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AN2 is a switch-based local area network under de-

velopment at the Digital Equipment Corporation’s

Systems Research Center. A network is typically

viewed as part of the infrastructure that enables

distributed computing. But AN2 and its predeces-

sor AN1 are actually distributed systems in their

own right. Hardware and software at the switches

operate on local data and cooperate with paral-

lel activities at other switches to manage the net-

work and transmit data efficiently. Network com-

ponents may fail, so fault tolerant operation is es-

sential. Thus many of the issues and techniques of

more traditional distributed systems are relevant

for AN2. This paper describes aspects of the AN2

design where the distributed system model is espe-

cially appropriate and identifies areas where further

work is needed.

1 Introduction

In the past few years, researchers at Digital Equip-

ment Corporation’s System Research Center (SRC)

have developed two local area networks, AN1 (for-

merly known aa Autonet) and AN2. In both net-

works, data is transmitted between hosts through

a sequence of switches connected by full-duplex

links. The switches can be connected in an arbi-
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trary topology; network software detects the con-

nection pattern and determines the paths to be

used in routing data between hosts. AN1 has been

in operation since early 1990, supporting over 100

workstations at SRC. A prototype version of AN2

should be deployed at SRC in late 1993.

AN1 was designed to provide the same service as

ethernet, transmitting variable-length packets be-

tween host computers, but with higher bandwidth

and high availability. AN1 supports a link band-

width of 100 Mbit/sec. Aggregate network band-

width can be much higher, since multiple trans-

missions can be active simultaneously on different

links. The switch is designed to keep latency low. A

packet can be routed as soon as its header has been

received. In the absence of contention, the first bit

of a packet leaves the switch 2 microseconds after

it arrives. To provide high availability y, fault mon-

itoring hardware and software detect switch and

link failures. When a problem is detected, an auto-

matic reconfiguration is triggered to determine new

routes between hosts. The automatic reconfigura-

tion is highly effective. A favorite AN1 demo is

pulling the plug on an arbitrary switch in SRC’S

main LAN. The network reconfigures in less than

200 milliseconds, and users see no service interrup-

tion.

Figure 1 illustrates a possible AN1 configuration;

an AN2 configuration is quite similar. The network

consists of hosts and switches connected by links.

Each switch has 12 ports, each of which maybe con-

nected to a host or to the port of another switch.

Each hosi has a controller which serve. a. its in-

terface to the network. The two grey arrows in the

figure represent packets in transit; they illustrate
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Figure 1: Asample ANl installation

how packets are routed from one host through a se-

quence of switches to another host. Redundant con-

nections make the installation fault tolerant. Each

host has links to two different switches. Only one

link is in active use at any time; the other is an

alternate to be used if the first fails. In addition,

there are multiple paths between each pair of hosts.

AN2 retains the high availability of AN1. Link

bandwidth is higher, at 622 megabits-per-second

(155 megabit-per-second links are also provided,

e.g. for connecting a host to a switch). In addition,

AN2 is compatible with the ATM Forum standard.

The most obvious impact of supporting this stan-

dard is that the network traffics in cells consisting
of 48 bytes of data and a 5-byte header. Using

fixed-length cells makes it easier to build high-speed

switches and support bandwidth reservations, as

described below. However, it is more convenient for

host software to deal with larger data units, such

as the variable-length packets supported by ether-

net and AN1. In AN2 a host presents packets to

its controller, which disassembles them into cells to

transmit to the network. The controller at the re-

ceiving host will re-assemble the cells int? packets.

AN2 supports two classes of traffic. A guaran-

teed traffic stream (Continuous Bit Rate stream in

ATM terminology) is assured of receiving a speci-

fied bandwidth with bounded delay and jitter. It

is well suited to transmitting multi-media data.

Guaranteed traffic streams require advance setup to

reserve the resources to meet their requirements. In

contrast, best-eflort traffic (Variable Bit Rate traf-

fic) requires no setup and receives no guarantee of

service. It is transmitted as quickly as network re-

sources allow. File transfers and remote-procedure

call are examples of applications where best-effort

scheduling is most appropriate.

Routing in AN2 is based on virtual circuits. For

our purposes here, a virtual circuit represents a

stream of cells to be transmitted between a pair

of hosts. (There are also multicast virtual circuits,

but they will not be discussed here.) Associated

with a virtual circuit is a path, i.e., a sequence

of switches, through which cells in the stream are

routed. There may be multiple virtual circuits con-

necting a pair of hosts, for example one for best-

effort traffic and several for guaranteed streams

with separate bandwidth requirements.

The header of each cell contains its virtual circuit

id. When a cell for an established circuit arrives at

a switch, the virtual circuit id is looked up in a

routing table to obtain the output to which the cell



should be transmitted. Transmission from input to

output takes place across a 16 x 16 crossbar. The

crossbar operates synchronously, routing up to 16

cells in parallel during each time slot. The entire

process is accomplished in hardware, and the cell’s

delay across the switch is only 2 microseconds, so

long aa there is no contention for the output.

The choice of a crossbar for the switch’s inter-

nal fabric reflects a decision about the appropriate

size for a switch in a local area network. A num-

ber of alternatives have been proposed in the lit-

erature [Ahmadi & Denzel 89]. The crossbar haa

low latency compared to a multi-stage fabric like

a banyan, and this is the reason it was chosen for

AN2. Crossbars do not scale well, however: their

complexity grows w IVz for an N x N switch, while

a banyan grows aa N log N. However, a 16 x 16 or

even 32 x 32 crossbar has quite acceptable cost, and

this size is well-suited to local area networks.

In addition to the crossbar, an AN2 switch con-

tains up to 16 line cards, each connecting the cross-

bar to one 622 megabit-per-second port or four 155

megabit-per-second ports. (The crossbar has 16 in-

puts and 16 outputs, and each line card connects

to one input and one output, to support the full-

duplex links.) The line card contains a processor,

buffers for incoming cells, memory for routing ta-

bles, logic for buffer and crossbar management, and

optical devices for one fast port or four slow ones.

Although most cells are processed completely by

hardware, software running on the line-card proces-

sors handles exceptional situations, such as faults,

network reconfiguration, and virtual circuit setup.

In the initial deployment of AN2, planned for late

1993, the software will be very similar to that in

AN1. Later versions of the software will take ad-

vantage of AN2 features to provide greater func-

tionality and performance. A number of proposed

extensions are mentioned below; some are well un-

derstood, while others require further research.

Both AN1 and AN2 can have many of the char-

acteristics of distributed systems, including par-

allel computation, asynchronous operation, fault-

tolerance, and data locality. This is most obvi-

ous when one considers the switches aa nodes in

a distributed system. The switches must cooper-

ate to route messages during normal operation, to

monitor links for errors, and to reconfigure the net-

work in response to failure. In addition, the in-

ternal operation of the switch is distributed in na-

ture: the line cards operate in parallel and have

limited bandwidth for communication with each

other, The remainder of this paper discusses some

of the distributed algorithms used within a switch

and between switches. Sect ion 2 describes how the

switches cooperate to monitor for errors and to ob-

t ain routing information during network configura-

tion. Sections 3 and 4 discuss the internal opera-

tions of the switch while handling best-effort and

guaranteed traffic, respectively. (Some cooperation

between switches is also required with guaranteed

traffic.) Finally, Section 5 presents the inter-switch

techniques used for flow-control and deadlock pre-

vention.

Metanet [Cidon & Y.Ofek 90, Ofek & Yung 90]

is a network design with many of the same goals

as AN1. However, it is based on an underlying

ring network, and the resulting structure is quite

different.

2 Configuration and Routing

A cell entering AN2 is routed from switch to switch

until it reaches its destination. The cell reaches

a switch through a port connected to one of the

switch’s 16 line cards. The line card contains a

routing table that maps the cell’s virtual circuit

id to the port on which the cell should leave the

switch. In networks with a fried topology, like hy-

percubes or banyans, routing can be “wired in” to

the switches. In AN2, since the topology is arbi-

trary, the routing tables must be built dynamically.

The first stage in generating routing tables is

topology acquisition. A distributed reconfigura-

tion algorithm is run to detect the current topol-

ogy and communicate it to each switch. Recon-

figuration is triggered when a switch is booted, or

when any switch detects a change in the state of

its inter-switch connections, such as failure, recov-

ery, or creation of a new connection. State changes

in host links do not trigger reconfiguration. Au-

tomatic reconfiguration simplifies network admin-

istration and provides high availability, so long as

there are enough redundant connections that a fail-

ure does not partition the network.
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After topology acquisition, virtual circuits can be

set up and appropriate entries placed in the rout-

ing tables. The mechanisms for circuit setup are

different for guaranteed and best-effort traffic; they

are discussed below. Both reconfiguration and cir-

cuit setup involve software running on the line card

processors.

The reconfiguration algorithm for the first release

of AN2 is much the same aa in AN1. Initially,

each node knows the identity of its neighbors; this

information can be obtained by sending a query

out each port. At the end of execution, each node

knows the full network topology. The technique, re-

sembles other distributed algorithms for acquiring

global state information. The first algorithm pre-

sented assumes that a reconfiguration is not trig-

gered while another reconfiguration is still under

way. A subsequent modification handles overlap-

ping reconfiguration.

The algorithm consists of three phases.

1. In the propagation phase, a spanning tree is

built aa follows. The initiator of the reconfigu-

ration, that is, the switch that detected a state

change, becomes the root; it invites each of its

neighbors to join the tree. A node invited to

join the tree accepts the first invitation it re-

ceives, becoming the child of the inviter. It

then invites all its other neighbors to join the

tree. Any invitations received after the first

are declined. Each invitation is acknowledged

with an indication of whether it waa accepted

or declined. At the end of this phase, each

switch knows its parent and children.

2. In the collection phase, topology information

is passed up the tree to the root. At the end of

this phase, the root knows the complete topol-

ogy.

3, In the distribution phase, the complete topol-

ogy is Pa.=ed down the tree. At the end of this

phase, each switch knows the full topology.

The tree produced in this way is a propagation-

order spanning tree. In the worst case, the tree

could be linear, and there would be no parallelism

during execution of the algorithm. It haa been ob-

served in practice, however, that the first invitation

a switch receives usually comes from one of the set

of neighbors closest to the root. Thus the tree ob-

tained is usually very close to a breadth-first tree,

yielding high parallelism.

With the algorithm above, if a second reconfig-

uration was triggered before the first completed,

switches might end up disagreeing about the state

of links, and so about the network’s topology. To

ensure that the results are consistent when config-

urations overlap, each reconfiguration message is

tagged with an epoch number and the id of the ini-

tiating switch. Each switch maintains a copy of the

largest tag it has seen, where the ordering is based

first on epoch number and then on switch id. When

a switch initiates a configuration, it uses an epoch

number one greater than the one in its stored tag.

When a switch receives an invitation to join a con-

figuration tree, it ignores it unless the message tag

is larger than its current 1y stored value. In that

case, it aborts its activity in the earlier configura-

tion and joins the new one. Thus a switch that sees

multiple configurations participates in the one with

the largest tag and eventually ignores all others.

The reconfiguration algorithm assumes that each

link is unambiguously “working” or “dead”. In re-

alit y, however, a faulty link may exhibit intermit-

tent failures. In order to provide a clean abstraction

to the reconfiguration algorithm, switch software

monitors the links by regularly pinging each neigh-

bor and checking that a correct acknowledgment is

received. If this test fails too frequently, a working

link is changed to the dead state. Likewise, a dead

link’s state makes the transition to working if its

error rat e is acceptably low for a long enough time.

Care must be taken that an intermittent fault does

not cause a link to make frequent transitions be-

tween the two states, for each transition would trig-

ger a reconfiguration, and too-frequent reconfigura-

t ions can keep the network from providing service.

To prevent this, a skeptic module in the software

monitor ret ains a history of a link’s failures and re-

cowxim. If failure= recur, the i+keptic requires an

increasingly long period of correct operation before

the link is considered to be recovered.

Once the reconfiguration has been completed,

routing tables acquire entries as virtual circuits are

set up. Circuit setup will be done in accordance

with the ATM Forum signaling protocol. When a

new virtual circuit is to be crested, a cell cent ain-



ing the ids of the source and destination hosts is

sent along a separate signaling circuit. When this

cell arrives at a switch, it is passed to the processor

on the line card where it arrived. Software there

chooses the outgoing port for the circuit (based on

the topology information obtained during reconfig-

uration) and adds the virtual circuit to the line

card’s routing table. Cells for the new virtual cir-

cuit may be sent immediately after the setup cell,

If they arrive at a switch before the virtual circuit

is established there, they will be buffered until the

routing table entry is filled in. The flow-control

scheme described in section 5 prevents this from

leading to buffer overflow. All cells after the setup

cell can be routed in hardware without involving

the processor. Virtual circuit setup for guaranteed

traffic will be discussed in Section 4.

Further improvements in the reconfiguration and

routing techniques are contemplated for later ver-

sions of the switch software. The first is aimed at

reducing the disruption caused by reconfiguration.

In AN1, all switches must collaborate in a recon-

figuration, and all packets in transit are dropped

when a reconfiguration begins. This is acceptable

in small networks, but is unattractive for networks

containing thousands of switches. Fortunately, it

should often be possible to restrict participation to

switches “near” the failing component, and to drop

cells only when the path of their virtual circuit goes

through a failed link. In this case, the virtual cir-

cuit can be rerouted by sending a new circuit setup

cell from the point where the path was broken.

A second optimization allows reclamation of re-

sources, such as buffers, that are associated with

an idle virtual circuit. Switch software could “page

out” a circuit by releasing its buffers, removing it

from the routing table, and notifying the down-

stream switch of this action. The downstream

switch could then page it out as well. If further

cells for the circuit subsequently arrived, it could

be “paged in” by generating a setup cell to recre-

ate the circuit.

So far we have seen that a virtual circuit may

be rerouted to bypass a failed link or to reclaim

resources. A more speculative option is to reroute

circuits to balance the load on the network. The

mechanics of rerouting are no more difficult in this

case than in the earlier ones. However, algorithms

to determine when and where circuits should be

moved have yet to be considered.

3 Best-effort Traffic

The previous section described the routing of best-

effort traffic between switches. We now turn to its

treatment within a switch, discussing buffer organi-

zation and parallel iterative matching, an algorithm

that allows the AN2 switch to deliver both low la-

tency and high bandwidth.

Buffer organization has a major impact on switch

throughput. The simplest approach is a FIFO

queue of cells at each input; only the first cell in the

queue is eligible for transmission across the switch.

The difficulty with FIFO buffers arises when the

cell at the head of an input queue is blocked be-

cause another input has a cell for the same output.

All cells behind the first are blocked as well, even

if the output they need is available. This is called

head-of-line blocking. Karol et al. [Karol et al. 87]

have shown that head-of-line blocking limits switch

throughput to 58~0 of each link, when the desti-

nations of incoming cells are uniformly distributed

among all outputs.

There are a number of proposals for alternatives

to FIFO input buffers [Huang & Knauer 84, Karol

et al. 87, Karol et al. 92]. A common approach

is to increase the bandwidth of the internal switch-

ing fabric (i.e. the crossbar in AN2) by a factor of

k, typically by replicating the fabric k times. This

allows up to k cells to be transmitted to the same

output link in one slot. Since only 1 cell can can

depart from an output during each slot, buffers are

required at the output line cards, hence this tech-

nique is called output buffering. The value chosen

for k in most implementations is small compared

to switch size. It can be shown that such switches

have good throughput when arriving cells have in-

dependent and uniformly distributed output ports.

Traffic in a local area network is not likely to satisfy

this assumption, however. This, plus the cost and

complexity of the high-bandwidth internal fabric,

made output buffering unattractive for AN2.

Instead, the AN2 switch avoids the head-of-line

blocking problem by using random-access input

buffers. Cells that cannot be forwarded in a time
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slot are retained at the input in a queue associ-

ated with their virtual circuit. The first cell of any

queued virtual circuit can be selected for transmis-

sion across the switch. Thus a cell is only blocked

if its desired output is busy.

With random access buffers, each input may have

cells for several different outputs. At each time slot,

some pairing of inputs and outputs must be deter-

mined such that each input is paired with at most

one output, and vice versa, considering only those

pairs with a queued cell to transmit between them.

This bi-partite matching problem must be solved

every time slot, in the half microsecond required to

transmit a cell.

The AN2 parallel iterative matching algorithm

uses parallelism, randomness, and iteration to ac-

complish this goal. It is indeed a distributed al-

gorithm, for the processing takes place in parallel

at the line cards, with limited communication be-

tween them. The algorithm operates by repeating

the following three steps (initially, all inputs and

outputs are unmatched):

1.

2.

3.

Each unmatched input sends a request to every

output for which it has a buffered cell. This

notifies an output of all its potential partners.

If an unmatched output receives any requests,

it chooses one randomly to grant. The out-

put notifies each input whether its request was

granted.

If an input receives any grants, it chooses one

to accept and notifies that output.

The request/grant/accept signals are sent on ded-

icated wires, one in each direction between each

input and output.

Each of these steps occurs independently and in

parallel at each input/output port; there is no cen-

tralized scheduler. The algorithm ensures that the

matching obtained is legal. More than one input

can request the same output. The grant phase

chooses among them, ensuring that each output

is paired with at most one input. More than one

output can grant to the same input (if the input

made more than one request). The accept phase

chooses among them, ensuring that each input is

paired with at most one output.

While the matching obtained after one iteration

is legal, there may remain unmatched inputs with

queued cells for unmatched outputs. An output

whose grant is not accepted may be able to be

paired with an input, none of whose requests were

granted. To address this, the request, grant, accept

protocol is repeated, retaining the matches made

in previous iterations. Iteration “fills in the gaps.”

There can be no head-of-line blocking, since all po-

tential connections are considered at each iteration.

If the above steps are repeated until no more

matches are obtained, the result is a maximal

matching. In the worst case this requires N itera-

tions for an N x N switch, with one match being

formed on each iteration. It can be proved, how-

ever, that the average time to find a maximal match

is bounded by logz N + 4/3, or .5.32 for the AN2

switch. This result is independent of the arrival

patterns of cells, due to the random choice in step

2. In fact, simulations show that a maximal match

is found within 4 iterations more than 9870 of the

time. Because of its time limit, AN2 uses just three

iterations of parallel iterative matching.

Of course, a maximal match may be substan-

tially smaller than the maximum obtainable. Why

not implement a maximum matching algorithm in-

stead? The simplest answer is that we don’t know

of a fast enough algorithm for maximum matching.

Besides, maximum matching can lead to starvation.

For example, suppose input 1 consistently haa cells

for outputs 2 and 3, and input 4 consistently has

cells for output 3. The maximum match always

pairs input 1 with output 2 and input 4 with out-

put 3, and the virtual circuit between input 1 and

output 2 will be starved. In contrast, the random-

ness in parallel iterative matching protects against

starvation.

Simulation studies show that, for a 16x 16 switch

and a variety of cell arrival patterns, random-access

input buffers plus parallel iterative matching yield

throughput and latency nearly as good aa that of

output queueing with k = 16 and unbounded buffer

capacity. Thus its performance is close to the max-

imum attainable in the absence of advance knowl-

edge of traffic demands.
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4 Guaranteed Traffic Reservations (cells per frame)

AN2 switches handle guaranteed traffic quite differ-

ently from best-effort traffic. With best-effort traf-

fic, parallel iterative matching is used at each time

slot to dynamically schedule the cells to be trans-

mitted over the crossbar. With guaranteed traffic,

the requirements of each virtual circuit are specified

when the circuit is set up. Using this information,

the switch creates a schedule for moving guaran-

teed traffic across the crossbar, giving the required

bandwidth to each virtual circuit.

Guaranteed virtual circuits are set up when an

application attempts to reserve some bandwidth

between a pair of hosts. Bandwidth reservations

are based on frames of 1024 cell slots. Thus an ap-

plication expresses its bandwidth request as some

number of cells/frame.

The request to reserve bandwidth is processed by

a network service called “bandwidth central”. The

name is misleading – network central might well

be implemented in a distributed fashion. For the

first realization of AN2, however, network central

resides at a single switch, chosen during reconfigu-

ration. Because it resolves all bandwidth requests,

it knows the unreserved capacity of each link in the

network. A new request is granted if there is a path

between source and destination on which each link

has enough unreserved bandwidth. Otherwise, the

request must be denied. Bandwidth central chooses

the route for the new virtual circuit if more than

one possibility exists. A discussion of some heuris-

tics for route selection, in the context of the Paris

network, can be found in Awerbuch et al. [1990].

Once bandwidth central has selected a route, it

informs the switches involved of the new reserva-

tion, so that they can revise their frame schedules.

Figure 2 shows an example of such a schedule. Note

that it indicates, for each slot and each input, what

output (if any) receives a cell from that input in

that slot. Suppose that the switch in Figure 2 is no-

tified that it must add a one cell/frame reservation

between input 4 and output 3. Such a reservation

does not exceed the capacity of any link, but there

is no way to fit it into the existing schedule. Fortu-

nately, the Slepian-Duguid theorem [Hui & Arthurs

87] implies that a schedule can be found for any

set of reservations that does not over-commit the
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Figure 2: Guaranteed Traffic: Reservations and

Schedule

bandwidth of any link. Moreover, the proof of the

theorem provides an algorithm for adding a cell to

an existing schedule; the time required is linear in

the size of the switch and independent of frame size.

The algorithm works as follows. Suppose a reser-

vation is to be added for a cell from input P to

output Q. If there is a slot in the schedule where

both input P and output Q are free, the reserva-

tion can be added to that slot. Otherwise, there

is at least one slot where P is unreserved, and a

different slot where Q is unreserved. Call them p

and q respectively. (We know such slots exist, be-

cause bandwidth central haa determined that the

new reservation does not over-commit any link.)

Add the reservation P + Q to one of these slots,

say p. This will cause a conflict with an existing

connection in that slot, say from R to Q. Move the

conflicting connection into slot q. There it may con-

flict with another item; if so, move the conflicting

item to slot p. Repeat the process until no con-

flicts remain; this will require at most N steps for

an N x N switch. Thus adding a reservation for k

cells takes at most N x k steps.

Figure 3 illustrates the steps involved in adding a

reservation for a cell from input 4 to output 3 in the

schedule in Figure 2. In the figure, the changes at

each step are italicized, and the conflicting reserva-

tion, if any, is in boldface. In this case the algorithm

terminates after three step..

Once the schedule has been revised, it controls
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2p 1+2 2+1 3+2 443

~ 1+3 3+4 4+1
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Figure 3: Adding the Reservation 4+3 to an Ex-

isting Schedule

the transmission of guaranteed cells. Best-effort

cells can be scheduled (by parallel iterative match-

ing) during slots not used by guaranteed traffic. For

example, in Figure 2, a best-effort cell can be t rans-

mitted from input 2 to output 3 during the third

slot. In addition, best-effort cells can use an al-

located slot if no cell from the scheduled virtual

circuit is present at the switch.

Separate buffer pools are maintained for guaran-

teed and best-effort traffic. The number of buffers

needed to avoid dropping guaranteed cells depends

on the characteristics of the network. In a synchro-

nized network like the telephone network, a global

clock keeps all switches operating at the same rate.

In this case, the number of cell buffers needed at

each line card is twice the frame size. Buffers for

a single frame are not enough, because neither the

frame boundaries nor the transmission order is the

same at both switches, and because the switches

can rearrange their schedules from one frame to the

next.

In a network like AN2 with no global synchro-

nization, buffer requirements depend on network

parameters like network diameter, link and switch

latency, and the variation in switch clock rates. For

a typical local area installation, four frames worth

of buffers are sufficient.

Next, let us consider the latency bounds for guar-

anteed traffic. It turns out that for both syn-

chronous and asynchronous networks, the time for

a guaranteed cell to reach its destination is at most

p x (2f + 1), where p is the path length, ~ is the

frame time, and Z is the maximum link latency.

This bound is derived from the buffer requirements

in a straightforward way in the synchronous case.

In the asynchronous case, the derivation is subtle;

its basis is the fact that a cell delayed for a long

time in one switch cannot be very much delayed in

later switches.

With 1 gigabit-per-second links, it takes less than

half a millisecond to transmit a frame. Thus the la-

tency and jitter of a guaranteed cells is less than

1 millisecond per switch. This should be quite

satisfactory for multi-media applications. In con-

trast, a best-effort cell on a lightly loaded network

should experience only a 2 microsecond delay at

each switch. In a heavily loaded network, however,

queueing delays could make best-effort cell latency

arbitrarily large.

Later versions of the AN2 switch may provide im-

provements to the guaranteed-bandwidth service.

One area to be explored is greater flexibility in

frame size. Large frames are attractive because

they provide a fine-grained allocation unit, but

small frames yield better latency and jitter bounds.

Nested frames could provide the benefits of both.

For example, allocation could be based on 1024-slot

frames, with cell re-ordering restricted to 128-slot

units. Such a change would require a more sophis-

ticated algorithm for building frame schedules.

Another potential improvement is arranging the

frame schedule to give better service to best-effort

traffic. Best-effort cells can only be transmitted

in slots where neither their input nor their out-

put is busy with reserved traffic. Such slots will

be more frequent if reserved traffic is packed into

a small number of slots, leaving other slots com-

pletely free for best-effort traffic. Best-effort cells

will also fare better if the unreserved slots are dis-

tributed throughout the frame rather than grouped

at one point. Finding the best way to arrange the

frame schedule is a matter for further study.

5 Flow-control and Deadlock

We have seen that cells from both traffic classes are

buffered in the line card at which they arrive. If

cells arrive more quickly than they can depart, e.g.

because there is contention for the required output

link, then the buffers may overflow. There are three
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common ways of dealing with this problem:

●

e

e

match transmission rate with reserved band-

width so that buffer capacity is never exceeded,

use flow-control, that is, some form of feedback

that inhibits message transmission when the

buffer is in danger of overflowing, or

drop messages when buffer capacity is ex-

ceeded. If messages are dropped, they are t yp

ically retransmitted by higher levels of the sys-

tem.

In AN2, guaranteed traffic uses the first of these

approaches. The network controller prevents a host

from sending more than its reserved bandwidth on

a guaranteed virtual circuit. With this restriction,

the buffer sizes given in Section 4 will always be

sufficient.

For best-effort traffic, AN2 uses flow control

based on credits. Figure 4 illustrates the protocol.

Buffers for each best-effort virtual circuit travers-

ing the link are allocated at the downstream switch.

The upstream switch maintains a credit balance for

buffers in the downstream switch; this is the num-

ber of buffers known to be empty. Whenever the

upstream switch sends a cell, it decrements the bal-

ance for the corresponding virtual circuit. When-

ever a cell buffer is freed in the downstream switch,

due to the successful forwarding of a cell through

the crossbar, a credit is transmitted back to the up-

stream switch, and the credit balance for the circuit

is incremented. Cells are only transmitted for cir-

cuits with non-zero credit balances.

The credit-based scheme is robust in the face

of lost flow-control messages. With credits, a lost

message can only cause reduced performance. Per-

formance can be regained by having the upstream

switch periodically trigger a resynchronization of

credits. Devising the re-synchronization protocol is

in itself an interesting problem in distributed com-

puting, but we will not cover it here.

Using flow-control to prevent buffer overflow in-

troduces the possibility of deadlock. A cell ef-

fectively holds a buffer at the upstream switch

while attempting to acquire one at the downstream

switch. With AN1’s FIFO bufferst if the first packet

in the queue is blocked, the entire link is blocked as

well. If a cycle of blocked links could arise, where

each link has a packet waiting for a buffer in the

next link, then deadlock could occur. In AN1 this

possibility is prevented by restricting the possible

routes for packets.

The rules for route restriction are based on the

spanning tree formed during reconfiguration. Each

link in the network is assigned an orientation, with

up being toward the root of the tree. (If the two

ends of the link are at the same level in the tree,

then up is toward the higher-numbered switch.)

Messages are only routed on up */down* paths, i.e.

paths in which no traversal down a link is followed

by an upward traversal. This restriction is suffi-

cient to prevent cycle formation and thus to pre-

vent deadlock. Up*/down* routing may eliminate

some potential routes and thus have a negative ef-

fect on performance. The impact depends on both

the topology and the workload. However, it has the

advantage of requiring minimal buffer space, which

was important at the time when AN1 was devel-

oped.

By the time AN2 was designed, however, mem-

ory prices had fallen, and the cost of large buffers

was acceptable. In AN2, each best-effort virtual

circuit that passes through a link has its own set

of buffers in the downstream line card. The buffers

for different virtual circuits are independent, so if

one virtual circuit is blocked, other virtual circuits

passing over the same link are not affected. Since

the links of a single virtual circuit can not form a

cycle, deadlock cannot occur.

This approach prevents deadlock even if each vir-

tual circuit is allocated only one buffer. A larger al-

location is needed for good performance, however.

Suppose that a virtual circuit encounters no con-

tention for the links on its route. The circuit should

be able to transmit at the full link rate, which would

be impossible if the upstream switch on a link ever

ran out of credits. To guarantee that it never does,

it must start with enough credits to cover a round-

trip on the link; this allows time for the cell to reach

the downstream switch and a credit to be returned.

Thus enough buffers are needed for each virtual cir-

cuit to hold as many cells aa can be transmitted in

one round-trip time on the link. With 1000 virtual

circuits per link and a maximum link length of 10

km, the required memory costs much less than the

opto-electronics in the line card.
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Figure 4: Flow Control for Best-effort Traffic

The initial AN2 implementation statically allo- and AN2. The inter-switch interactions are much

cates this number of buffers to each best-effort vir-

tual circuit. For a lightly-used circuit, this may be

more buffers than necessary. More sophisticated

schemes, such as dynamically altering buffer allo-

cation based on use, may be considered later. This

could allow the link to support more virtual circuits

without adversely affecting performance.

6 Conclusion

The ideas presented here are explored more thor-

oughly in other AN1/AN2 papers. Schroeder

et al. [1991] cover most of the features of

AN1, including the reconfiguration algorithm and

up*/down * deadlock avoidance. Rodeheffer and

Schroeder [1991] describe AN1 error monitoring

and recovery; similar techniques are used in AN2.

Owicki and Karlin [1992] assess the performance

impact of some design decisions in AN1. Ander-

son et al. [1992] motivate a number of the choices

made in the AN2 switch and present the switch-

ing techniques for guaranteed and best-effort traf-

fic. Finally, Goguen [1992] gives an overview of

AN2, including flow control, fast circuit setup, and

reconfiguration.

SRC is a laboratory with considerable interest

and experience in building distributed systems, and

that has undoubtedly shaped the design of AN1

like those in any distributed system, with problems

of synchronization, fault-tolerance, and dat a local-

it y to be resolved. The reconfiguration algorithm

presented here is a prime example. Even within

the switches, there are interesting distributed prob-

lems, such as scheduling the crossbar. Here fault-

tolerance and synchronization are not at issue, but

exploiting parallelism and dealing with data local-

it y remain important.

It is striking how much theoretical work has

gone into the development of AN1 and AN2. This

is most obvious in the algorithms, including re-

configuration, parallel iterative matching, Slepian-

Duguid, virtual circuit es@blishment. AlSO impor-

tant have been various sorts of theoretical analyses.

The reconfiguration algorithm, in particular, ben-

efited from program verification; flaws in several

earl y versions were discovered during that process.

Determining the buffer requirements for guaranteed

traffic required some subtle reasoning and careful

abstraction from the concrete network behavior. In

contrast, the decision to U= ==y l=g~ buffers for

best-effort traffic was a triumph of practical engi-

neering. The blend of both kinds of insight has

been important to the success of AN1 and AN2

This paper has described a number of the solu-

tions devised for AN2 as well as a number of areas

where more work is needed. I hope the PODC com-

munity will be moved to investigate some of these
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areas, both because they are inherently interesting

problems and because the results could enhance the

quality of networks like AN2.
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