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Geometry-Aware Direction Field Processing
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Many algorithms in texture synthesis, nonphotorealistic rendering (hatching), or remeshing require to define the orientation of some features (texture, hatches,
or edges) at each point of a surface. In early works, tangent vector (or tensor) fields were used to define the orientation of these features. Extrapolating and
smoothing such fields is usually performed by minimizing an energy composed of a smoothness term and of a data fitting term. More recently, dedicated
structures (N -RoSy and N -symmetry direction fields ) were introduced in order to unify the manipulation of these fields, and provide control over the field’s
topology (singularities). On the one hand, controlling the topology makes it possible to have few singularities, even in the presence of high frequencies (fine
details) in the surface geometry. On the other hand, the user has to explicitly specify all singularities, which can be a tedious task. It would be better to let them
emerge naturally from the direction extrapolation and smoothing.

This article introduces an intermediate representation that still allows the intuitive design operations such as smoothing and directional constraints, but restates
the objective function in a way that avoids the singularities yielded by smaller geometric details. The resulting design tool is intuitive, simple, and allows to
create fields with simple topology, even in the presence of high geometric frequencies. The generated field can be used to steer global parameterization methods
(e.g., QuadCover).
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Introduction. Many algorithms in computer graphics require to dec-
orate a surface with various visual features. Most of the time, the
algorithm has to answer the question “How do I orient these features
on the surface ?”. For texture synthesis [Lefebvre and Hoppe 2006;
Turk 2001], a smooth tangent vector field can provide the orienta-
tion to give to the sample image onto the surface. However, feature
orientation on a surface cannot always be defined by a tangent vec-
tor field. For example, in nonphotorealistic rendering [Praun et al.
2001], the orientation of strokes is defined up to a rotation of π/2,
that is, it is given by two orthogonal directions (which is called a
“cross field” in Hertzmann and Zorin [2000]). The same type of
fields is also needed to orient edges in quad-dominant remeshing
[Alliez et al. 2003], or to determine the orientation of iso-u and
iso-v in global parameterization [Ray et al. 2006; Kalberer et al.
2007]. Li et al. [2006b] have unified the representation of all types
of orientations by introducing the notion of N -symmetry direction
field. The orientation is then given by a set of N unit vectors in
the tangent plane of the surface such that turning them by 2π/N
generates the same set of vectors.
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The first processing algorithms for direction fields [Praun et al.
2001; Ray et al. 2006] are based on the minimization of the field
curvature estimated by the angle deviation between the direction
sampled on adjacent triangles (or vertices). The benefits of this ap-
proach are that it is easy to handle user-defined directional con-
straints and to smooth an existing field (usually initialized with the
main directions of the curvature tensor). Another important feature
is that the singularities of the field (pole, saddles, bisectors, trisec-
tors, etc.) are automatically generated in a way that minimizes the
energy. On the one hand, this is interesting because the field topol-
ogy captures the shape of the object by placing singularities such as
poles at the tips of fingers in Figure 3. On the other hand, geometric
details will yield many singularities (see Figure 1, left). Such a com-
plex topology is difficult to manage in the application. For example,
in quad-remeshing, each singularity will generate an extraordinary
vertex (or facet).

Undesirable singularities can be avoided by algorithms that con-
trol the direction field topology [Ray et al. 2008; Palacios and Zhang
2007], but at the expense of losing the ability of automatically
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Fig. 1. Our new direction field processing method lets the user choose the size of geometric features for which the algorithm is allowed to create singularities.
Classical algorithms can either automatically place (too many) singularities (left), or avoid creating any singularity (right) at the expense of distorting the field a
lot (like in the neck of the monster). In this article, we present a trade-off between these two extreme configurations that places singularities only for significant
features (middle).

Fig. 2. Generating a direction field without any singularity may lead to high curvature of the field (left). Introducing singularities (saddles represented by blue
spheres) allows to minimize the field curvature (right).

capturing the object shape. As a consequence, the user must man-
ually set all singularities, which can be a painful task for complex
objects.

As illustrated in Figure 2, there is a trade-off between the field cur-
vature and the number of singularities. As a consequence, methods
that are solely based on curvature minimization may generate a large
number of singularities whereas in methods that provide topology
control, the user must carefully place singularities in order to avoid
large field curvature. In practice, current solutions to define the field
topology either suffer a lack of user control, or require too much
user interaction. This article proposes an intermediate solution that
is able to automatically generate the field topology, but places only
singularities that capture “meaningful” geometric features. The user
can control what “meaningful” means by setting a minimal feature
size for which the algorithm is allowed to create a singularity, and
can edit the field topology by moving singularities. For example,
in Figure 1 (middle) the teeth of the dinausor are considered to be
too small to be “meaningful” features, whereas singularities are still
generated to capture the global shape of the head.

Problem Statement. Our objective is to design a direction field
processing algorithm that is easy to use and gives suitable results
for applications. The desired features for such a tool are listed next.

(1) Direction smoothness. The direction field should be as smooth
as possible. This ensures visual quality, but also makes sin-
gularities emerge naturally. Since only orientation, and not
size, matters in these applications, it is more meaningful to

smooth directions (normalized vectors) than vectors. Notice
that the field curvature (variation of orientation) captures both
the straightness of streamlines (in the direction of the stream-
lines) and the parallelism of streamlines (in the orthogonal
direction).

(2) Rotational symmetry. The orientation of features is gener-
ally defined by N -symmetry directions (sets of N directions
that form angles multiple of 2π/N ). In particular 1,2 and 4-
symmetry direction fields correspond to direction (→), line
(−), and cross (+) fields. Line fields are used in surface hatch-
ing and cross fields in quad remeshing and global parameteri-
zation. Using N -symmetry leads to a more accurate control of
the field topology.

(3) Geometry control. We want either to extrapolate user con-
straints or to smooth an existing field such as the principal
curvature directions field. In both cases this will result in hard
or smooth constraints on the geometry of the field.

(4) Topology control. It is very important for the direction field to
have a minimum number of singularities that will capture the
global shape of the object. Explicit control can require too much
user interaction, whereas no topology control at all may lead
to too many singularities. In practice, a good solution would
automatically place singularities, but only for meaningful
geometric features. Our goal is to define a new algorithm that
offers a good trade-off between these two extreme configura-
tions. In other words our algorithm will automatically place
singularities only for “meaningful” geometric features.
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Fig. 3. Smoothing a 2-symmetry direction field on a surface with small geometric details. Left: Local smoothing creates many singularities. Middle: The
singularity-merging strategy proposed in N-RoSy reduces the number of singularities but does not ensure that a global optimum will be found. Right: Our
method allows to ignore all the details while being still sensitive to more global features (fingers).

Table I. Main Features of Direction Field Smoothing and Design
Method Local DTVF N-RoSy NSDF GADF

Normalized both no no yes yes
Symmetries 1,2,4 1 N∗ N∗ N∗
Geometry ctrl yes yes1 yes yes3 yes
Topology ctrl no no1 yes2 yes2 yes2

1The Design of Tangent Vector Field (DTVF) approach ensures topology control only
in case where there are no constraints (no geometry control).
2In N-RoSy the topology is controlled a posteriori (after the smoothing) whereas in
N-Symmetry Direction Field (NSDF) it is controlled a priori. In this work (GADF),
topology is controlled implicitly by minimizing the number of singularities.
3Geometric constraints can only be applied a posteriori in NSDF by modifying a given
field so it cannot be used for smoothing an existing field.

Contributions. Our main contribution is a direction field process-
ing framework that combines all the aforementioned features. It
provides a trade-off between geometric algorithms that only aim at
maximizing the smoothness of a direction field without control over
the topology and topological algorithms that smooth the direction
field with explicit control over its topology. Geometric algorithms
usually generate too many singularities when the geometry is com-
plex (high frequencies) while topological algorithms require the
user to manually control all the topology. In contrast, our algorithm
allows to significantly reduce the number of singularities due to high
geometric frequencies while letting a global topology emerge from
the smoothing.

The geometric limit of our algorithm is a classical local smoothing
algorithm similar to the one used in Li et al. [2006a]. The topolog-
ical limit sacrifices smoothness to guarantee a simple topology. In
particular, on topological disks and without directional constraints,
the algorithm controls the position and type of singularities (see
Section 3.1 for a proof).

Previous Work. We will now present existing works and their
position with respect to the desired features we mentioned (see
Table I). Note that in most works, generating a direction field
was only considered as a preprocessing step for a more specific
application.

Most previous approaches rely on local smoothing. In texture
synthesis [Praun et al. 2000; Turk 2001], extrapolation of a tangent
vector field is used to give a coherent orientation of the texture
synthesized on the surface. In real-time hatching [Praun et al. 2001]
and anisotropic remeshing [Alliez et al. 2003], the orientation of
strokes (respectively quad edges) is defined by the principal axis of
the curvature tensor. This tensor defines a direction modulo a rotation
of π , that can be smoothed to remove meaningless singularities
and avoid jitter effects in the application. More recently, Fisher
et al. [2007] proposed a Discrete Exterior Calculus (DEC)-based

method allowing for Hodge decomposition to generate smooth 1-
forms (equivalent to vector fields) used for texture synthesis. In
quad remeshing, periodic global parameterization [Ray et al. 2006]
introduces direction fields defined with a modulo of π/2 to take
into account the quad orientation invariance by rotation of π/2. In
fact they can smooth a direction fields with rotational invariance
of 2π/N , N ∈ N, such as direction fields (N = 1), line fields
(N = 2), or cross fields (N = 4). This first family of algorithms
does not provide fine control over the field topology, but smoothing
and extrapolation are quite easy to achieve.

In most applications, the field singularities play an important role.
For instance, a source in quad remeshing will generate a pole, that
is, a vertex with valence �= 4 or a nonquad polygon. The same sin-
gularity in hatching will generate a point of convergence of strokes
that has an important visual impact. Zhang et al. [2006] propose a
vector field design able to repair a field after smoothing by mov-
ing singularities and removing pairs of singularities. They extend
it [Palacios and Zhang 2007] to N -rotational symmetry (N-RoSy)
field design. As the Poincaré Hopf theorem makes it impossible to
introduce a single singularity without introducing another one with
opposite index, their interface is based on moving singularities and
placing directional constraints. As illustrated in Figure 3, the itera-
tive pair cancellation strategy may not lead to an optimal topology
simplification. Finally, Ray et al. [2008] present an N -Symmetry
Direction Field (NSDF) design that solely focuses on the direction
(does not take the vector norm into account) and provides exact
control of the singularities.

The method introduced in this article is geometry aware in the
sense that a precomputation step estimates the field distortion cre-
ated by the geometry. It is then integrated into the objective function
of a geometric algorithm that prevents high geometric frequencies
from generating singularities.

This feature is critical for global parameterization applications
as singularities should only capture the global shape of the object.
Some algorithms [Tong et al. 2006; Kalberer et al. 2007; Ray et al.
2006] suggest to smooth the curvature tensor to automatically place
the singularities. Another approach [Kharevych et al. 2006] uses
the distortion of a mapping as heuristic to place singularities. This
idea was extended in Ben-Chen et al. [2008] and Springborn et al.
[2008] to work with an isotropic metric and to iteratively intro-
duce singularities to reduce its distortion. As illustrated in Figure 4,
such an iterative process does not lead to an optimal placement of
singularities.

The rest of the article is organized as follows: Section 1 introduces
the theory and structure of direction fields on triangulated surfaces
and restates the objectives in this new formalism. Sections 2 and
3 present algorithms that, respectively, consider every geometric
feature as meaningful (Figure 1, left) or as meaningless (Figure 1,
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Fig. 4. To compute a global parameterization of Neptune head, cone sin-
gularities can be iteratively introduced (up), or computed simultaneously
(down). Note how the second option better distributes them.

right). From these two extreme cases, we derive an intermediate
algorithm in Section 4 (Figure 1, middle) that is able to consider
geometric features larger than a user-defined size as meaningful.

1. DIRECTION FIELD ON A
TRIANGULATED SURFACE

An N -symmetry direction field is the definition, for each point of
the surface, of a set of N unit vectors of the tangent plane which
is invariant by rotation of 2π/N . As both its topology and geomet-
ric variations are defined by the angle deviation relative to parallel
transport, it can be nicely represented on triangulated surfaces us-
ing the discrete exterior calculus formalism. In this section, we first
recall discrete exterior calculus notations (Section 1.1) and explain
how a direction field is sampled by a 0-form in the DEC formal-
ism (Section 1.2). This allows us to define the field curvature as
a 1-form using exterior derivation (Section 1.3) and to define the
index of singularities as a 2-form using 2nd -order exterior deriva-
tives (Section 1.4). The problem is then restated in this formalism
(Section 1.5).

1.1 Discrete Exterior Calculus Notations

We assume that our mesh is oriented, that is, facets have coherent
normals and each edge has an orientation. This allows us to define
a unique orientation for dual edges. We use notations from Discrete
Exterior Calculus (DEC) [Desbrun et al. 2005a] on the dual mesh
M∗ = (F∗, E∗,V∗) as it makes the exposition clearer and the proofs
easier. In this setting, 0-forms are scalars on dual vertices (F∗),
1-forms are scalars on oriented dual edges (E∗), and 2-forms are
scalars on dual facets (V∗). Throughout the article, we will use the
convention that a quantity indexed by 0,1 or 2 is a 0,1 or 2-form.
Indices i, j, . . . will refer to vertices of the dual mesh (triangles
of the primal mesh), and ij denotes the dual edge between primal
triangles i and j . Finally, we will make use of the DEC norm for
dual 1-forms defined as

‖ f1‖2 =
∑
ij∈E∗

w−1
ij f1(ij)2, (1)

Fig. 5. A N -symmetry direction (here N = 4) on a triangle Ti is a set of
vectors vk , k ∈ {0..N − 1} defined as the images of a reference vector ri by
rotations of θ0(i) + k(2π/N ). By convention, negative angles correspond to
clockwise orientation (here θ0(i) < 0 and θ0(i) + π/2 > 0).

where wij = cot(β) + cot(β ′) are the cotan weights [Pinkall and
Polthier 1993] and β and β ′ are the two angles facing ij.

1.2 Direction Field Sampling

As shown in Figure 5, an N -symmetry direction vN on a smooth
surface is defined as a set of N unit vectors lying in the tangent
plane of the surface that is preserved by rotation of 2π/N around
the normal. We define our N -symmetry directions on the triangles
of a mesh where the tangent space is well defined. In each triangle
Ti , an oriented edge ri is used as the reference vector. A 0-form θ0

then defines the N -symmetry direction vN
i on Ti as the set of images

of ri by rotations (around the triangle normal) of θ0(i) + 2πk/N ,
k ∈ Z.

1.3 Direction Field Curvature

In continuous settings, the “curvature” of a direction field is a one
form that for neighbor points A and B gives the angle difference
between the field direction at point B and the field direction at
point A parallel transported to point B. This notion, introduced in
Ray et al. [2008] using covariant derivatives, is used to define the
“smoothness” of a field as the squared norm of the curvature.

In discrete settings, let i and j be two adjacent triangles such that
the dual edge ij is oriented from i to j . We can isometrically bring i
and j to be in the same plane, and define the curvature 1-form C1 of
the direction field vN along ij as the angle of rotation that brings vN

i
to vN

j . Simple geometry (see Figure 6) shows that θ0 only defines
the curvature 1-form C1 up to integer multiples of 2π/N . We have

C1(θ0, p1) = r1 + d0θ0 + 2πp1/N , (2)

where:

—r1(ij) is the angle of a rotation that brings ri to r j , given by:
r1(ij) = ∠(ri , i j)+∠(i j, r j ) where ∠ is the angle oriented by the
triangle normal. Defining r1( j i) = −r1(ij) makes r1 a 1-form;

—d0 is the exterior derivative for 0-forms given by (d0θ0)(ij) =
θ0( j) − θ0(i);

—p1 is an 1-form such that p1(ij) is an integer for each ij. This
property will be used further to prove the validity of our method
(see Section 3.1). This variable is equivalent to the “period jumps”
[Ray et al. 2008]: it determines how directions are interpolated
by removing the modulo 2π/N (see Figure 6).

The couple (θ0, p1) along with the choice of reference vectors de-
fines a unique direction field with a well-defined curvature. This
allows us to define the indices of its singularities.

ACM Transactions on Graphics, Vol. 29, No. 1, Article 1, Publication date: December 2009.



Geometry-Aware Direction Field Processing • 1:5

Fig. 6. Left: 4-symmetry directions on adjacent facets with common edge eij. Middle: The rotation angle between reference vectors ri and r j is r1(ij) = α j −αi .
Right: C1 = r1(ij) + θ0( j) − θ0(i) is a rotation angle between the directions on ti and t j , and so is any angle C1 + p1(ij)(2π/N ). We represent here C1 and the
minimum angle Cmin

1 corresponding to p1(ij) = 0 and pmin
1 (ij) = −3.

1.4 Index

The singularities of a N -symmetry direction field can be classified
by their indices defined as a 2-form [Ray et al. 2008]. We have

I (θ0, p1) = d1C1(θ0, p1) + K2

2π
= d1r1 + K2

2π
+ d1 p1

N
, (3)

where:

—d1 is the exterior derivative for 1-forms given by (d1 f1)(v∗) =∑
e∗∈∂v∗ f1(e∗) where ∂v∗ denotes the oriented boundary of the

dual cell relative to vertex v;
—K2 is the angle defect 2-form. K2(v∗) is 2π minus the sum of

angles of triangle corners adjacent to v , which corresponds to
the integrated Gaussian curvature over the dual cell v∗. The av-
erage Gaussian curvature over v∗ is then given by K av

2 (v∗) =
K2(v∗)/|v∗| where |v∗| is the area of v∗, approximated by (one-
third of) the 1-ring area of v∗.

Indices are multiples of 1/N and a zero index corresponds to the
abscence of singularity. On the figures, singularities with positive
(respectively negative) indices are marked by small red (respectively
blue) spheres. Note that the indices of singularities are controlled
by p1 alone, whatever the choice for θ . The term (d1r1 + K2)/2π
is necessarily an integer that depends only on the choice of the
reference vectors.

1.5 Problem Statement in Our Formalism

The problem statement given in the Introduction includes a list of
desirable features for a direction field processing algorithm. Now
we can translate them into our formalism.

(1) Direction smoothness. A natural smoothness criterion for a
direction field depending only on the direction (not on a vec-
tor norm) will be the objective C1(θ0, p1) = 0. Note that this
is different from the usual vector field smoothness criterion,
but coherent with Hertzmann’s definition of direction field
smoothness [Hertzmann and Zorin 2000]. This definition of
the direction field smoothness both quantifies the curvature of
the streamlines of the field and the parallelism of streamlines.
One can notice that these two quantities are switched for the
orthogonal direction.

(2) Rotational symmetry. The angle-based representation of direc-
tion fields trivially meets this requirement.

(3) Geometry control. Directional constraints can always be
achieved by fixing the corresponding values of θ0 (modulo

Fig. 7. 4-symmetry direction field on a cube corner. Top row: a singularity
of index 1/4 placed at the corner exactly balances the angle defect, so the
field is not distorted on the cube (left) but distorted in the map (right). Bottom
row: removing the singularity allows to define a direction field that is constant
in the map (right) but necessarily distorted on the surface (left).

2π/N ). For smoothing an existing field, geometric algorithms
[Hertzmann and Zorin 2000; Li et al. 2006a] just need a data-
fitting term (like |θ0 − θ init

0 + 2kπ |2) while doing it with al-
gorithms that exactly control the topology is very difficult.
Indeed, the modulo defined by 2kπ must be is explicitly given
as it controls the topology (see Ray et al. [2008]).

(4) Topology control. The control of the geometric influence will
then be based on the relation between index, direction field
curvature, and surface angle defect (see Eq. (3)). If we generate
a smooth field, it will have a small curvature C1(θ0, p1). Thus
d1C1(θ0, p1) will be small too as it sums C1(θ0, p1) over one
rings. In this case, the index will be close to K2/2π . As a
consequence, smoothing algorithms introduce singularities in
a way that balances the angle defects. For instance, in Figure 7,
introducing a singularity of index 1/4 on a cube corner (of
angle defect π/2) allows to cancel the curvature C1(θ0, p1).
Conversely, removing singularities (I2(θ0, p1) = 0) leads to
generate an amount of curvature that is proportional to the angle
defect. We capture this curvature in a (minimal norm) target
1-form Ct

1 such that d1Ct
1 = −K2. We can then modify our

objective to C1(θ0, p1) = Ct
1. Indeed, if C1(θ0, p1) is close to

Ct
1, the index will tend to be zero even if the angle defect is high.
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Choosing Ct
1 to have minimal norm keeps the new objective as

close as possible to the original smoothness criterion.

The rest of the article is organized as follows: Section 2 presents a
“naive” approach to smooth a direction field by simply minimizing
its curvature, Section 3.1 shows that it is possible to modify the
objective function such that the same algorithm produces a direction
field that respects a prescribed topology (on a topological disk),
then Section 4 explains how to perturb the objective function in
order to avoid “meaningless geometric details” generating too many
singularities.

2. FULL GEOMETRIC INFLUENCE

When no control over the field topology is required, an existing
geometric smoothing algorithm [Li et al. 2006a] can be used to
smooth direction fields given a set of soft and hard constraints. Here,
we just change the weighting coefficients to make them compatible
with the DEC theory. The objective function is derived from the
curvature definition (Eq. (2)). We have

C1(θ0, p1)(ij) = r1(ij) + θ0( j) − θ0(i) + 2πp1(ij)/N = 0 (4)

for each dual edge ij. We remove the integer variables p1 by taking
the cosine and sine of Eq. (4) and by choosing new variables Vi =
(cos(Nθ0(i)), sin(Nθ0(i)))

Vi − R(N .r1(ij))Vj = 0, (5)

where R(β) is the matrix of rotation of angle β.

R(β) =
(

cos(β) − sin(β)

sin(β) cos(β)

)

We weight our objectives according to the 1-form norm (Eq. (1)) by
building a smoothness energy.

Esmooth =
∑
ij∈E∗

w−1
ij (Vi − R(Nr1(ij))Vj )

2

For field smoothing, we can add a fitting term Efit = ∑
i |Ti |(Vi −

V init
i )2, where |Ti | is the area of triangle Ti , and V init

i is the direction
of the field to be smoothed on triangle Ti . This leads to minimize
Esmooth + λEfit where λ balances between smoothness and data fit-
ting. Hard constraints are easy to introduce in the system by locking
the corresponding Vi as explained in Levy [2005].

This energy is a sum of square of linear equations that can be min-
imized easily. However, the new variables need to respect ‖Vi‖ = 1
to be valid. As this constraint is nonlinear, we do not enforce it ex-
plicitly but iterate with the normalized solution chosen as smooth
constraints for the next step.

The angles θ0(i) are then given by θ0(i) = atan(Vi .(0, 1)/
Vi .(1, 0))/N which gets incremented by π/N when Vi .(1, 0) < 0.
Finally, p1 is defined to minimize the field curvature as the closest
integer to N (−r1 − d0θ )/2π . Notice that setting p1 is important as
it defines the indices (see Eq. (3)).

3. NO GEOMETRIC INFLUENCE

The aim of this section is to show that the geometric algorithm pre-
sented in the previous section can be used to generate a direction field
that will not make the shape of the surface generate additional sin-
gularities. This is achieved by removing from the objective function
(Eq. (2)) the portion of the field curvature that is a direct consequence
of the surface geometry.

Fig. 8. Directional constraints (green arrow) with filtered geometric influ-
ence (left) and without geometric influence (right). Note the smaller number
of singularities.

—First, we consider the case of a topological disk, where the new
objective function is defined to be zero for direction fields without
singularities and with minimal curvature. We can then prove that
the singularities can be exactly controlled by simply modifying
the objective function;

—then we extend this idea on arbitrary topologies and see that in
practice, the minimum number of singularities required to satisfy
the Poincaré Hopf theorem will emerge naturally.

3.1 Topological Disks

On a topological disk, we can exactly control the singularities by
choosing a 2-form I t

2 that constrains the desired index.

THEOREM 3.1 (EXACT CONTROL). Let D be a mesh with disk
topology, and I t

2 be a target 2-form with values multiple of 1/N on
D. Then for any 1-form Ct

1 such that

d1Ct
1 = −K2 + 2π I t

2, (6)

there exists a discrete direction field (θ0, p1) such that I2(θ0, p1) =
I t

2 and C1(θ0, p1) = Ct
1.

PROOF. The discrete Poincaré lemma [Desbrun et al. 2005b] im-
plies that for a k-form ωk on a topological disk, dkωk = 0 iff it exists
a (k − 1)-form σk−1 such that ωk = dk−1σk−1. We will invoke this
argument twice.

(1) I r
2 = I2(0, 0) = (d1r1+K2)/2π is the index of the singularities

of the field defined by the reference vectors with curvature r1,
such that N (I t

2 − I r
2 ) is an integer 2-form. d2 N (I t

2 − I r
2 ) = 0 by

definition of d2 so there exists an integer 1-form p1 such that
N (I t

2 − I r
2 ) = d1 p1. Then by definition of the index (Eq. (3)),

I (θ0, p1) = (d1r1 + K2)/2π + d1 p1/N = I r
2 + (I t

2 − I r
2 ) = I t

2 .
(2) We have d1(Ct

1 − r1 − 2πp1/N ) = −K2 + 2π I t
2 − d1r1 − 2π

(I t
2 − I r

2 ) = 0 so there exists a 0-form θ0 such that d0θ0 = Ct
1 −

r1 +2πp1/N . Inserting these expressions into the definition of
curvature (2) we have C1(θ0, p1) = Ct

1.

The first part of the theorem (I2(θ0, p1) = I t
2) shows that we

can exactly control singularity indices by setting an appropriate p1

(independently of θ0). In particular, we can remove all singularities
by setting I t

2 = 0. The second part shows that we can control the
curvature of the field as long as the target curvature Ct

1 satisfies
d1Ct

1 = −K2 + 2π I t
2 . Hence if we want to smooth a field with
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Fig. 9. Left: Removing geometric influence on a topological disk (left) and a genus 2 surface with a boundary (right). Right: If no geometric influence is
wanted, the algorithm evenly distributes singularities on the surface: 8 singularities of index 1/4 on a topological sphere (left), and 8 singularities of index −1/4
on a genus-two surface (right).

topology control, we cannot ask for Ct
1 = 0 anymore, but only for

the Ct
1 of minimal norm (defined in Eq. (1)) under this constraint.

The discrete Poincaré lemma also implies that there exists at least
one exact solution to d1Ct

1 = −K2 + 2π I t
2 , and we select the one of

minimal norm. These constraints are linear and can be exactly ful-
filled, so we can enforce them with Lagrange multipliers. However,
in practice we do not need to exactly enforce these constraints, and
it is sufficient to add a strong penalty term in our energy. This leads
to a smaller system and gives similar results.

Once the optimal Ct
1 has been computed, the smoothing algorithm

(Section 2) can be adapted by replacing the objective (5) with the
new objective C1(θ0, p1) = Ct

1, which by the same transformation
becomes

Vi = R(N (r1(ij) − Ct
1(ij)))Vj . (7)

If a unique hard constraint on Vi is given, the system admits an
exact solution that can be computed by an exact solver, and corre-
sponds to the smoothest field with no singularity (see left model in
Figure 9). In other terms, this corresponds to smoothing the surface
with virtually zero Gaussian curvature.

3.2 Extension to Surfaces of Arbitrary Genus

For open surfaces of arbitrary genus, the same algorithm will not
generate any singularity in practice (see right model in Figure 9). For
closed surfaces of arbitrary genus, we must have

∑
v∈S d1Ct

1(v∗) = 0
and

∑
v K2(v∗) = 2πχ , where χ is the Euler characteristic of the

surface. As a consequence, it is impossible to enforce d1Ct
1 = −K2.

The solution proposed in this section, and improved in Section 4 is
to choose a Ct

1 satisfying d1Ct
1 = K̄2 − K2 where K̄2 is defined such

that K̄2/|v∗| is constant. We have

K̄2(v∗) = |v∗| ∑v ′∗ K2(v ′∗)∑
v ′∗ |v ′∗| = 2πχ |v∗|∑

v ′∗ |v ′∗| ,

where |v∗| is the dual cell area of v . With this new Ct
1, Eq. (7) does

not have an exact solution so we apply the iterative process described
in Section 2 with objective curvature Ct

1 such that d1Ct
1 = K̄2 − K2.

This smoothing behaves as if the surface had a constant Gaussian
curvature, so it evenly distributes singularities over the surface (see
Figure 9). Obviously this is an extreme solution where the singulari-
ties appear independently of the geometry. The next section presents
a trade-off where only the influence of high geometric frequencies
is removed.

Note on singularities indices. Computing the indices requires p1

to be defined (see Eq. (3)). This integer one form p1 is now defined
as the integer minimizer of (C1(θ0, p1)−Ct

1)2, which by Eq. (2) is the
closest integer to N (Ct

1 − r1 − d0θ )/2π . Notice that this expression
differs from the usual way to compute the index because we take
into account the geometric correction term Ct

1.

4. FINAL ALGORITHM: FILTERED
GEOMETRIC INFLUENCE

We have presented a smoothing direction field algorithm (Section
2) that generates singularities to capture the surface geometry. By
changing only its objective function (Section 3), the same algo-
rithm can also generate direction fields where the surface geom-
etry has a minimal influence on this apparition of singularities.
In this section, we explore how to modify the objective func-
tion such that only “meaningful features” will be captured by the
singularities.

A straightforward solution would be to weight the part of the
objective function that captures the influence of the geometry (Ct

1).
This would remove a part of the geometry influence, but in a way
that is not related to the geometric feature size. For this reason, we
prefer restating the objective function by filtering the angle defect
influence.

We have seen in Section 3 that the influence of the surface’s ge-
ometry on the smoothing can be canceled by changing the objective
function to C1(θ0, p1) = Ct

1 such that d1Ct
1 = K̄2 − K2. In this case,

the smoothing behaves as if the surface has a constant Gaussian
curvature K av

2 = K̄2/|v∗|. More generally, changing the objective
to d1Ct

1 = K corr
2 − K2 will make the smoothing behave as if the sur-

face had angle defects K corr
2 instead of K2. What most applications

need is to remove only those singularities due to high geometric fre-
quencies while placing singularities according to the global shape
of the surface. To achieve this, we chose as K corr

2 a low-pass filtered
version of K2. As it must still be an admissible angle defect, K corr

2
needs to satisfy

∑
v∗ K corr

2 (v∗) = 2πχ .
Section 4.1 explains how to obtain K corr

2 by low-pass filtering
K2, then Section 4.2 presents a practical solution to edit the field
topology.

4.1 Filtering K2

We will smooth the density of curvature K av
2 defined in Section

1.4 (to be mesh independent) with a Gaussian smoothing algorithm
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Fig. 10. Left: Topological editing is useful to adjust the topology, especially when the surface exhibits local symmetries. Right: Merging 1/4 index singularities
into 1/2 index singularities can simplify the field topology.

Fig. 11. Moving an index from (1) to new positions (2) then (3), by a modification of Ct
1 is robust enough in practice.

based on an raw estimation of the geodesic distance using the short-
est path of edges between two points. Note that the algorithm acts
on K2 directly but it smooths K av

2 . We choose a Gaussian radius σ ,
then for each vertex vi , we use a Dijkstra algorithm to compute the
distance Dij from vertex vi to vertex v j , stopping when Dij > 2σ .
The filter can then be computed as

K corr
2 (v∗

j ) =
∑

v∗
i

cij K2(v∗
i )∑

v∗
k

cik
with cij = |v∗

j |e
−

(
Dij
σ

)2

.

Notice that the smoothing ensures∑
v∗

K2(v∗) =
∑

v∗
K corr

2 (v∗)

as
∑

j cij K2(v∗
i )/

∑
k cik = K2(v∗

i ). Large values of σ will cor-
respond to smoother K corr

2 thus remove larger geometric details,
but will require longer computation time. The geometry smooth-
ing algorithm of Section 2 corresponds to the limit σ → 0, where
cij → 0 except cii → v∗(i) and K corr

2 → K2. The geometry can-
celing smoothing algorithm of Section 3 corresponds to the limit
σ → ∞, where cij → v∗( j) and K corr

2 → K̄2. Once K corr
2 is com-

puted, we get Ct
1 as in Section 3 except that the constraint is replaced

by d1Ct
1 = K corr

2 − K2.

4.2 Editing the Direction Field Topology

The field topology obtained automatically by our algorithm can be
improved by the user by merging singularities (see Figure 10), or to
moving them to semantically meaningful positions, for instance to
respect local symmetries (see Figure 10). Such topological editing
operations could be guaranteed using previous work [Ray et al.
2008], but this approach makes it impossible to continue editing the
field geometry as before. For this reason, we prefer another approach

based on editing K corr
2 that has no theoretical guarantees but never

fails in practice.
Our method is based on updating Ct

1 accordingly to the desired
topology. Canceling a pair of singularities of indices +I at v∗ and
−I at v ′∗, or equivalently moving an index +I singularity from v∗ to
v ′∗ is done by adding I to K corr

2 (v ′∗) and subtracting I to K corr
2 (v∗).

Then Ct
1 is computed as usual, and the user can continue processing

the field as before (adding directional constraints, smoothing the
field, etc.).

5. RESULTS AND APPLICATIONS

We provide some insights on the parameter tuning and timings for
the Michelangelo’s David statue at a resolution 100K triangles.
Here are the three main steps of our final algorithm applied to this
model.

(1) Smoothing the angle defect K2 is done by a Gaussian filter and
the result is called K corr

2 (Section 4.1). The only tuning param-
eter is the Gaussian radius σ . Increasing σ makes it possible to
“trade” some field smoothness against a simpler field topology.
It takes respectively 20s, 1min 15s, and 5 min 30s to smooth
with σ = 0.05h, 0.1h, and 0.2h, where h denotes the height
of the statue.

(2) Computing the target curvature Ct
1: minimize its squared norm

under constraint d1Ct
1 = K corr

2 − K2 (Section 3). Computing
Ct

1 from K corr
2 requires 2 seconds with an efficient linear solver

(CHOLMOD [Davis and Hager 2005]).

(3) Enforcing C1(θ0, p1) = Ct
1 in the least square sense after a

change of variables as in Li et al. [2006a, Section 2]. It requires
a series of quadratic minimizations. The tuning parameters are
the trade-off λ between smoothness and data fitting and the
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Fig. 12. 2-symmetry (left) and 4-symmetry (right) direction fields generated by our method are used as input for a global parameterization (using quad cover).

Fig. 13. Producing few singularities allows to create very coarse quad mesh (right) with quad cover. This mesh can be used as base domain for geometric
images with different resolution (middle).
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Fig. 14. Left: A 6-symmetry direction fields generated on the head of the Michelangelo’s David statue. Notice that for triangular remeshing applications, 1/6
indices will become valence 5 vertices (red), −1/6 indices will become valence 7 vertices (blue), and zero indices become regular (valence 6) vertices (black).
Right: Our method (right) allows to remove singularities that are due to geometric high frequencies (left).

number of iterations. 1 to 5 iterations are usually sufficient, and
each step costs 2.5 seconds with CHOLMOD on the David.

As the filtering of the influence of geometric details is performed
in precomputation steps (1 and 2), it is then possible to apply
many direction field processing algorithms such as field generation,
smoothing, or direction extrapolation (using step 3) that will always
preserve the property of ignoring geometric details for the genera-
tion of singularities. Compared with previous works, this framework
makes it much simpler to design direction fields.

—N-RoSy [Palacios and Zhang 2007] does not allow to preserve a
simple topology while editing the direction field because it uses
topology simplification as a postprocessing step.

—NSDF [Ray et al. 2008] requires manually placing singularities. It
may be tedious for high genus models such as the Michelangelo’s
David statue (genus 8) that requires at least 56 singularities of
index −1/4 for a 4-symmetry direction field (see Figure 12).

For interactive design of direction fields, our algorithm allows con-
trolling the field by simply “painting” hard constraints on the sur-
face while preserving the trade-off between simple topology and
smoothness. Since new constraints are usually introduced to locally
modify the field geometry, the smoothing is also performed locally.
This allows real-time feedback while painting new constraints.

It has been shown in Palacios and Zhang [2007] that complex
field topology may affect the quality in texturing / hatching appli-
cations. For global parameterization based on cone singularities,
that topological complexity becomes critical as it determines the
type of parametric domain. Our method provides direction fields
suitable for this application as they have the minimal number of
singularities to capture the global shape of the object. As illustrated
in Figure 13, the global parameterization (very coarse quad mesh)
is simple enough to be used as a parametric domain for geometry
images [Gu et al. 2002] (increasing the geometry image resolution
gives finer meshes).

Finally, the generality of the N -symmetry framework makes it
eligible for triangular remeshing based on 6-symmetry directions
fields. As explained in Section 1.5, increasing the number of sym-
metries will also increase the number of singularities generated by
high geometric frequencies. Figure 14 shows that our framework
allows to create 6-symmetry directions fields with few singularities
even in the presence of high geometric frequencies.

Conclusion. In the past few years, the research topics of quad
remeshing and mesh parameterization have been converging to-
ward what can be called quad parameterization. We believe that
computer graphics and modeling applications would greatly benefit
from quad parameterization, as it allows for both seamless texture
mapping and automatic conversions between surface representa-
tions. However, quad parameterization is still a theoretic concept as
existing methods either fail on complex models or require too much
user interaction. This work removes some limitations by providing
a simple yet efficient tool to define quad orientation with a clean
global topology. We hope this will help quad parameterization to
become tomorrow’s standard in the computer graphics industry.
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