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Abstract – This paper discusses the assign-

ment complexity of the uniform tree, which is

made up of identical cells realizimlg a function

~. Theassignment complexity ofatreeis de-

fined as the cardinal number of the minimum

complete assignment set of the tree. When a

complete assignment set is applied to the pri-

mary input lines of the tree, every internal ~

cell in the tree can be excited by all possible

input combinations. The assignment problem

is a basic problem in the VLSI system design,

test and optimization. The relation between

the property of j and the assignment com-

plexity of the uniform tree is anidyzed. It is

shown that the assignment complexity of a

balanced uniform tree with n primary input

lines is either O(1) or fl((lg n)a) (a G (O, l]).

In the first case, the cardinal number of the

minimum complete assignment set for a tree

is constant and independent of the size and

structure of the tree, In the second case, the

assignment complexity depends cm the num-

ber of the primary input lines of the tree. If a

balanced uniform tree is based on a commut a-

tive function, then it is either ~(1.) or ~(lg n)

assignable.

1 Introduction

The test is an unavoidable procedure for the VLSI sys-

tem manufacture and maintenance. With the rapid de-

velopment of the VLSI technology, the circuit density is

increasing dramatically, and the test of VLSI circuits is

becoming more and more difficult and expensive. The

study for the efficient test methods is of growing impor-
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tance. This paper studies the theoretical aspect of the

test problem associated with tree-like structure circuits.

‘Ikee-like structure circuits are called trees, which are

basic components in many VLSI circuits, especially in

circuits for parallel and fast computations. Therefore,

the study of the test complexity of trees is very useful

for the design, optimization and test of VLSI systems.

The test complexity of trees based on primitive gates

of type AND, OR, NAND and NOR has been extensively

studied in [6, 7]. Uniform trees consisting of more com-

plex identical nodes computing an associative or com-

mutative function have been studied in [1,2,3,4,9,10,12].

The assignment complexity of uniform trees based on

commutative functions of two variables is discussed in

[11]. In this paper we further extend the above theory

by studying the assignment complexity of uniform trees

based on functions of several variables.

The test problem can be divided into two subprob-

lems, namely the test pattern assignment and the diag-

nosis signal propagation. A complete assignment set

for a circuit with n primary input lines is a set of

n-component input patterna. When it is applied to

the primary input lines of the circuit, every internal

cell in the circuit can be excited by all possible input

combinations. The construction of a complete assign-

ment set is the first step towards the generation of a

complete test set for a circuit. For lDDQ test technique

[5], a complete assignment set is just a complete test set

for the circuit. For other test techniques the propaga-

tion of the diagnosis signal to the primary output line

of the circuit must be considered additionally. In this

paper we pay our attention to the assignment problem.

The theoretical framework developed here is also useful

to solve the propagation problem.

The assignment complexity of a tree is defined as

the cardinal number of the minimum complete assign-

ment set of the tree and is measured as a function of

the number of the primary input lines in the tree. This

paper consists of six sections. In the next section we

give a formal definition of the assignment complexity of

uniform trees and make some conventions. The third

section is on the sufficient and necessary condition of

O(1) assignable uniform trees. The fourth section ex-
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Fig. 1: A balanced tree

plores the jump of the assignment complexity from O(1)

to Cl ( (Ig n)a ). In the fifth section, we convert the aawign-

ment problem into the algebraic problem. The sixth sec-

tion shows that a balanced uniform tree based on a com-

mutative function is either Q(1) or @ (Ig n) assignable.

2 Assignment Complexity of

Uniform Trees

Let ikf be a set of m symbols, and f : Mk - M a sur-

ject ive function. Without loss of generality we assume

M = {1,2, .,., m}. We use the symbol ~ to represent a

function as well as a cell implementing the function.

A uniform ~-tree is made up of identical cells imple-

menting the fu~;~ion f. The set of all j-trees is de-

noted by Tf. Tf is used to denote a balanced uniform

f-tree with n primary input lines. Fig. 1 shows a bal-

anced tree. If every cell C’i,~ realizes the same function

j : Mk + M, then it is a uniform tree.

We assign every line and cell in T\n) a unique level.

The levels is arranged in ascending order from the pri-

‘n). Themary output line to the primary input lines of 1’,

primary output line is assigned level O. An ~ cell and

all its input lines are assigned level k + 1,ifits output

line is in level k. A tree is said to be of k-level, if it has

k leveIs.

For the sake of convenience, we make some conven-

tions. Throughout this paper, {a, a, a} and {a, a} are

recognized as two different multiple sets. The cardi-

nal number of the former is three, and that of the

latter is two. A multiple set can be changed into a

conventional set by using operator T, For example,

T{a, a, a} = T{a, a} = {a} and T{b, c, b} = {b, c}. For

a multiple set A, #A represents the number of the ele-

ments in A. For example, #{a, a, a} = 3.

Let

[1

111,112,..., Ilk

121, ~22, . . . . ~2k
(L, z,...,g ):= :

~~1, 1~2, ...,~~k

for ~. = (11jj12j, . . ..ltj)T ,~= [l, k], Iij E M.

Based on function f we define a vector function

follows:

(1

f(~~~,~~z,...,~~k)

f (~zl> ~Z ...)~zk)
f(~, ~,..., ~):= :

f (~tl~ ‘~~~ ---,~tk)

f as

It is easy to see that applying t k-component pat-

terns to an f cell is equal to assigning k t-dimension

vectors to the k input lines of the f cell,

Let P, = {(zl, .,., z,)T [ Zi EM}, namely, the set

of all t-dimension vectors (t G N). Given k vectors

in Dt, using operator V one can construct a set of t

k-component patterns, and (1) is the formal definition

of this operator.

V(il,... ,&) := {(1;1,... ,~ik) \ i ~ [l, t]}j ~ ● ~~ (1)

Ezample 2.1: Function fl is defined as follows.

Let

~=

Then

-t-

f~ol

0 11

1 10

0

1[1[
1 1

0 1 1

1 ,~=1 ,6=0
1 0 1

1 0 0

f(l, 1)

)[

o
f(l, 1) o

j(z,q = f(l, o) = 1
f(o, 1) 1

f (0,0) 1

‘+@ ={(1,1), (1,1),(1,0),(0,1),(0,0)}.

Assume that a T~n) consists of cells C’l,l, C2,1, C2,2,

,.. , 6’k,~, .,., and cell c~,j h the ~th cell in the ith level
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Fig. 2: Complete assignment for T~f)

‘n) Let A be a set of n-component patterns, andof Tf .

#A = t. When all of the patterns in A are applied

to the primary input lines of Z’/n), a t-component vec-

‘m), To apply all oftor is delivered to every line in Tf
(n)

the t patterns to the n primary input lines of Tf

is the same as to apply n t-compoyent vectors to the

n primary input lines. We use 11(A, i, j) to denote

the corresponding vector+applied to the Jth input line

of an f cell Ci,i) and 10 (A, i, j) to denote the vec-

tor delivered- & the output line of the cell. Then

&( A,i, j) = f(I1(A, i,j),..., &( A,i, j)).

In order to classify the assignment complexity of uni-

form trees we give a formal definition of the complete

assignment and the assignment complexity.

Definition 1 (~l(A, i,j),..., L(A, i,j)) is a complete

assignment of ceil Ci,j if and only if

J@ c V(~i(A, z,j),..., G(A, i,, j)).

‘n) if and only ifA is a complete assignment set of Tt

(~(A, i,j),... j ~ (n) “~ (A, i, j)) is a complete assignment for

every cell Ci,j in T~ .

Fig. 2 shows a complete assignment set to T~~).

By assigning patterns (1,1,1, 1), (1, 1,, 1,0), (1, 0,1, 1),

(O, 1,0, 1) and (O, 0,0, O) to the four primary input lines

of T~~), one can guarantee that each of (O, O), (O, 1),

(1, ()) and (1, 1) can be applied to every cell in T~~).

Thus we can state that the fi~~ patterns comprise a

complete assignment set for Tfl .

It is obvious that f has to be subjective to M, other-

wise, it is impossible to construct a complete assignment

‘n) (n> 2).set for a tree system Tf

(n)~~de.Defiition 2 The assignment complexity of Tf

fined by the mapping ACf : Tf _ N.

{

A is a complete
ACf(T~n)) = min #A (n)

assignment set for Tf
}

‘n) to be G(l)In case ACf (T)”)) = Q(l), we say Tf

assignable. In a tree, all cells at the same level can be

assigned simultaneously since their input lines are in-

dependent of each other. Furthermore, all cells at the

same level can be excited completely by using rnk pat-

terns. A straightforward conclusion is that all cells in

T(”) can be excited completely by using mk [lg nl pat-
f

‘n) has at most [Ig nl levels. Thus we haveterns since Tf

the following observation.

Observation 1 For an arbitrary subjective function

f; Mk-M

ACf (T}n)) < mk [lg nl

= O(lg n) (2)

3 @(l) Assignable Trees

In this section we discuss the criteria of Q(l) assignable

uniform trees.

‘n) is ~(l) assignable if there are a t G NLemma 1 Tf

and a set W c G so that every $ = W can be gen-

erated by using h vectors 11,.””, Ik which belong to W

and comprise a complete assignment to an f cell. Put

it formally, there are a t ~ N and a set W c Dt so that

Proof: We prove that for every N-level T~”) we can

construct a complete assignment set A(N) by assigning

to every primsxy input line a vector in W E Dt. Then

#A(N) is equal to the constant t. This can be proven

through induction on the number of the level of the tree.

In case N = 1, t~e tree has only one cell. We

choose arbitrarily an 10 G W, then determine k vec-

tors &, . ...1; = W so that Mk c v(flj”””, ~k) and
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/(z,... ,&) = J%. It isclearthat V(Z, ,. .,&) is atom.

plete assignment to a tree with only one cell.

Assume that for N = t one can construct a complete

assignment set A(i) for an i-level l’~n) by assigning to

(n)
every primary input line of Tf a vector in W, and the

vector assigned to the jth primary input line is $.,O G W.
(kn)

Suppose Tf is of (i + 1) levels and is constructed

by connecting every primary input line in T;”) to the

output line of an t cell. According to the assumption,

there are ~.,l, ,, . , ~,k C W so that

kfk C v(~;l,---,,,+)+) A ~(~”,l,--.,~;k) ‘~”,o.

Hence (~;~, . . . . j,k1. ) is a complete assignment to an ~

cell. When ~i,l, . . . ~.,k are applied to the k input lines of

the cell directly linked to the jth input line <n the level i,

the vector offered to this input line is just lj,o. Thus we

can construct a complete assignment to every cell in

level (i+ 1) by assigning to every primary input line in

T(kn) a vector in W, and all of the vectors delivered to
f

the lines in level i comprise A(i), which is a complete
(n)

assignment set to Tf as assumed. All of the vectors

assigned to the lines in level (i+ 1) comprise the A(i+l)

‘kn). Thus wewhich is a complete assignment set to T,

can conclude that #A(iJ = #A(i+l), and T~m) is @(l)

assignable.

Q.E.D.

For~,...
~~D,wereg~d(~”””~)=a’xk

matrix, and ~~ D~ as a 1 x k matrix.

‘efini’i0n3 ‘a’”’’” (~”””~) and @,”””@
are said to be similax to each other, denoted by

if and only if the former

using row exchanges.

For example,

[1[

00 0

01 0

10 - 1

11 1

11 1

can be changed to the latter by

o

1[1
11

1 11
1 - 10

0 01

1 00

It is easy to see that for three arbitrary matrices

Ai, Aj, Al, the following three statements hold.

1. Ai = Ai;

2. Ai_Aj&Ai~ Ai;

3. Ai-Aj AAj-Al*Ai -Al.

Hence N is an equivalence relation.

In order to simplify the expression we will use

Pf(I-&z, . . . , ~) to stand for

itzfkcv(fl,...,fi) A ~(z,...,&)w&.

Corollary 1 T~n) is e(1) assignable if there are a

t ~ N and a set W’ c Dt so that for every & E W’

there are ~1,. . . , ~ E W’, and they comprise a complete

assignment and can be transferred into a vector similar

to ~. Put it formally, there are a t E N and a set

W’ c Dt so that

VzEw’lg, -..
{ f)},&~W’ Pi(&,z,..., k (4)

Proof: Given a set W’ c ~t (t G N), we can always

induce a set W so that

‘T~’t{’fi’w’{fi-r} *f’w}e

The set W includes every vector which is similar to

a vector in W’. It is obvious that W satisfies (3) if W’

fulfills (4).

Q.E.D

As mentioned, applying t ~.;omponent patterns to

the n primary input lines of Tf is equal to applying n

t-dimension vectors to the n primary input lines respec-

t ively.

‘m). Let W beApply a complete assignment A to Tf

the set of the corresponding vectors applied to the pri-

mary input lines and the vectors delivered to other lines

‘n) Set W can be partitioned into ain other levels of T$ .

number of equivalence classes based on the equivalence

relation N. It is not hard to see that the larger the

number of the equivalence classes in W, the greater the

dimension tof the vectors in W. The dimension t is just

the cardinality of A. In the following we explore the re-

lation between the cardinality of A and the number of

the equivalence classes in W.

Given a complete assignment A to an N-level T~n),

we construct a set in the following way:

W.(A) := T{~(A, i,j)l X [l, s], ~G [l, ki-l],l G [O, k]}

for every s E [l, N].

W, (A) includes all vectors delivered to a line in

level i (i ~ [1, s]) and the vector delivered to the pri-

mary output line. Partition W, (A) into equivalence

classes according to the equivalence relation -, and let

#W,(A)/_ denote the number of equivalence classes in

W,(A). Observation 2 is obvious.
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Observation 2 Assume A to be a complete assignment

‘n). Thenset for an N-level Tf

1. Vs G [2, N] {W*_l(A) ~ We(A) c ~t} ;

2. b’s ~ [2, N] {1 < #lV.-l(A)/- < ##W,(A)/-}.

Lemma 2 Assume A to be a complete assignment set

for an N-1evel T~n). Then T;”) is ~(l) assignable if

#WI(A)/_ = 1

or

3s c [2, N] {#W,(A)/_ = #lV,,-I(A)/-} .

Proof: Assume A to be a complete assignment set for

an N-1evel T)”). In case #W1(A)/,., = 1, WI(A) in-

cludes only one equivalence class, and every two vec-

tors in WI(A) are similar to each other. Suppose

WI(A) = {~,~,...,~}, and ~,...,J~ are the corre-

sponding vectors applied to the k input lines of the f
cell in the first level, and ~. is the vector delivered to

the output line. #W1 (A)- = 1 means that

vlG[l, k]{&~}

and

~kCV(~,..., &) A~(~, &)=~&)=~.

This implies that

‘d~ E Wl(A)3~,... }1 ~Wl(A){Pj(J%%””, &F)}.

Thus T}”) is ~(l) assignable according to Corollary 1.

Suppose #W.(A)/_ = #W8-l(A)/.. for ans 6 [2, N].

As mentioned

VS[2, N] {W,-l(A) g W.(A)} .

This means that W, (A) and W,_ I(A) have the same

number of equivalence classes. It is not hard to see that

b’~ ~ W~(A)3~,... ,1 G W.(A) {Pf(JG,Z,... x)}.

Based on Corollary 1, T}n) is (3(1) assignable.

Q.E.D.

Lemma 3 Assume A to be a complete assignment set

for an N-level T}n) (N> 1), then

Vs c [2, N] {W@_l(A) $ W,(A)} (5)

if Tf‘n) is not 63(1) assignable.

Proof: Suppose T}”) is not 0(1) amignable, and A

(n) A5
is a complete assignment set of an N-level T, .

mentioned, W._l(A) c We(A) for all s G [2, N]. If

W.(A) = W,-l(A) for an s G [2, N], then

#W8(A)/m = #W~_l(A)/w.

According to Lemma 2, T}”) is El(l)

This contradicts the assumption directly.

assignable.

Q.E.D.

Lemma 4 For every complete assignment set A for an

N-level T\n)

Vs C [2, N] {#W, (A)/N > S} (6)

(n) .
if Tf as not @(1) assignable.

Proof: Suppose T}”) is not 63(1) assignable. According

to Lemma 2,

#W1(A)/N >1

and

Vs c [2, N] {#W,(A)/w > #Wa-l(A)/w} ,

Therefore, #W,(A)/w > s.
Q.E.D.

In order to prove Theorem 1 and 2, we define P(M, t)

as a set of vectors in the following form.

(~?,.:.,;,..., y: ,,rn)=, ~ t;=t (7)

tl t, tm l<i<m

It is easy to see that every t-component vector in ~t is

similar to a vector in P(M, t).

Observation S For every complete assignment set

A (#A= t) to an N-level T\n)

and

#W~(A)/- < #P(M, t).

Theorem 1 T~n) is ~(l) assignable if and only if there

is a t c N and ezists a W c Dt so that

Proof: The if part follows from Corollary 1 directly.

‘n) to be ~(l) assignable. Then there isAssume Tj

a constant t E N, and one can construct a complete
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(n)assignment set A of t patterns for an arbitrary Tf .

Suppose lg n = N and N > #P(M, t). Since

there must be such an s ~ [2, N] that

#W&(A)/m = #W.. I(A)/-.

Thus we can state that there is such an s G [2, N] that

We have the Theorem.

Q.E.D

4 Jump from @(l) to Q((lgn)*)

In thi~;~ction we show that the assignment complexity

of a Tf is either @(1) or il((lg n) ~-l ), In other words,

there is a jump from Cl(l) to fl((lg n) *).

Coming up next we explore the upper boundary of

#P(M, t).

Lemma 5 For #M = m,

(8)

Proof: Let p(#M, t) denote #P(M, t). We prove this

lemma by induction on m, which is the cardinal number

of M.

()
For m = 1, p(l, t) = ~ for every t c N. Sup-

pose p(rn, t) =
(t~~~lj

for m ~ i and every

t G N. For m = z + 1, based on the inductive assump-

tion in the last step.

p(m, t) = p(i + 1,t)

= ~ p(i,t -j)
O<j<t—-

X(

t–j+i–l——
i–l

O~j~t )

= ,.,<~+,.,( J 1 )
—-

()

t+i
.

= (’~w.

Q.E.D.

Theorem 2 7’}”) is either Q(l) or fl((lgn)+r)

assignable.

(n) .
Proof: Suppose T, M not @(1) assignable. It suffices

to show that #A = fl((lg n) ~ ) for every complete
(n)

assignment set A of Tf .

(n) to be Of N levels.Assume Tf According to

Lemma 4 and Observation 3.

N < #W~(A)/- < #P(M, t) (9)

for every complete assignment set A. Based on

Lemma 5,

“(’:’30
Then t ~ N* –reform >1. We know N = [Ignl.

Thus we can conclude that

t . ~(j+’r)

= S2((lg n)+).

Q.E.D.

The parameter m in Theorem 2 is the cardinality

of M. For M = {O, 1}, the parameter m is 2. The

following lemma is immediate from Observation 1 and

Theorem 2.

Corollary 2 Assume f to be a surjectiue function from

{O, l}’ to {O, 1}. Then T~n) is either 0(1) or ~(lgn)

assignable.

5 Problem Conversion

Theorem 1 gives a criterion of judging @(1) assignable

uniform trees. And Theorem 2 explores the structure

of assignment complexity. In this section, we give a

new criterion for deciding the assignment complexity

and convert the assignment problem of balanced uni-

form trees into the algebraic problem for exploring its

aspects further.

We use d to denote the all-zero vector and i the all-

one vector. Assume that L is a matrix, and Z, ~, ~, and

i? are vectors. When notations like

LZ = ~, ~L=Z

are used, we implicitly assume that the compatibility

of sizes and forms of L, Z, ~, and Z. If L is an m x n

matrix, then Z is a column vector with n components, ~

is a column vector with m components, J is a row vector

of dimension m, and Z is a row vector of dimension n.
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For E=(zl, . . . , Zn) and ~= (yl,.. ~~,YW), we define for all 1 c [o, k], then

Assume that s= #Mk and Pi=(p$:),...,p$$)) de-

notes the jth element of Mk. Let 111 (1 c [l, k]) be a

projection of the lth component of Pj. For instance,

‘1) for i E [l, m], ~ ~ [l)sl>‘t) Parameters bijll[(Pj) = pi .

and 1 c [0, k] are defined as following.

By using the above parameters we construct k + 1

( *j) (1= [ok])- lltisObviOus thatmatrices B(l) = b([)
mx.

every column of these matrices has only one nonzero

element. Given an i c A4, A@ includes rnk - 1 ele-

ments Pj satisfying 111(Pj) = i. Hence, every row of

B@J (1 c [l, k]) hss m k-1 nonzero components.

Before giving the new criterion for deciding the as-

signment complexity of uniform trees, we define two

mappings

: Dx . . .G,w, XD -NO X..XNO
~~

k a

5:, “ , \ “ ,NO X.CC xNo_llx. ..x D

8 k

(~,... ,W+’l,”””,P1,”””, P,,.. XJ.
~~

xl =0

Given xi E No(i = l,..., s),

Assume & = ~(~,...,~) for (~~,...~) = ~.

We call B(J)G(~, ,.. , ~) characteristic vector of ~

(1 ~ [0, k]), and use Ch(l) to denote it. Vector ~ be-

longsto D~,and its characteristic vector Ch(~) belongs

to N&. We have the following observation.

Observation 4 Given (E, . . . . ~k) ~ ~. If

Ch(j) = B(l)G(Z, . . .,1)
. (#, )....c$) T

Theorem 3 7’}”) is 0(1) assignable if and only if there

is a jinite set X = {ii I ii c N“} so that

V/G [ljk] {SI(X) C SO(X)} (11)

where

Si(x) ,= {B(’)i, Ii, G x}, 1 e [0, k] (12)

Proof: We prove the only if part at first. Assume T~n)

to be 0(1) assignable. According to Theorem 1, there

areat CNandaset WCDt so that

v& Ew36,. . . ,i-kw{Pf(l+&&. . J-J}”
We construct such a complete assignment set for the

T(m) that every ~ c W is the output vector of a cell
f

in I!$n), and the input vector of another cell as well.

Let+X be t$e smallest se<of vectors that includes every

G(ll, . . . ,~k)if(~~,+.. , ~k) is the complete assignment

‘“) Then S~(X) C SO(X) for everyfor an ~ cell in Tf .

1 G [l, k].

Now we prove the if part. Suppose there is a finite

set X c N’ and St(X) c SO(X) for every 1 = [1, k]. Let

W’ = {f($(~i)) I xi E X}. It iS easy to show that

for every & G W’ there are ~~, . . . . ~ c W’ and exist

~,..,~ED, sothat

Let W be the smallest set so that

‘n) is El(l) testable.Based on Theorem 1, T,

Q.E.D.

Corollary S T~n) is not 63(1) assignable if

has no feasible solution for an 1 = [1,k].
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Proof: Assume T~”) to be @(1) assignable. According

to Theorem 3 there is such a set X c Na that (11)

holds. We show that if (14) holds for an i G [1, k], then

(13) has a feasible solution for the given 1.

S[ (x) c s.(x) (14)

In case #X = 1 and X = {~}, ~ is just a feasible

solution of (13). Assume that in case #X = N, (13) has

a feasible solution if (14) holds for the given 1 E [1, k].

For #X = IV+ 1, there are three cases to be considered.

Case 1, #S~(X) = #SO(X) = #X.

Case 2, #S/(X) = #SO(X) < #X.

Case 3, #S/(X) < #SO(X).

For the first case, #S1(X) = #So(X) = #X and

S1(X) = So(X), then g’ = ~X, 6X J?i is a soIution

of (13).

For the second case, there must be ii, ~j E X so

that xi # ii and 13t0J~i = ll(”)~j. Thus X \ X;

satisfies (14) also, and its cardinal number is N. This

implies that (13) has a feasible solution.

For the third case, X must include such an J?i that

BfO)~i < S1 (X). This indicates that X \ Ii satisfies

(14) for the given 1, and its cardinal number is N.

Q.E.D

In the rest of this section, we present two basic the-

orems in linear programming. They will be used in the

next section.

Theorem 4 (Farkas’ Lemma) Assume A to be an

s X t matrix.

AS= ~, vjE [l, t]{zj > o} (15)

has feasible solutions if and only if

The proof of Farkas’ Lemma can be found almost in

every linear programming book.

Theorem 5 lj

AZ= d, VjG [l, t]{zj ~ 1} (17)

has a feasible solution, then it has feasible integer solu-

tions, provided that the termg of the constraint matrix

A are all integers.

Proof: Assume that A is an s x t integer matrix and its

rank is r. For r < s, we can determine an r x t matrix

A’ including r independent rows. Then (17) and (18).

have the same solution space.

It is obvious that (18) has a feasible solution if and

only if

A’~ = –A’i } VjG [l, t]{Zj > O} (19)

has a feasible solution,

Suppose that It = (bjj)rxr is a nonsingular subma-

trix of A’. Without loss of generality, assume that B

includes the first r columns of A’. Thus

{

the ith component of –B- lA’i : i < rxi = —
o i>r

define a basic solution of (19). It is clear that so defined

basic solution is a rational solution.

It has been proven that at least one of its basic so-

lutions is feasible if (19) has a feasible solution [8]. It

implies that (19) has a feasible rational solution if and

only if it has a feasible solution, Based on the relation-

ship between (19) and (18), Z is a feasible solution of

(19) if and only if Z + i is a feasible solution of (18).

Given a feasible rational solution of (18), we can al-

ways construct a feasible integer solution since (18) is a

homogeneous linear equation system.

Q.E.D

6 Commutative Trees

The k + 1 matrices B(t) (1 G [0, k]) defined in section 5

are determined completely by the function definition of

f. In this section we use B to denote matrix

[:1
B(o) – B(1)
B(O) – B(2)

B(O) : B(k)

For commutative function f we have the following

result.

Theorem 6 Assume subjective function f : AIk - M

to be commutative. Then T}”) is 8(1) assignable if and

only if

B~= –Bi, J> ii (20)

has a feasible solution.

Proof: We prove the if part at first. Suppose (20) has a

feasible solution. This means that

haa a feasible solution. Furthermore, it has a feasible in-

teger solution according to Theorem 5. Suppose F EN’

is a feasible integer solution of (21). Let X = {~}. Then
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S1(X) c So(X) for all 1 ~ [1, k]. According to Theorem

3, Z’~n) ie Cl(l) assignable.

Now we turn to the proof of the onf;y if part. Based

on Farkas’ Lemma, (20) has a feasible solution if and

only if

vi? E ILkm
{

zB>6~-ZBi>0
}

(22)

Suppose (20) has no feasible solution. This means that

3z~Rkm{zB >’}
(23)

Thus we can choose a .2?so that for every U ~ I

z’Bj7 > k (24)

T~~mplie~that for an arbitrary complete assignment

(~~,~~, . . .,~k) tO an f d

. .
ZBG(11,12, . . . ,Ik) > k (25)

.-l
since G(ll, 12, . . . , ~) 2 i for the complete assignment

(G, L,..., E).

Based on Observation 4

Ch(L) = @l)G(~,~, . . .,G]I

= B(21G(~,~, -““”)1--1)

=. ..= B(k)G(& 13, .0., 11)

Ch(z) = B@)G(& ~, ““”> L--l)
—— B(2) G(&_l, ~k, . . . , fk-z)
=.. .= B(k)G(z, ~, . . . . ~)

Ch(z) = B(l)G(L,G, . . .,L)

. B(2)G(&~, co.,~)

=.. .= B(kJG(&, 14,+ . . .. G).

This indicates that

Ll{
B(l)

B(2)
G(&, &j . . . ,&)+G(&,~;,..”,~-l)

z.
+ ““.+G(z,~,..”,l) 1

1 B(k) j

equals

B(l) + B(2)+ . ..+ B(k)
B(l) + j3(2) + . . . +B(k)

G(fi,~,...,fk)...
~(l) + B(2)>...+B(k)

Assume r = ~(~, J%,.””, ~). For commutative

function j

hence

ch(17J = B(0)G(~, ~~, ““” JZ)
—— B(0)G(~, f;,.. “JL-1)

B(0)G(~,~, . . .,~).=.. .=

Then

r B(o) 1

H
B(o)

2?. kG(fl, ~, . ..,~)

B~o)

is not smaller than

1
B(1)+ B(2)+ . ..+ B(k)

B(1)+ j9(2) + . ..+ B(k)

z 1G(~, ~,...,&) +k2}.

[ B(1)+ B(2) ‘+...+B(k)1
(fl) .

according to (25). Thus we can state that if TJ M not

63(1) assignable, then there is Z c R“’ so that

is not smaller than

(; B(1) + B(2) + )...+B(k) G(~,&,...,~;)+k

for every complete assignment (~, ~,. . . . ~) to an ~

cell. In other words, if T}n) is not Cl(1) assignable then

there is+such a+2’ c Rm that for every complete assign-

1 ) to an ~ cell there exists an i c [1, k]ment (11, ..., ~

‘“) has kN primary input lines. We de-Suppose T,

termine a path, called downhill path, from the primary

output line to a primary input line using the following

procedure.

1. Choose the cell with the primsry o~tput lin~ as

the first cell on the downhill path, and let (11,1, . . . . ~l,k)

denote the complete assignment set to this cell. Then

ZB(0)G(~l,l, 000,~,k) ~ zB(0)G@l, . . . ,~,k) + 1 – 1,

~ ) denote the complete assignment2. Let (?,I, .-., l,k

to the lth cell on the downhill path, and suppose
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3. According to (26) there is such an i that

ZBIOJG(i,l, . . . , j,~) > Z’B(i)G(~,l, “ “ “ , j,~) + 1.

We choose the cell linked directly to the ith input line

of the lth cell as the (1+ l)th cell on the downhill path.

%’$: ‘c$~~~~e that

) is the complete assignment to this

Z13(0JG(~1,1, . . . , ?I,k) ~ Z13(0)G(~,l, . . . . ~,k) + 1 – 1

~ @i)G(~,l, . . . ,~,k) + 1

= @O)G(lt+l,l, ..0 ‘)j ~l+l,k + z.

In this way, we can finally det~rmine t~ iVth cell

on the downhill path. Suppose (1~,1, . . . . 1~,~) is the

complete assignment set to this cell. Baaed on the above

calculation

ZB(0)G(?l,l, . . . , ~l,k) 2 Zl?[O)G(~~,l, . . . . ~~,~) + N – 1.

Let I;I denote the sum of the absolute values of the

components in ~. Then IG(ll,l, . . . . ~l,k) I is the cardinal
(N)

number of the complete assignment set to Tf .

= Q(N).

We know that N = [lg nl, and every T}”) is O(lg n)

‘n) is @(lg n) assignable.assignable. Therefore, Tt

Q.E.D.

The following Corollary is immediate from the above

theorem

Corollary ~n)Assume f : AIk _ M to be commuta-

tive, then Tf is either @(l) or @(lg n) assignable.

Assume f to be commutative and T}n) O(1) assignable.

The problem of searching for the minimum complete as-

Integer programm~~. ”

slgnment set for Tf w related to solving the following

min
ky~
i=l

By = –Bi (27)

325

The scene changes if f k not commutative. The
(n)

problems of deciding the assignment complexity of Tf

and searching for the minimum complete assignment set

for an O(1) assignable T\n) are still open.

Acknowledgements

I am grateful to Prof. G. Hotz for his supervision.

This work was supported by DFG, SFB 124, TB B1.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

J. A. Abraham and D. D. Gajski. Design of testable

structure defined by simple loops. IEEE !llans. on

Computers, C-30, 1981.

B. Becker, and J. Hartmann. Optimal-time mul-

tipliers and C-test ability. Proceedings of the ,%?nd

Annual Symposium on Parallel Algorithms and Ar-

chitectures. pp146-154, 1990.

B. Becker and U’. Sparmann, Computations

over Finite Monoids and theti Test Complex-

ity, Theoretical Computer Science, pp225-250, 1991.

D. Bhattacharya and J. P. Hayes. Fast and eas-

ily test able implement at ion of arithmetic functions.

Proceedings of the 16th International Sympos~um

on Fault Tolerant Computing Systems, July 1986.

R. Fritzemeier, J. Soden, R. K. Treece, and C.

Hawkins. Increased CMOS IC stuck-at fault cov-

erage with reduced IDDQ test sets. Proceedings oj

ITC. pp427-435, 1990.

J. P. Hayes, On realizations of boolean functions

requiring a minimal or near-minimal number of

tests, IEEE Trans. on Computers C-2O, pp1506-

1513, 1971.

G. Markowsky. A straightforward technique for

producing minimal multiple fault test sets for

fanout-free combinational circuits. Technical Re-

port RC 6222, IBM T. J, Watson Research Center,

Yorktown Heights, 1976.

Christos H. Papadimitriou and K, Steiglitz, Com-

binatorial Optimization– Algorithms and Com-

plexity, Prentice-Hall, Inc., 1982.

S.C. Seth, and K.L. Kodandapani. Diagnosis of

faults in linear tree networks. IEEE Trans. on

Computers, C-26(l), pp29-33, Jan. 1977.

H. Wu, ‘On Tests of Uniform Tree Circuits”, Pro-

ceedings of Second Joint International Conference

on Vector and Parallel Processing, pp527-538, 1992.

(Lecture Notes in Computer Science 634).

H. Wu, U. Sparmann, “On the Assignment Com-

plexity of VLSI Tree Systems”, Proceeding of The

Seventh International Symposium on Computer

and Information Sciences, pp97-103, 1992.

H. Wu, ‘On the Test Complexity of Tree

VLSI Systems”, Technical Report, SFB 124-B1,

08/1992, FB-Informatik, Universit?it des Saarlan-

des, Germany.

104


