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ABSTRACT

For the monoid presented by a finite special

Church-Rosser Thue system, whether it is a regu-

lar senaigroup is decidable in polynomial time, The

number of each kind of Green equivalence classes is

either one or infinite and it is computable in poly-

nomial time.

1. Introduction

During recent years, string rewriting systems

have received a lot of attention [8]. Many interest-

ing results about formal languages defined by con-

gruences of rewriting systems of certain types were

obtained, and a number of decision problems were

deeply investigated [2, 9]. Of particular interest are

those systems that are complete(Noetherian and

confluent). If a system T is complete, then each

congruence class (mod T) contains a unique irre-

ducible word, that is to say, T defines unique nor-

mal forms for their congruence classes via the pro-

cess of reduction. Each reduction sequence starting

with a word w can be extended to reach the irre-

ducible word in the congruence class [tv]T in finitely

many steps. Obviously, for a finite complete sys-

tem T, the word problem is effectively decidable[3].

Furthermore, other decision problems that are un-

decidable in general also become decidable when

they are restricted to finite complete systems[2, 9].
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Finite systems, in which all the rules are length-

reducing, are always Noetherian. Hence, a system .

of this form is complete if and only if it is confluent.

A finite Thue system is said to be Church-Rosser if

it is length-reducing and confluent. This property

has been shown to be a powerful tool in providing

decidability results for monoids. Many such results

have been established. One of them is about the

decidability of linear sentences for finite monadic

Church-Rosser Thue systems[l]. However, many

decision problems, such as the regular problem and

the existence of non-trivial idempotents, can not be

solved by this method. In this paper, we begin with

Green equivalences and use some of their properties

to solve several such problems, mainly the regular

problem.

Obviously, a semigroup is regular if and only if

all O-classes on this semigroup are regular. this

is why we first discuss the quantitative proper-

ties of Green equivalences. On the other hand,

up till now, the authors have never found any pa-

pers that discussed the quantitative properties of

the monoids presented by finite Thue systems, this

paper is a try at this. We are only interested in

finite special and Church-Rosser Thue systems for

the reason that the process of rewriting modulo a

finite special Thue system is particularly simple,

since it only amounts to the deletion of subwords,

and the systems of this type is very interesting[7].

We call the monoids defined by such thue systems

special monoids.

In section 2, we give some basic definitions and

results about Thue systems, Green equivalences
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and regular semigroup; In section 3, we prove that

in the monoid MT presented by a finite special

Church-Rosser Thue system 2’, each Z-class, (2-

class, ~-class) is described completely by an ele-

ment of A4~ and Re (Le, Re n Le). The number of

each kind of these five equivalence classes is one or

infinite and it is computable in pcJynomial time.

Mainly, we prove that it is decidable in polynomial

time whether or not A4T is regular. In the last

section, we have a simple discussion.

2. Preliminaries

In this section, the definitions c)f Green equiv-

alences and regular semigroups are given, and

some basic properties of reductions in finite special

Church-Rosser Thue systems are clescribed. The

results presented in the following section will be

based on these properties. It is assumed that the

reader is familiar with the basic results of automata

as covered in a text such as the book [6] by Hopcroft

and Unman and the theory of Church-Rosser Thue

systems. Therefore, we repeat only those defini-

tions and results on which our investigations are

directly based. For more details and background,

see the survey paper [2].

Let Z be a finite alphabet, then X* denotes the

free monoid with identity e generated by Z. As

usual, the length of a word w E E* is defined by

lwl:]e\= O;\al=l, a6X; ltual=lwl+l,

a G X, w c X“. The concatenatiam of two word

u and v is written as UV. For any two subsets A,

B of Z*, define AB = {ab E Z“ I a c A,b E B}.

Let w, WI be two words. If there exist words W.

and wz such that w = WOW1W2, then we call WI a

subword of w; if W. = e(w2 = e), then W1 is called

a prefix (suffix) of w, furthermore, if we also have

WI # e, then W1 is called a proper prefix(suffix)

of w.

A Thue system T on Z is a subset of X*.

An element (i, r) of T is called a (rewrite) rule.

The Thue congruence ~~ generated by ‘1’ is the

reflexive, symmetric and transitive closure of the

sigle-step reduction *T, which is defined as fol-

lows:

u +~ v if and only if there exist z, y c X*,

and (ljr) E T such that u = zly, v = zry.

The reduction *$ induced by T is the reflexive

transitive closure of +~. If u %; v, then u and v

are called congruent (mod’). By [u]~, we denote

the congruence class [u]~ = {v = X* I u +; V}

of u (rnodT). If u a; v, then u is an ances-

tor of v and v is a descendant of u (modT).

For u c X*, A+(u) = {v E Z“ I u +; v} is

the set of the descendants of u and for R G X*,

A;(R) = UUCR A;(u). If A;(u) = u, then, u

is called irreducible; otherwise, it is called re-

ducible. Irr(T) is the set of all irreducible words.

For

i.e.

a Thue system T, let

Left(T) = {1 c Z* I 3 c X* : (/, r) G T},

Right(T) = {r E E“ I 34 E Z“ : (I, r) G T}.

Left(T) and Right(T) are the sets of all left-

hand sides of rules in T-and that of all right-hand

sides of rules in T respectively.

Theorem 2.1[1] Let T be a Thue system on

the alphabet X. I.. T is finite, then Irr(T) is a regu-

lar set, and from T, we can construct a determinis-

tic finite state acceptor M for lrr(T) in polynomial

time.

QED.

A Thue system T is called length-reducing,

if I 1 [>1 r I holds for all rules (/, r) 6 T, and it

is monadic (special) if it is length-reducing and

Right(T) S E U {e} (Right(T) = {e}). It is easy

to see that special Thue systems are monadic.

Let T be a length-reducing Thue system on the

alphabet X. The system T is said to be Church-

Rosser, if for all u, v ~ E’, u *; v implies there

exists a w G Z*, such that u +; w, and v +; w. If

a Thue system T is Church-Rosser, then, every con-

gruence class has a unique irreducible word, Thus,

for a finite Church-Rosser Thue system, its word

problem is decidable in linear time[3]. For other

properties of Church-Rosser Thue systems, see pa-

pers [3] and [4].

Suppose that T is a Thue system on alphabet

X, the set &fT = {[u]T / u E Z*} of all congru-

ence classes forms a monoid under the operation

[u]T o [V]T = [UV]T with identity [e]T. Accord-

ingly, the ordered pair (Z, T) is called a monoid-

presentation of kfT. In the following sections, we

consider Green equivalences on MT.

Let M be a monoid, for any two elements a, b c

M, (a, b) c R means that a and b generate the

same principal right ideal of M; Dually, we define
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(a, b) E 1 if a and b generate the same principal

left ideal of M; (a, b) 6 J if a and b generate the

same two-side principal ideal; The intersection of

the relations R and f? is denoted by )/ and their join

by D. Clearly, these five relations are equivalence

relations, we call them Green equivalences. rn ~

M is call a regular element, if there exists z ~

M, such that rrwrn = m; If all the elements of

M are regular, we call M a regular semigroup.

In addition, m G &f is called an idempotent, if
~2=m It is easy to see that idempotents are

regular, and if there is one regular element in a

~-clasa, then all the elements of this n-class are

regular, i.e. this O-class is a regular one. Also, we

know, in a regular D-class, each R-class and C-class

contains at least one idempotent( see [5]).

In the following, the R-class(L-class, J-class, 1-

class, and ~-class) of &fT containing the element a

of lrr(T) will be denoted by Ra(La, Ja, 1+~, and

Da).

Theorem 2.2 Suppose that T is a Church-

Rosser Thue system on the alphabet X, a, b G

Irr(T).

(1). (a, b) G R ifl there ezist z, y c Irr(T) such

that ax +-$ b, by +; a;

(2). (a, b) e Z. ifl there ezist z, y E Irr(Z’) such

that za +-~ b, yb +> a;

(.9). (a, b) G J ifl there exist zl, z2, yl, yz 6

Irr(T) such that zlayl +; b, zzbyz ++ a.

QED.

For w ~ Irr(T), let Pref(w) and Su\/(w) be

the sets of all prefixes and suffixes of w respectively.

Theorem 2.3 Suppose that the Thue system

T on the alphabet E is finite special and Church-

Rosser, then R, and L, are all regular sets, and we

can construct two jinite state acceptors for them in

polynomial time respectively.

Proof. Let

then,

R, = pl~ n lrr(Z’); L. =Z sr~ n lrr(T).

Since plT and .SrT are finite sets, we get the results

as required.

QED.

Theorem 2.4 Let T be a finite special

Church-Rosser Thue system on the alphabet E.

X = {z c Irr(T) I Suff(z) n (1?, \ {e}) = 0},

and Y = {y c Irr(!l’) ] Pref(y) n (L, \ {e}) = 0}.

Then,

(1). X and Y are regular sets, two finite state

acceptors for them can be constructed in polyno-

mial time respectively;

(2). X= X*, Y= Y*!

Proof. (l). Let M = (Q, E, 6, qo.l’) be a deter-

ministic finite state acceptor for lrr (T). For every

ordered pair (p, q) of states of M, let LP,q be the set

of all the words w, such that on input w, M goes

from state p to state q. Clearly, LP,g is a regular set

and a finite state acceptor for it can be constructed

in polynomial time. Now, we can easily prove

x = ~rr(l”) \ U L~O,* (L,,,F f’ (R, \ {e})) ;

q@),qp@

Y = Irr(T) \ U (L9~,q n (Le \ {e})) ‘qJ?F”

qCQ,qpEF

From Theorem 2.1, Theorem 2.3 and the fact that

Q, F are finite sets, we know X and Y are regular

sets , that a finite state acceptor for X(or Y) can

be constructed in polynomial time.

(2). For xl, Z2 c X, if Zlzz # X, there exist

Z12 ● Suff(zl) such that

X12X2 c R, \ {e}.

This implies Z12 6 R,, then,

and this is impossible.

Similarly, we can prove the results about Y.

QED.

3. Main results

In this section, we first discuss the structure of

each kind of Green equivalence classes, and then, as

an application, we show that the regular problem is

decidable in polynomial time. Of course, the Thue

system T we considered on the alphabet X is finite

special and Church-Rosser.

3.1 The structure of Green equivalences
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Since N is the intersection of R and 1, and D

the join of them, we only consider the structure of

2,2 and Jnow.

Theorem 3.1 Let T be a finite special Church-

Rosser Thue system on the alphabet E, a = Irr(T).

(l). If a $! X, i.e. there ezists az c Suff(a)

such that a2 E Re \ {e}. Let a = a1a2(al E E*),

then, R. = Ral; otherwise, R. = aR,;

(2). If a $ Y, i.e. there ezists al G Pref(a)

such that al c Le \ {e}. Let a = alaz(az c Z*),

then, La = L ~z; otherwise, La = Lea;

(3). If a $ X (or a $ Y), i.e. there exists

az c Suff(a) (or al c Pref(a)), such that a2 =

R, \ {e} (or al E L. \ {e}). Let a = aoa2 (or

a = alao). (a. ~ E*), then, Ja = Jao; otherwise,

if a @ Sub(Left(T)), Ja = LCaR~; otherwise, Ja =

J,. Where Sub(Left(T)) is the set of all subwords

of the words of Left(T).

Proof. (1). Let

then

cm +; al, (a, al) 6 k!.

For each b 6 Ra, there exist y, z ~ Irr(T) such

that

b.z +> a, ay +$ b.

Since

Suff(a) n (R. \ {e})= 0,

for each a2 E Suf f (a), yl E Pref (y;j,

a2y1 @ Left(T).

Hence,

ay G Irr(T), aR, C Irr(T)

and from the Church- Rosser property of T we know

b = ay.

Thus,

ayz +$ a.

Since

Suff(a) n (R. \ {e}) = 0,

there are y2 = Suf f (y), Z1 6 Pref (z) such that

where yl, z2 E E*, Y = YIYZ, Z = 2122. Then,

yl = Z2 =e,yza~ e,Ra C aRe.

Obviously,

aRe C Ra.

(2). The proof is similar to that of (l).

(3). Since

RGJ, LGJ,

from the first results of (1) and (2), we know that

if

a$Xora$i Y,

then

Ja = JaO,

where a. ~ Irr(T),’a = aoa2 (or a = alao), az G

Suff(a) (al E Pref(a)), and a2 = R, \ {e} (al E

L, \ {e}).

Suppose

aCX, a~Y.

If a & Sub(Left(T)), there are z, y 6 Irr(T),

xay +; e.

Hence,

aEJ~.

If a # Sub(Left(T)), for every b c Ja, there are

zl, z2, yl, y2 c Irr(T),

xlayl +; b and z2by2 +-~ a.

If zlayl is reducible, according to the properties

of Su f f (a) and Pref (a), we know that there exist

zlz = Suff(zl), YU E Pref(yl), YH # e # ~12

such that

z12ay11 G Left(T).

This is contradiction with a # Sub(Left(T)).

Hence,

zlayl ~ Irr(T), b = zlayl

and this fact also implies

L,aR, ~ Irr(T).

Obviously,

zzxlaylyz +; a.

Thus, there exist

y2z1 -~ e, aylz2 = a,, 222 E Suff(zz),zll = Pref(zl),
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Y12 c suff(YI), Y21 ~ pref(y2),

Z12, X21> Y1l, Y22 = ~’>

Z1 = zllzl’2,~2 = ~21~22,

Y1 = Y11Y12, Y2 = Y21Y22

and

ZMZ1l ++ e,

Y12Y21 =+ e>

zzlzlzuyllym = a.

Hence,

ZIZ =yll = e,zl = Zll,yl = Y12)~l G ~e)yl ~ ~e.

This implies

b E LeaR,.

Hence

Ja ~ L,aRe.

Conversely, L,aRe C J. is obvious.

QED.

3.2 Properties of Green equivalences

Corollary 3.2 Suppose that T is a finite spe-

cial Church-Rosser Thue system on the alphabet X.

For a G Irr(T), R., La, J., Ha and Da are all regu-

lar sets, and the finite state acceptors for them can

be constructed in polynomial time respectively.

Proof. Choose

al, az, a3, a4C E*,

such that

a = a1a2 = a3a4, az ~ R~,a3 E L~

and

al EX, a4EY.

Then,

R. = R., = al R,, La = La4 = L,a4,

we know that Ra and La are regular sets, two fi-

nite state acceptors for them can be constructed in

polynomial time.

Since

H. = Ran La,

we obtain the result about Ha.

Let

a = alaoaz(ao, al, az = Z*), al 6 Le,az c Re

and

aOCX, aOEY.

we have

J. = J...

If a. @ Sub(Left(T)), then,

J. = LeaOR,.

In this case, J. is a regular set and we can construct

a finite state acceptor for it in polynomial time; If

a. c Sub(Left(T)), then J. = Je. Now, we show

the results about J,. In fact,

J. = LeSub(Left(T))Re n Irr(7’)

and the fact that Sub(Left(T)) is finite implies the

results as required.

Now, we prove that the following set A. :

{b, E Irr(Z’) I ~b~ L.,3bz G Re, b = blb2,bl E X}

is a regular set and a finite state acceptor for it can

be constructed in polynomial time.

Let M = (Q, Z, 6, go, F) be a finite state ac-

ceptor for L. , LP,q be the same as that of Theo-

rem 2.4. By B~ and C, we denote LqO,q n X and

L= \ Z“ (R, \ {e}) respectively. Then,

A. = u Bq UC.

qEQ,q~e~,Lg,qFn(~.\{e})#@

For each bl G Aa, b = blbz , where b c La, b2 e Re,

and bl 6 X. If b2 = e, then

b6C;

If b2 # e, there exist q E Q, qp G F, such that

bl E Lqo,q,bz G Lq,qF.

Hence,

blc BqC u %qG~,qFEF,~q,qFn(R.\{e})#O
Conversely, for c1 E UqeQ ,qF~F Bq, there are q E

Q,q~ c F,c2 6 X*, such that

c1 G I?q, c2 c Lq,qF n (Re \ {e}).

82



Let c = C1C2, then

CELa, CIE Aa

and

u l?q~A..

9EQ,9F@’,Lq,gFn( Re\{e))#0

It is clear that

C C A..

Using Theorem 3.1(1), we have

Da = U@& Rb = U&&Rb = lJb~A~bRe = AaRe.

Thus we get the results about Da.

QED.

Letl Rl,l Ll,l J/,l~land 1171 represent

the number of &classes, Z-classes, J-classes, )1-

classes and D-classes in MT respectively. For a set

S Q E*, I S I represents the number of the words

of s.

Theorem 3.3 Let T be a jinite special Church-

Rosser Thue system on the alphabet Z, then we

have

(J). I R 1=1x 1;

(2). I z H Y 1;

(3). I J 1=1 (X n Y) \ Sub(Left(Z’)) I +1;

(4). I (xny)\StWLefW’)) [<l p ISI Xny 1.

Proof. (l). For a c Irr(T), let

a = U1U2,

where

a26Re, al~E*, a1~X.

Then,

R. = R.,, i.e. al E Ra.

This implies that there is at least one word in R.

which belongs to X.

Let

al, a2 EX and al, a2 G Ra,

if

alRe = Ral = R.z = a2 R,,

there exists co E R,, such that

al = azco.

Since

al G X,

CO= e,al = az.

So there is a 1-1 correspondence between X and

the set of all Z-classes in MT.

(2). Similar to (l).

(3). Let

a c Irr(T),

if Ja # J,, let

a = alaoaz,

where

al= Le, a2 E Re, ao~E*

and

aO~Xn Y.

Then,

J. = J.O .

Thus, for each J-class J. which is not Je, there is

at least one word in Ja that belongs to (X n Y) \
Sub(Left(T)). For 61, b2 E (XnY)\Sub(Left(T)),

we know

Jb, = LeblR,, Jb, = L,b2R..

If

Jb, = JbZ,

there exist c E L,, d 6 R. such that

bl = cbzd,

thus,

c=d=e, b1=b2.

Then, if J. is not J,, there is a unique word in J.

belonging to (X n Y) \ Sub(Left(T)). Obviously, if

J, = Irr(T), then

(X n Y) \ Sub(Left(T)) = 0.

So we have proved there is a 1-1 correspondence

between (X n Y) \ Sub(Left(T)) and the set of all

J-classes of MT except Je.

(4). Clearly,

I D I>t J 1=1 (Xn Y) \ Sub(Left(T)) I +1.

For a ~ lrr(T), let

a = alaz,
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where

a2 E Re, al cX,

Let

al = alla12, all E ~e,a12 ~ y,

then

L a12 = La, ~ Da, = Da.

So we have

This implies in each P-class , there is at least one

word belonging to X n Y. Hence,

lDlslXnY1.

QED.

In section 2, we have shown X = X*, Y = Y*.

So\ X\(l Yl,l XnYl)=lor co. Obviously,

[ll=miff [Rl=mor lZl=m. Bytheorem

3.3 and Theorem 2.4(1), we have

Theorem 3.4 Suppose that T is a jinite special

Church-Rosser Thue system on the alphabet Z, the

number of each kind of Green equivalence classes

is one or infinite and it is decidable in polynomial

time.

QED.

Actually, there are two ways to decide the car-

dinality of R, ~ and J-classes. One is to compute

the number of the words of X, Y and (X n Y) \
Sub(Le f t(T)); The other is first to decide whether

lrr(T) = Re, Le or .J,, and if this is the case, there

is only one R, Z or J-class, otherwise, it is infi-

nite. In addition, the second way is applicable for

X-classes.

3.3 Applications

Now, we investigate the regular problem for MT

using above results, where T is finite special and

Church- Rosser.

We know that in each D-class there is at least

one word of X n Y. However, all the words of

(X n Y) \ {e} are not regular elements of MT. So

there is only one regular D-class D, in the monoid

presented by a finite special Church-Rosser Thue

system. Thus, the monoid of this form is regular if

and only if it contains only one D-class. Then, we

have

Theorem 3.5 It is decidable in polynomial

time whether or not a monoid presented by a ji-

nite special Church-Rosser Thue system is a regular

semigroup.

QED.

In addition, in the monoid of this type, there

are non-trivial regular elements if and only if De #

{e}. So it is decidable in polynomial time whether

this monoid contains non-trivial regular elements.

And also whether it contains non-trivial idempo-

tents is decidable in polynomial time.

In fact, if De # Re, there is at least one non-

idempotent; Otherwise, let a e De be an idem-

potent, i.e. a2 ++ a. Since a E R,, there exists

z c lrr(T) such that ax +; e, then a2z ++ a.

On the other hand, we also have a2x +; az +; e.

Thus, a = e. So in this case, there are no non-

trivial idempotents.

Theorem 3.6 There is no zero element in

the non-trivial monoid presented by a jinite special

C’hurch-Rosser Thue system.

Proof. Suppose o is the zero element of the

monoid. Since o is a regular element of this monoid,

we have De = DO = {o}. This implies that the

monoid is trivial.

QED.

obviously, by manipulating finite state accep-

tors, we can design computer programs to decide

whether a given special monoid has above proper-

ties and the number of each kind of Green equiva-

lences.

Now we give an example to illustrate our re-

sults.

Example 3.7 Let Z = {a, b}, T = {(ab, e)}.

Obviouslyj MT is bicyclic semigroup, and

Irr(T) = {bnam : n,rn > O},

X={ b”:n> o},

Y={am:m> O}.

Then

XnY= {e},
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Therefore, there are infinite R, L1 and Y -classes, 8<

one J-class, and one D-class. And MT is a reg-

ular sernigroup.

4. Discussion

We are now investigating whether our results 9,

can be generalized to other classes of monoids.

If the Thue system T is more general than spe-

cial ones, for example, if T is finite monadic and

Church-Rosser, we can easily give examples in

which Theorem 3.1 does not hold. ‘That is to say,

a word of Irr (T) and Re (Le, Je) cannot describe

a R (t, J)-class completely. So in this case, the

structure of each kind of Green equivalence classes

is more complicated.

Up till now, we only know that R, and Le are

all regular sets for the monoids presented by such

Thue systems, and two finite state acceptors for

them can be constructed in polynomial time.
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