ〉

(appR)
〈e, ρ〉 →r 〈e′, ρ〉
〈v e, ρ〉 →r 〈v e′, ρ〉

(app)
ρ′ = [x 7→ v]σ : ρ0 : propc(ρ, ζ) ζ ∈ V alue

〈dλxσ.e, ρ0e v, ρ〉 →r 〈e, ρ′〉

(varOk)
match(f, ζ, [x 7→ v]σ) = true ζ ∈ V alue

〈x, [x 7→ v]σ : ρ〉 →r 〈v, ρ〉

(varOff)
match(f, ζ, [x 7→ v]σ) = false ζ ∈ V alue

〈x, [x 7→ v]σ : ρ〉 →r 〈x, ρ〉

(varFail)
x 6= y

〈x, [y 7→ v]σ : ρ〉 →r 〈x, ρ〉

(err) 〈x, ε〉 →r Error

(val) 〈v, ρ〉 →r v

Figure 2. Semantics of the Λσ language. propc, propd andmatch
are defined in Figure 3. ζ is the reified information provided to
scoping strategies (Sect. 5.3).

larly if the identifier does not match (varFail). Looking up an
identifier in the empty environment results in an error (err).

(val) A value in an environment is reduced to a standalone value.

Figure 3 defines the auxiliary functions used in the semantics
of Figure 2. Propagation functions filter the given environment
using a binding matching function. The matching function (whose
definition is curried) is given a scoping strategy accessor, which
can be either c, d, or f (depending on which component of the
strategy is of interest). The matching function, given a binding,
extracts the component of the scoping strategy of the binding.
This component is a closure, whose body is then evaluated in the
appropriate environment, until obtaining a value, (hopefully) true
or false. The environment used to evaluate the body of the scoping
strategy component is the environment captured by the closure,
extended with a binding of the formal parameter to ζ, the reified
information. We omit this parameter in the following examples, and
come back to ζ in Section 5.3.

5.2 Some reductions
Consider the following program:

((let ((x 2))
(lambda (y) x))
1)

Recall that let is syntactic sugar for a function definition and
application, and that lambda is syntactic sugar for a lambda with a
statically-scoped parameter.

8

Binding matching

match :: Accessor → V alue→ Env → V alue

match(γ, ζ, ε) = false
match(γ, ζ, [x 7→ v]σ) = v with γ(σ) = dλyσ

′
.e, ρe

〈e, [y 7→ ζ]σ′ : ρ〉 →∗r v

Scoping strategy accessors

Accessor = {c, d, f} ⊂ ScopeStrat→ V alue

c(〈v1, v2, v3〉) = v1

d(〈v1, v2, v3〉) = v2

f(〈v1, v2, v3〉) = v3

Environment propagation functions

propc(ρ, ζ) ≡ filter(match(c, ζ), ρ)

propd(ρ, ζ) ≡ filter(match(d, ζ), ρ)

filter(pred, ε) = ε

filter(pred, b : ρ) =


b : filter(ρ) if pred(b) = true
filter(ρ) otherwise

Figure 3. Definition of binding matching, scoping strategies ac-
cessors, and environment propagation functions.

That is, the expression above is expressed in Λσ (with numbers
as bv) as:

((λxs.(λys.x)) 2) 1

where s is the static scoping strategy defined previously:

s = 〈dλx.false, εe, dλx.true, εe, dλx.true, εe〉

The program is evaluated in the empty environment, and is
subsequently reduced as follows:

〈((λxs.(λys.x)) 2) 1, ε〉
(appL) →r 〈〈(λxs.(λys.x)) 2, ε〉 1, ε〉

(abs) →r 〈〈〈dλxs.(λys.x), εe, ε〉 2, ε〉 1, ε〉
(val) →r 〈〈dλxs.(λys.x), εe 2, ε〉 1, ε〉

(app) →r 〈〈(λys.x), [x 7→ 2]s〉 1, ε〉

At this point the (abs) reduction is applied. This implies
determining ρ′, i.e. the environment to be captured in the
closure. To this end, the environment propagation function
is applied propd([x 7→ 2]s, ζ), and this implies evaluating
match(d, ζ, [x 7→ 2]s) to determine whether the binding should be
captured. The d component of the binding is d(s) = dλx.true, εe,
whose application yields true:

〈true, [x 7→ ζ]s〉 →r true

so the binding is collected (by filter) in the resulting environment
ρ′. The (abs) rule applies and reduction proceeds:

(abs) →r 〈〈dλys.x, [x 7→ 2]se, [x 7→ 2]s〉 1, ε〉 ?
(val) →r 〈dλys.x, [x 7→ 2]se 1, ε〉

(app) →r 〈x, [y 7→ 1]s : [x 7→ 2]s〉
(varFail) →r 〈x, [x 7→ 2]s〉
(varOk) →r 〈2, [x 7→ 2]s〉

(val) →r 2

The (varOk) rules apply because the evaluation of
match(f, ζ, [x 7→ 2]s) extracts the third component of s,
which always yields true.

The crucial point that crystalizes the static scoping semantics
is the last (abs) reduction above (marked with a ?), where the
binding [x 7→ 2]s is captured in the closure. Things go differnt
if at this point we use for instance a flat binding, with flet. In Λσ:
((λxf .(λys.x)) 2) 1, where

f = 〈dλx.false, εe, dλx.false, εe, dλx.true, εe〉
Reducing the program now results in an unbound identifier error
(omitting the 3 first reductions above, which are the same):

〈((λxf .(λys.x)) 2) 1, ε〉
. . .

(app) →r 〈〈(λys.x), [x 7→ 2]f 〉 1, ε〉
(abs) →r 〈〈dλys.x, εe, [x 7→ 2]f 〉 1, ε〉 ?
(val) →r 〈dλys.x, εe 1, ε〉

(app) →r 〈x, [y 7→ 1]s〉
(varFail) →r 〈x, ε〉

(err) →r Error

Wrapping the above program with a dynamic binding for x
solves the issue:

(dlet ((x 3))
((flet ((x 2))

(lambda (y) x))
1))

Expressed in Λσ , with

d = 〈dλx.true, εe, dλx.false, εe, dλx.true, εe〉
the program is reduced as follows:

〈(λxd.((λxf .(λys.x)) 2) 1) 3, ε〉
(appL) →r 〈〈(λxd.((λxf .(λys.x)) 2) 1), ε〉 3, ε〉

(abs) →r 〈〈dλxd.((λxf .(λys.x)) 2) 1, εe, ε〉 3, ε〉
(val) →r 〈dλxd.((λxf .(λys.x)) 2) 1, εe 3, ε〉

(app) →r 〈((λxf .(λys.x)) 2) 1, [x 7→ 3]d〉

. . . same as above, except for last environment

(app) →r 〈〈(λys.x), [x 7→ 2]f 〉 1, [x 7→ 3]d〉
(abs) →r 〈〈dλys.x, εe, [x 7→ 2]f 〉 1, [x 7→ 3]d〉 ?
(val) →r 〈dλys.x, εe 1, [x 7→ 3]d〉

(app) →r 〈x, [y 7→ 1]s : [x 7→ 3]d〉 ? ?
(varFail) →r 〈x, [x 7→ 3]d〉
(varOk) →r 〈3, [x 7→ 3]d〉

(val) →r 3

The closure still does not capture a binding for x (see ?). However,
in the following application reduction (??), the dynamic binding
of x propagates and is therefore available in the final function
body evaluation. This is determined in the premises of the (app)
rule where the propc environment propagation function is applied,
resulting in the evaluation of the c component of the dynamic
binding strategy, which yields true.

5.3 Expressive scoping
In Figures 2 and 3, propagation and activation functions are given
an argument ζ that we intentionally left undefined. We have only
specified that it is a value ∈ V alue. This argument corresponds
to the reification of the execution context that is provided to these
(base-level) functions [11]. In the end, ζ depends on the reflective
power given to scoping strategies. It could simply be void (as in
Section 3.1), or a reification of the current execution event and
call stack (as in Section 3.2), or additional reified information, such

9

as a reification of the environment structure itself, as discussed in
Section 4.2. This is why we refrain from specifying it further in the
general case.

For instance, to provide a reification of the call stack and current
execution event, we could extend our semantics to build the join
point stack as evaluation progresses. In the small-step operational
semantics, we would have to add join points at each step of the
evaluation: 〈e, ρ, jp〉 →r 〈e′, ρ′, jp′〉. Then ζ = jp.

Similarly in Section 4.2 the scoping strategy makes use of the
environment, so in the semantics we could use ζ = ρ. More pre-
cisely, to define a “soft” let construct, we need frame marks. There-
fore, we have to extend our syntactic representation of environ-
ments to include a mark ω: [x 7→ v]ωσ , where ω ∈ {p, c, d}. As
explained in Sect. 4.2, a mark indicates whether a binding is in
the environment due to (respectively) parameter binding, call stack
propagation, or delayed evaluation propagation. These marks are
then set in the corresponding places: for instance, the (app) rule
should mark with p (parameter) the binding of the formal parame-
ter of the applied function.

5.4 Implementation
We have implemented Λσ using a Scheme interpreter. In contrast
to the definition of Λσ , we have maintained let forms in the lan-
guage in order to ease debugging. Also, the interpreter supports
multiple arguments to both procedures and let forms. Therefore,
the environment is rather made up of binding frames, instead of
chained single bindings. Annotations (scoping strategy, mark) are
done at the level of frames themselves. It supports reification of
join points as well as environment, making it possible to imple-
ment the examples of Section 4.2. The different let forms intro-
duced in this paper, like dlet, plet, flet, soft-plet, etc., are
all defined as syntactic sugar on top of the generic scoped let (slet)
form. The interpreter as well as the examples can be obtained from
http://pleiad.cl/research/scope.

6. Other Instantiations
Since the static/dynamic scoping dichotomy has pervaded many
areas of language design, there are as many areas in which the
flexible scoping model we propose can be instantiated. We hereby
discuss the case of aspects and mixin layers. We also briefly present
an experience report on providing scalable omniscient debugging,
which implied using advanced scoping semantics.

6.1 Aspects
In a higher-order aspect-oriented procedural language like
AspectScheme [7], pointcuts and advices are first-class values.
AspectScheme introduces an expression to dynamically deploy an
aspect over a body expression. Thus scoping considerations appear:
it is necessary to define the precise extent of the jurisdiction of the
aspect, i.e. what join points it will see. AspectScheme builds upon
the familiar reasoning of scope for variable bindings. Therefore,
following the static/dynamic dichotomy, it introduces two aspect
deployment expressions:

• fluid-around deploys a dynamically-scoped aspect. Such an
aspect sees all join points occurring in the dynamic extent of
its body. This is essentially the same mechanism as a deploy
expression in CaesarJ [2].

• around deploys a statically-scoped aspect. Such an aspect only
sees join points occurring lexically in its body, including those
of unapplied functions, which are exported from the body.

(let ((apply-to-orlando (lambda (f) (f "orlando"))))

(fluid-around (call open-file) trace
(apply-to-orlando open-file)))

Above, the let defines and binds a higher-order function that takes
another function f as parameter and applies it to "orlando"; then,
we dynamically deploy an aspect consisting of a trace advice and
a call pointcut. Then we apply the function apply-to-orlando
to open-file. When open-file is finally applied (the framebox
above), the trace aspect does see the join point, because the appli-
cation occurs in the dynamic extent of the fluid-around body
expression. Conversely, in:

(let ((traced-open (fluid-around (call open-file) trace

(lambda (f) (open-file f)))))

(traced-open "orlando"))

The aspect does not apply, because the dynamic extent of the as-
pect body only consists of a function definition. The (framed)
application of open-file is only in the lexical scope of the
fluid-around body expression: later applications are out of
reach. Statically-scoped aspects serve exactly this purpose:

(let ((traced-open (around (call open-file) trace

(lambda (f) (open-file f)))))

(traced-open "orlando"))

The aspect applies, because the application of open-file occurs
lexically in the body of around. As a consequence, the aspect
is “engrained” in the function that is exported from the around
expression and bound to traced-open. At future applications of
the function, the aspect will see the corresponding join point even
though the application occurs outside of the dynamic extent of the
around expression.

The scoping model we propose in this paper was first con-
ceived in the context of aspect-oriented programming, precisely
as an extension to the too rigid scoping model of AspectScheme
and others [22]. We introduce a single aspect deployment expres-
sion parametrized by a scoping strategy, and illustrate its use in a
number of applications. In particular, we take advantage of types
in an object-oriented language to express advanced scoping seman-
tics. Further, in [23], we show that the scoping model scales to dis-
tributed systems: we are able to express distributed scoping strate-
gies without changing the model itself. It is enough to reify more
information (such as the host properties of the target of a remote
call) in order to be able to address distribution requirements. We
refer the reader to the mentioned publications for more details.

6.2 Layers
Since the early days of class-based programming, there have been
proposals to allow class extensions. Recently, a number of pro-
posals have be formulated, that allow class extensions to not have
global scope, but rather be effective only in certain conditions. The
scoping semantics follow the static/dynamic dichotomy.

On the one hand, Classboxes [3] and Expanders [25] both in-
troduce statically-scoped class extensions. In these proposals, a
class extension is only effective in (statically) well-defined re-
gions of code, such as client modules that “import a refinement”.
On the other hand, ContextL [5] introduces the idea of activat-
ing class extensions only in the dynamic extent of the body of
with-active-layer expressions. For instance, the following de-
fines a layered class (i.e. an extensible class) person, a layer
employment-layer, and refines method display in that layer:

(define-layered-class person ()
((name :initarg :name

:accessor person-name)))

(deflayer employment-layer)

10

(defmethod display :in-layer employment-layer
((object person))
...)

Then, a layer can be deployed on an expression:

(with-active-layers (employment-layer)
...body...)

During the evaluation of body, display messages sent to person
objects make use of the definition done in the employment layer.
Therefore, this deployment follows the discipline of dynamic scop-
ing. But interestingly, the need to “stop” propagation along the
call stack axis has been clearly identified: ContextL supports a
with-unactive-layer construct to deactivate a layer.

Layer deactivation in ContextL has to be done explicitly at all
required sites: it is not possible to specify, at layer deployment time,
a condition upon which a layer must be deactivated. Therefore,
a language like ContextL could benefit from supporting scoping
strategies. It would be sufficient to support a parametrized layer
deployment expression withlayer(σ) l in e that would then mimic
the semantics we have exposed (for variable bindings here, and for
aspects in [22]). This would allow several enhancements beyond
deployment-time specification of when a layer should be with-
drawn. First, the activation function could be used to support con-
text adaptation of the layer environment (for instance to simply de-
activate a layer when the battery level of a device becomes low).
In addition, delayed evaluation propagation control could be used
to partially address the “escaping closure proceed” problem [4],
by specifying which layers are captured by (which) closures, and
therefore reinstated upon closure application.

6.3 Omniscient Debugging
An omniscient debugger [19] is a debugger that allows a developer
to go both backward and forward in time. It permits exploration
of the execution history through causal links, answering questions
such as “why is this field bound to null at that point in time?”.
An obvious challenge for omniscient debugging, because it relies
on having the whole execution history at hand, is scalability [20].
Among the solutions to address the scalability issue, the TOD
omniscient debugger for Java supports partial traces9. The idea of
partial traces is that certain parts of a system are deemed robust and
therefore execution of these parts should not (always) be recorded.
As we show in [20], this can lead to huge performance benefits,
as well as to a reduction of the information overload typically
associated with trace-based approaches.

TOD records execution events in a custom format into a spe-
cialized database backend. The generation of events is obtained by
adapting the debugged program (through bytecode transformation).
Monitored code is defined statically, using name- and package-
based selection of classes whose execution should be monitored.

However, it turns out that there are special cases for which
static scoping is not enough, such as ArrayList, HashMap and
HashMap.Entry. These library classes are typically not monitored
(for efficiency and bootstrapping reasons), but if some instances
are created by monitored code, they should be monitored too. Also,
HashMap.Entry instances created by monitored hash maps must
be monitored. Therefore, some kind of instance-level scoping is
required, and it depends on the context in which an instance is
created. In the current implementation of TOD, these classes are
made to declare a special instance variable that indicates whether
an instance has been created by monitored code or not. When a
method executes, the instance variable is checked, ensuring that
execution of instances created by monitored code is monitored as
well.

9 TOD is available at http://pleiad.cl/tod

In addition, for these special classes, monitoring is limited
to certain operations, typically just array and field writes. This
enhances performance without sacrificing usefulness as one is
typically interested in the contents of these structures and not in the
details of their operation (such as the fact that obtaining a value in
a hash map meant going forward three slots for the corresponding
hash key).

As it turns out, the scoping requirements of monitoring fit per-
fectly in the model of scoping strategies we propose:

• Call stack propagation. Monitoring is an adaptation that is de-
ployed over the dynamic extent of the entry point of a program.
This means that all events are potentially monitored, and going
through code that is not monitored (because of deactivation)
does not stop propagation of monitoring (e.g. if control flows
from non-monitored code to monitored code).

• Delayed evaluation propagation. When monitored code cre-
ates instances of e.g. ArrayList and HashMap, and when mon-
itored HashMap instances create HashMap.Entry objects, mon-
itoring propagates to these newly-created objects10.

• Activation. Monitoring is active only for code in static scope.
The only exception to this rule are events occurring in objects
into which the adaptation has been engrained (according to the
delayed evaluation propagation requirement above). This is a
kind of “soft deactivation”, similar to the soft binding constructs
we have discussed. In addition, for these cases, the activation
function filters out events that are not write events.

All these requirements are currently implemented in TOD in an
ad hoc manner. Activation is partially evaluated in the sense that the
corresponding code does not get instrumented at all. This is simi-
lar to partial evaluation of pointcuts in aspect languages [17]. Soft
deactivation is hand coded by flags that are added to classes and
checked at runtime. The flags are actually a case-specific imple-
mentation of our environment marks of Section 4.2. Delayed eval-
uation propagation is also hand coded by controlling instantiation
of the concerned classes to properly initialize the flags.

The case of TOD is therefore interesting for two reasons. First,
because it is a concrete case of advanced scoping needs in a real
world application (TOD can be used to debug Eclipse itself, for
instance). Second, because it is an example in which the scoping
strategy components are fully known prior to execution, and can
therefore be partially evaluated. While for now this partial evalua-
tion is done in an ad hoc manner in TOD, this may give us insights
on how to optimize our model in a more general setting.

7. Related Work
Lexical and dynamic scoping have been described, formalized and
implemented in many different ways since the early ages of pro-
gramming languages. We do not even attempt at a correct historical
account here. Rather, we briefly discuss approaches that are related
to the idea of “controlling” lexical and dynamic scoping in some
way.

As mentioned before, Java [12] is an example of a programming
language where the programmer is given the means to specify
whether a binding should be captured by an anonymous inner class
or not: a binding is captured only if it is final. The motivation for
this decision is primarily (memory) efficiency. One can see a final
binding as a truly lexically-scoped binding, while other bindings
are actually “flat” in the sense of our flat binding construct of
Section 2.2.

10 As discussed in greater details in [22], object creation can be seen (for
the sake of scoping) as the OO equivalent of lambda creation.

11

Apart from that, to the best of our knowledge, in languages that
support lexical scoping, bindings are always captured in procedural
values, and dynamic bindings always propagate on the call stack.
We can however identify two related pieces of work in slightly
different contexts: continuations, and dynamic mixin layers.

With respect to capture, there is a large body of work in the area
of delimited control, starting from Felleisen [8] up to more recent
developments [16, 10]. In a language where continuations can be
captured, the need to only capture part of the dynamic environment
in a continuation, rather than all or none of it, has appeared. Moti-
vations for this feature are many, among them an important one is
encapsulation of control and control-associated state (such as dy-
namic bindings), for instance for security.Delimiting which part of
a continuation has to be captured is achieved by placing prompts on
the continuation stack, such that a continuation captures the current
environment only up to the closest (possibly tagged) prompt. In our
proposal, which bindings are being captured is defined at the time
the binding is deployed. With continuations, what is “deployed”
is the prompt, which actually serves a similar purpose. Tagged
prompts add a bit of discriminative power to the language. In our
proposal, we do not use tags, but rather propagation functions. A
similar (and unusual) design for delimited continuation would con-
sist in placing a “prompt function” that upon continuation capture,
decides whether the corresponding subpart of the control context
should be captured.

With respect to controlling the propagation of dynamic bind-
ings, it is worth mentioning that some proposals have found it nec-
essary to offer an “undeploy” mechanism in addition to deploy-
ment. Typically, a binding is only not in effect in a sub-region of
execution if there exists a newer one that shadows it. In a language
like ContextL [5], however, there is a mechanism to undeploy a
layer for a certain dynamic extent. It is however impossible, at layer
deployment time, to specify a condition upon which the layer must
be either undeployed or deactivated. This has to be done explicitly
at all required sites.

Together with Clarke and Costanza, the author has recently
looked at a particular issue in higher-order languages with dynamic
layers [4]. In such a language, it is possible for a closure to escape
its layer environment and applied at a later point, in a different
layer environment. In that case, the meaning of proceeding to the
“next” layer becomes ill-defined. The issue bears some similarity to
the issue of delimited control. In [4] we explain how (a simplified
version of) the scoping model presented here can be used to provide
fine-grained control over which layers are “sticky” to closures,
i.e. are captured and later reinstated when the closure is applied.
This is therefore another concrete issue for which our model has
some contribution to make.

Dezani-Ciancaglini, Giannini and Nierstrasz recently proposed
a calculus of evolving objects [6]. The calculus allows for part of a
function’s environment to be provided at function application time,
thereby achieving dynamic binding. An interesting conditional ex-
pression is introduced, analogous to a try-catch expression. The
idea is that if an expression is evaluated in an environment that
does not supply all the necessary bindings for it, then an alternative
expression is evaluated instead. The authors then develop a sound
type system for this calculus. While no provisions are made to con-
trol the propagation of dynamic bindings, we believe this mecha-
nism could be useful if used in conjunction with our scoping model,
in order to avoid runtime errors due to unbound identifiers.

8. Conclusions
We have argued that changing the point of view on scoping, from
a textual/dynamic dichotomy to a propagation and activation prob-
lem, allows us to formulate a general model of scoping that goes
well beyond static and dynamic scope as traditionally explored.

We have formulated our model in the traditional context of variable
bindings, illustrating various usage scenarios, as well as describing
its formal semantics in the Λσ language. We have also highlighted
that this scoping model has applications in various related areas,
like context-oriented programming, aspect-oriented programming,
and program monitoring.

In this paper, the formalization of Λσ has only been used as a
descriptive medium, to abstract away from the Scheme interpreter
we have built; we are currently looking at how to prove certain
properties of Λσ . In addition, there are many tracks open for future
exploration, ranging from static checking and analysis, integration
into existing programming languages, optimized implementations,
and applications in other contexts.

Acknowledgments. For invaluable feedback on different aspects
of this work, we thank: Jonathan Aldrich, Dave Clarke, Pascal
Costanza, Robby Findler, Oscar Nierstrasz and Guillaume Pothier.

References
[1] Martin Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques

Lévy. Explicit substitutions. Journal of Functional Programming,
1(4):375–416, 1992.

[2] Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann.
An overview of CaesarJ. In Transactions on Aspect-Oriented
Software Development, volume 3880 of Lecture Notes in Computer
Science, pages 135–173. Springer-Verlag, February 2006.

[3] Alexandre Bergel, Stéphane Ducasse, and Roel Wuyts. Classboxes: A
minimal module model supporting local rebinding. In Proceedings of
the Joint Modular Languages Conference (JMLC’03), volume 2789
of Lecture Notes in Computer Science, pages 122–131. Springer-
Verlag, 2003.

[4] Dave Clarke, Pascal Costanza, and Éric Tanter. How should context-
escaping closures proceed? In Workshop on Context-Oriented
Programming, Genova, Italy, July 2009.

[5] Pascal Costanza and Robert Hirschfeld. Language constructs for
context-oriented programming – an overview of ContextL. In ACM
Dynamic Language Symposium (DLS 2005), San Diego, CA, USA,
October 2005.

[6] Mariangiola Dezani-Ciancaglini, Paola Giannini, and Oscar Nier-
strasz. A calculus of evolving objects. Scientific Annals of Computer
Science, 18:63–98, 2008.

[7] Christopher Dutchyn, David B. Tucker, and Shriram Krishnamurthi.
Semantics and scoping of aspects in higher-order languages. Science
of Computer Programming, 63(3):207–239, December 2006.

[8] Matthias Felleisen. The theory and practice of first-class prompts. In
Proceedings of the ACM Symposium on Principles of Programming
Languages (POPL’88), pages 180–190. ACM Press, 1988.

[9] Matthias Felleisen. On the expressive power of programming
languages. Science of Computer Programming, 17:35–75, 1991.

[10] Matthew Flatt, Gang Yu, Robert Bruce Findler, and Matthias
Felleisen. Adding delimited and composable control to a production
programming environment. In Proceedings of the 12th ACM
SIGPLAN Conference on Functional Programming (ICFP 2007),
pages 165–176, Freiburg, Germany, October 2007. ACM Press.

[11] Daniel P. Friedman and Mitchell Wand. Reification: Reflection
without metaphysics. In Proceedings of the Annual ACM Symposium
on Lisp and Functional Programming, pages 348–355, August 1984.

[12] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java
Language Specification, 3rd edition. Addison-Wesley, 2005.

12

[13] G. Kiczales, J. Irwin, J. Lamping, J. Loingtier, C.V. Lopes, C. Maeda,
and A. Mendhekar. Aspect oriented programming. In Special
Issues in Object-Oriented Programming. Max Muehlhaeuser (general
editor) et al., 1996.

[14] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm, and William Griswold. An overview of AspectJ. In Jorgen L.
Knudsen, editor, Proceedings of the 15th European Conference
on Object-Oriented Programming (ECOOP 2001), number 2072
in Lecture Notes in Computer Science, pages 327–353, Budapest,
Hungary, June 2001. Springer-Verlag.

[15] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina V. Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming. In Mehmet Akşit and Satoshi Matsuoka,
editors, Proceedings of the 11th European Conference on Object-
Oriented Programming (ECOOP 97), volume 1241 of Lecture Notes
in Computer Science, pages 220–242, Jyväskylä, Finland, June 1997.
Springer-Verlag.

[16] Oleg Kiselyov, Chung chieh Shan, and Amr Sabry. Delimited
dynamic binding. In Proceedings of the 11th ACM SIGPLAN
Conference on Functional Programming (ICFP 2006), pages 26–
37, Portland, Oregon, USA, September 2006. ACM Press.

[17] Hidehiko Masuhara, Gregor Kiczales, and Christopher Dutchyn. A
compilation and optimization model for aspect-oriented programs. In
G. Hedin, editor, Proceedings of Compiler Construction (CC2003),
volume 2622 of Lecture Notes in Computer Science, pages 46–60.
Springer-Verlag, 2003.

[18] Luc Moreau. A syntactic theory of dynamic binding. Higher-Order
and Sympolic Computation, 11(3):233–279, 1998.

[19] Guillaume Pothier and Éric Tanter. Back to the future: Omniscient
debugging. IEEE Software, 2009. To appear.

[20] Guillaume Pothier, Éric Tanter, and José Piquer. Scalable omniscient
debugging. In Proceedings of the 22nd ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages and Applications
(OOPSLA 2007), pages 535–552, Montreal, Canada, October 2007.
ACM Press. ACM SIGPLAN Notices, 42(10).

[21] Brian C. Smith. Reflection and semantics in Lisp. In Proceedings
of the 14th Annual ACM Symposium on Principles of Programming
Languages (POPL), pages 23–35, January 1984.

[22] Éric Tanter. Expressive scoping of dynamically-deployed aspects. In
Proceedings of the 7th ACM International Conference on Aspect-
Oriented Software Development (AOSD 2008), pages 168–179,
Brussels, Belgium, April 2008. ACM Press.

[23] Éric Tanter, Johan Fabry, Rémi Douence, Jacques Noyé, and Mario
Südholt. Expressive scoping of distributed aspects. In Proceedings of
the 8th ACM International Conference on Aspect-Oriented Software
Development (AOSD 2009), pages 27–38, Charlottesville, Virginia,
USA, March 2009. ACM Press.

[24] Mitchell Wand, Gregor Kiczales, and Christopher Dutchyn. A
semantics for advice and dynamic join points in aspect-oriented
programming. ACM Transactions on Programming Languages and
Systems, 26(5):890–910, September 2004.

[25] Alessandro Warth, Milan Stanojević, and Todd Millstein. Statically
scoped object adaptation with expanders. In Proceedings of the
21st ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA 2006), pages 37–55,
Portland, Oregon, USA, October 2006. ACM Press.

13

	Scope and Adaptations
	Scoping Dimensions
	Expressing static and dynamic scoping
	Beyond static and dynamic scope
	Summary

	Expressive Propagation
	Propagation functions
	Reflective propagation functions

	Beyond Propagation
	Activation function
	More reflection

	Semantics
	Operational semantics
	Some reductions
	Expressive scoping
	Implementation

	Other Instantiations
	Aspects
	Layers
	Omniscient Debugging

	Related Work
	Conclusions

