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Abstract

In this paper we prove the following theorem. If the

Rkcatti equation w’ + w 2 = R(2), R G Q(m), has

algebraic solutions then one can find a minimal polyno-

mial defining such solutions whose coefficients are in a

quadratic extension of the field Q.

1 Introduction

Kovacic [1] has given an algorithm for finding Liouvil-

lian solutions of the second-order linear homogeneous

differential equations

au” + bu’ + cu = O (1)

with a, b, c G C(z), the set of complex rational functions

of one complex variable x. Equation (1) can always,
wit bout altering its Liouvillian character, be written in

the reduced form

y“ = Ry, R E C(z). (2)

Using the classification of the differential Galois groups

of equation (2) Kovacic has proved that there are pre-

cisely four cases that can occur.

Case 1. Equation (2) has a solution of the form es“
where w c C’(Z). ‘

,.
C’ase .2. Equation (2) has a solution of the form e~ w

where w is algebraic over C’(Z) of deg. 2, and case 1

does not hold.

Case 3. All solutions of equation (2) are algebraic over

C(z) and cases 1 and 2 do not hold.

Case 4. Equation (2) has no Liouvillian solutions.

On account of this theorem the problem of integrating

of equation (2) in Liouvillian functions is reduced to
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finding a minimal polynomial P(w, z) 6 C[w, z] for the

function w = y’/y which is algebraic over C(z) and

satisfies the Riccatti equation

W’-?- W2=R. (3)

The c~mplete decision procedure for finding P(w, x)

given by Kovacic [1] and implemented in a number

of the computer algebra systems [2-4] is based on the

knowledge of the even-order poles of R. This implies

a complete splitting of even-order square free factors of

the denominator of R and requires also that computa-

tions should be carried out in an algebraic extension

of the constant field Q generated by the coefficients of

R. In this paper we prove that the minimal polynomial

P(w, x) (if it exists) can be alwyas chosen so that its co-

efficients are in a quadratic extension of Q. This enables

to construct an algorithm for finding such polynomial

which does not require computing the poles of R at all.

2 Proof of the theorem

Theorem. Let Q be a field of characteristic zero gen-

erated by the coefficients of R. If equation (3) has al-

gebraic solutions then there exists a minimal polyno-

mial PI( w, z) for such solutions whose coefficients are in

Q(W), ~ ● Q.

Proof. If equation (3) has an algebraic solution w then

the following system of equations holds

P(w, z) = O, PW(R– W2) + Pz = O. (4)

For fixed degw P and degzP equations (4) imply a sys-

tem of polynomial equations over Q for the unknown

coefficients of P( w, z). Computing the Groebner basis

for these equations we immediately prove the theorem

for the case when equation (3) has not more than 2

algebraic solutions.

Assume that for fixed degwP and degcP equation (3)

has more than 2 algebraic solutions and show that in
this case one can find the appropriate P(w, x) with co-

efficients in Q( @. We shall give the proofs separately

1

http://crossmark.crossref.org/dialog/?doi=10.1145%2F164081.164082&domain=pdf&date_stamp=1993-08-01


for the cases 1,2,3 listed above and use the following

lemma.

Lemma. If equation (3) has 3 different solutions

WI, W2, W3 in some field F then R = –(1/2) . {u, z}

where {a, ~} ❑ (a’’/)’ (1—2)/((J(UJ’’/U’)2 is a schwarzian

derivative and u ~ F.

Proof of the lemma. The proposition of the lemma can

be easily verified for u = e
~(~l-~z)dz ~a~ing into ac-

count that e.fw’,e.fW’ are linear independent solutions

of equation (2) and e~W3 =cl.e~W1 +.,. e.fW2 where

cl-c2 #o, C1, C2 EC. 0

Proof of the theorem for the case 1. Assume that

R c Q(z) and equation (3) has more than 2 solutions in

C($). Then according to the Lemma R = –(1/2) .{&, x}

where a G C’(z). In this case we can write a solution of

(3) involving 2 arbitrary constants:

w = –(1/2) .6 + 7r’/7r, (5)

6’ = T’/T, 7- = U’?J — V’U }

7r=a. u+p. v, O!, PGC,

u = num(a), v = den(u),

gcd(u, v) = 1, U,v,’r, m e C[%].

Choose a, /3 so that gcd(r’, r) = 1 (it is always possible

because gcd(u, v) = 1) and expand r to a product of the

square-free factors ~ = ~1~~.. .r~. Then substituting (5)

into (3) and collecting the terms involving the second-

order poles we find that the proper rational function

n

R* s –(1/4) . ~i(i + 2) T:/T~

i= 1

is equal (up to an additive arbitrary constant) to the

rational part of the integral ~ Rdx. Hence R* G Q(z).

Since i # j implies i(i + 2) # j(j + 2), Ti c Q[z] for
i=l,z , ... . n. Hence O ~ Q(z). Substituting (5) into (3)

we find that the coefficients of the polynomial ~ can be

determined from the equation

The well-known relation for different 4 solutions of the

Riccatti equation

W3— WI W3— W2
= const

W4— WI W4— W2

implies fi ~ C(z). Consequently

~ ~ e~(w-ddz ~ Const . ‘2 - ‘3 = . + ~,
W3 — WI

a,b G C(x).

By the other hand, u’/u z WI – W2 = 2&. Hence

(a’/u)2 6 C(Z), which is possible iff

(2a’b - ah’). (2aa’ - b’)= O

If 2a’b – ab’ = O then b = const . a and ~ G C(z).

According to the lemma R = –(1/2). {a, i-c} ~ Q(o) and

(3) is solvable in Q(z). This contradicts our assumption

that case 1 does not hold. Another possibility is 2aa’ –

b’ = O which implies b = a2+a, a ~ C. Hence a = a+

(a2 +a)li2 and R = –(1/2). {u, z}. Taking into account

the invariance of the Schwarzian derivative under the

fractional - linear transformations we find a solution in

c(x)

w = –(1/2) , (79’’/?9’) G c(z), 79=
u–i~

u+ ifi”

Thus case 1 holds that contradicts our assumption. The

theorem is proved for the case 2. ❑

Proof of the theorem for the case 3. Assume that

R 6 Q(x) and case 3 holds. In this case the differential

Galois group G of equation (2) is a finite algebraic sub-

group of SL(2) and is conjugate either to the tetrahedral

(oral G = 24), octahedral (oral G = 48) or icosahedral

group (oral G = 120) [1]. Let G be a conjugate to the

tetrahedral group which is generated by the matrices

((~> 0), (o,&-’)), ((4, d), (24, -4)) where + = (24-1)/3
and [2 —.$+ 1 = O. we fix a fundamental system of solu-

tions (yl, y2) of equation (2) so that G coincides with the

tetrahedral group. Then degc(.)wl = ckgc(r)wz = 4
-.

where W1 = Y’JYI, wz = YVY2 (see [11). Let (ZI, 4 be

7r’’+2@ .7r’+(6’ +(32 -R).7r=0 another fundamental system of solutions of equation (2)

using linear algebra. Hence ~
and w s –(1/2) -6 + T’/T c

theorem for the case 1. 0

Proof of the theorem for the

may be chosen in Q[z]
Q($). This proves the

case 2. Assume that

R G Q(z), equation (3) has more than two solutions al-

gebraic over C(z) of degree 2 and case 1 does not hold.

Then at least two different minimal polynomials P(w, z)

exist, degW P = 2, which define 4 different solutions of

(3): WI,2 = U+fi, WS,q = g+fi, u,v, g,h 6 c(x).

and let H be a subgroup of G that fixes Z; /zl. Since’ G
is finite, H is cyclic and degc(=)z{ /zl = degc(z)zj/zz =

[G : H]. There are four 6-order cyclic subgroups of G
which are generated respectively by the following ma-

trices

((<,0), (0,< -1)),

((f+l, 1-X), (2-Q, 2-0),

((t+ 1, t+ 1), (X-4 z-t)),

((t+l, t–z), (2(+2, 2–()).
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and there are respectively 4 families of linear indepen-

dent systems of solutions of equation (2) such that their

logarithmic derivatives are algebraic over C(z) of degree

4. Thus there are precisely 8 solutions of equation (3)

algebraic over C’(x) of degree 4. It means that only 2

different minimal polynomials P(w, z) exist such that

degW P = 4. This proves the theorem for the “ tetrahe-

dral subcase” of the case 3.

To prove the theorem for the other sub cases it is suf-

ficient to check that the octahedral group has 6 cyclic

subgroups of order 8 and the icosahedral group has 12

cyclic subgroups of order 10. This proves the main the-

orem. •1
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