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Abstract. This paper deals with an algorithm to com-
pute normal forms and invariant manifolds of ordinary dif-
ferential equations. This algorithm based on transforma-
tion theory, give us a usefool tool in the study of such equa-
tions, in the neighborhood of singular points This tool
involves a lot of computations on homogeneous polynomi-
als. Then in addition, a tree data structure is described
to represent homogeneous polynomials in an efficient way,
and we give the cost of the algorithm.

Introduction

This paper deals with normal forms and invariant man-
ifolds, since these two theoritical tools are often used
together, in order to have differential equations easier
to be studied. According to the theory, some effective
algorithms are introduced. In the first part, we recall an
important theorem of transformation theory which will
allows us, following Hale, to give an algorithmic defini-
tion of normal forms relative to a projection.in the sec-
ond part. That definition leads to an algorithm which
provides linear systems to solve. These linear systems
may be singular and arise from a linear differential oper-
ator. This operator will be described, and its spectrum
will be defined in an effective manner. The cases where
the linear systems are always regular, correspond to the
case of computation of invariant manifolds in normal
form. Then some modifications are needed to obtain
an algorithm which computes the invariant manifolds
on the initial coordinates, and the different cases are
summed up by a general algorithm. The computations
vields a lot of operations on the homogeneous polyno-
mials,and in the third section, we define a tree data
structure which allows to encode homogeneous polyno-
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mials over lexicographic basis, very efficiently . Then,
we calculate the cost of the algorithm at the end of this
section.

1 Transformation Theory

In this section we give a tool to perform a change of
variables to a differential equation.

Let the following differential equation defined in a
neighborhood of 2 = 0 :

I=Az+ f(z),zeC” (L.1)

where A4 is a n x n constant matrix and f a € function
defined by the formal power series :

flz) = Z Im(2)

m>2

where the f,,(s) are homogeneous polynomial in z of
degree m. .

The transformation relative to the continuous projec-
tion 7 is defined by:

z=w+ hirw) (1.2)

with
h(mw) = Z B (70)
m>2
where the h,,(7w) are homogeneous polynomial in 7w
of degree m. This change of variables applied to equa-
tion {1.1) leads to the differential equation for w:

w= Aw + g(w)w € C” (1.3)

with
g(w) = Z gm(w)
m>2
where the ¢,,(w) are homogeneous in w of degree m.
Then it is easy to verify that transformation (1.2) is
equivalent to the following one:

def em
c=ersw=eyz=uly,€) = y+ Z hm+1(7ry)r—n—l
m21 )

(1.4)
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Let us introduce the notation:

_ 8

fog =Yy
ag
fxg _8:vg_axf

Furthemore, if we define the function U(wy,¢)
Yom>0 Um(my) Sy such that u(y, €) is the unique solu-
tion of the equation:

du
de

where Uy, (7y) are homogeneous in 7y of degree m+2,
then the following theorem holds [6]:

=U(ru,¢) (1.5)

Theorem 1 Suppose the notation as above. then if we

define the sequences fi(m), Ui(m), i,m=20,1,2,... by the
recursive relations
o= Y+ Zcff‘i”[” x Uyr. (1.6)
2—0,1,.. n--l 2,.
fO = af,i=01,2, .
and
u™ = vl ”+ZC’U("’ Yo (1.7)
i=0,1,...,m=1,2,..
v = U, i=0,1,2, ..
then
o = M)y (1.8)
(m—1)17° ’ ’
_ 1 (m=2)  _
hy, = Us ,m=23,... (19)

(m — 2)!

notice that we put fi(z) = Ax. Therefore the coeffi-
cients g, are computed recursively from f,, and [’,,
without the need of the function h. But the coeflicients
h,, can be computed recursively from the [/,, if the
transformation is needed. Let remark that computa-
tions (1.6) and (1.7) can be performed according to the
following so-called Lie triangles.

1>

f1(0) (1)

O g (1.10)
(0) (1) D g3
3 1 0
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fl(m) depends on left-hand terms, from the same row
to the top of the triangle 1.10. That is to say, f,.(m) is

computed from the f,(r), with », s such that 0 <r+s <
m+i and r < m.

Ui

Ul(O) U(gl)

v v ul® (1.11)
UéO) Uz(l) U1(2) U(g3)

The same remarks can be applied to Ui(m) which de-

pends on US| with 7, s such that 0 <r+s<m+iand
r<m.

2 Computation of Normal Forms
and Invariant Manifolds

2.1 Normal Forms

In this section the definition of normal forms relative to
a projection w is given, which leads to a normal form
computation algorithm. Before going further, we would
like to point out special feature of formulas (1.6). The
(k + 1)-th row of the triangle 1.10 is given by:

(z) (z 1) (i—1) -
,+1+ch RS x U i=1,0k
£V = B fi
if we define the sequence f), i =1,...,k by :
Py (0) 0)
fo + L Gl < Uy
fO = i e D x Ui i= 2,0k

(2.1)
1t follows -
z(cl-)1 = f 4 fo x Up_y

and thus i }
S8 = F 4 fo x Una

furthemore, f(*) depends only on f(i) 0<i+j<kand

(2.2)

Ug U, ..., Ug_o. Thus, at this step of the computation,
of Ue Uy, A,Ukﬁr_; are known f(k) is known too. Let us
recall that f(()o) = A then according to (1.8) we can
write: _
LUp_1 = f*) — klgppy (2.3)
where L is the linear operator defined by:
Ov(mz
(Lv)(z) = (E) )A:c — Av(rz).
z



Let us assume that A7 = 74 then 7Ar = 7 A. This
yields

Jv(rz) Az = dv(rz) wAz = 21)—(—75:6—)7(/17(.’6.
Oz Onez onzx

if ¥ denote vor and B = mA, y = 7z then

(9)w) = 52 By - 43(o).

Let m = dimaC" then €™ with 7C" can be identi-
fied. Let V(k, m,n) be the space of n-functions which
are homogeneous polynomials in m-vector of degree k.
Therefore, for each k:

L(V(k,m,n)) C V(k,m,n)

Let us notice that B is a m x m matrix. We define the
decomposition

V(k,m,n)=V"(k,m,n) @S(k, m,n)

, where V" (k,m,n) stands for the range of L. Let
Wzk,m,n) be the projection of V(k, m, n) onto V" (k, m,n)
along S(k, m,n). Now a definition of a normal form can
be given:

Definition 1 Let f be as in (1.1), and assume Am =
7 A, then equation (1.3) is a normal form for equation
(1.1) relative to the projection =, if gi,, Uy salusfy :

LUp-1 = ”€k+1,m,n)f(k) N (2.4)
klgg+1 = - ”(rk+1,m,n))fm

fork > 1, and f*) defined as in (2.1)

Remark 1 if r = I then B = A, and the condition 1s
nothing but a nonresonnance condition on the ergenval-
ues of A. In this case, definition (1) becomes the clas-
sical Poincare normal form definition. For existerce.
properties and applications see [1], [9] and [{]. [8] for
an other algorithmical approach.

This definition yields the algorithm 2.1, which computes
gk+1, Ug—1 and hgy1, ¢ = 1,... A — 1. That is to say,
algorithm outputs approximation of the normal form to
the order K.

Remark 2 if we want {0 compule classical normal
form we only have to put # = I and apply algorithm
2.1

Algorithm 2.1 normal form

forkin 1 to K-1 do
0 = k!4
compute f*) using formulas (2.1)
determine V(rk+1~,rzyn) and 7r('k+1‘m,n)
- Wfk+1,m,n)f( )
determine the solution U,E(l)l of :LX =b
Jk+1 7= (f(k) ~b)/k!
foriin 1tok do
,Et_z‘- = f(') —-b
compule hiyq1 using formulas (1.7) and (1.9)

2.2 Spectrum of the operator L

Since, the algorithm 2.1 yields linear systems of the
form LX = b, we are going to describe in an effec-
tive way the structure of L, identifying it with a matrix
on V(k,m,n).

For further discussion, we introduce the notation,
s E Cnl

s = {(S1,.--15m)
g = (q1,---,qm), ¢ €N
gl = qiteetam
st = stshllsim (2.5)

If d denote the number of different k-degree monomials
in m-vector s then let

Pk, m) = {p*,...,p%)}

be the set of m-indices with module k, ordered by the
usual lexicographic order:

D= q i=1,...,m
or
P<q& P=q it=1,...,r<m
and
Pra1 < grqa

Let e} be the I-th element of the €"-canonical basis,
then

B(k.m,n) = {s" e}, 1<i<d,p e Plk,m)1<l<m}

stands for the ordered basis of V(k,m,n). Now, the
operator L on V(k, m,n) can be identified to its matrix
representation Ly over B(k, m,n). In order to determine
L. Lu.v € B(k,m,n) needs to be computed:
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L(zP .e}) = S(zP" .€}) — Az e}

with
t 8 P‘. n
S(af'.€e]) = LBz .
: P
= (z:n:l 27"71:1 p;B,,.:L‘rZ—')e?
where
L agtag e an™ ifpl >0
z, z° otherwise
furthemore .
Az”'.e;‘ = ZAjI:cP'.e;‘
i=1
these computations lead to the matrix :
Se—Anls Al —A1,14
—Anly  Sp— Ay —Aan Ig
Ly = . ) .
—AnlId —AnZId Sk - AnnId

where S, is the d x d matrix arrising from the operator

S.

Remark 3 If A is diagonal then Ly 15 bloc-diagonal, if
A is upper triangular then Ly is upper-bloc triangular.

The end of the section is devoted to the statement
of a non-singularity criterion for the operator L, which
will allow us to produce an algorithm of computation
of invarariant manifold. The first step consist of the
computation of the spectrum o(L) of L, which will give
us the NullSpace of L.

Let P be a n x n nonsingular matrix, Q a m x m

nonsingular matrix. Let y = Qz and g(z) = P~1v(Qx).
It follows
3
L(v(y) = Lv(Qz) = P2 (Z) Q 1BQ: - APy ()
we put
Lg(z) = P Lu(y) = g%gz—le'lBQz — P7YAPy(2)

it is clear that the operator L has the same spectrum
as L. Also, the matrices P and () can be choosén such
that P~1 AP and Q~1BQ are upper triangular.

Then in order to determine o(L) A and B are as-
sumed to be upper triangular. Let Si(i,7) denote the
element on th i-th row and j-th column of Sj;. Since B
is upper triangular, B,, = 0 if s > r then

Sk(irj) = Z PgBar)

1(3,5)
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where

J

. P .
{(Svr)/Pg>0,1‘r1; =xp,1§s§r§m}

I(i,j) =

then for (s.r) € I(i,§)

_ _ph_pi2 Js—1 er+1 pim
LT = E T R4 ...xP .zb,
7 .
=zF,ifr=s
J .
< zP, otherwise

therefore Sy is lower triangular, furthemore Si(i, 1) =
Z::nzl piBs‘g, thus

m
o(Le)={Xj =) piBu—Au,i=1,...,

s=1

n;j=1,...,d}

Remark 4 According to the assumption that matrices
A and B are upper triangular, the diagonal elements of
these matrices are their eigenvalues.

Then, the following statement holds:

Theorem 2 If A, u; denote eigenvalues of A and B
respectively. Ly 1s non singular if and only if

m

daue—A#0, 1<i<ni|ql=k
s=1

Consequently, if the above condition is satisfied, for
every k, L is non singular, and we obtain, according to
the definition 1:

f(k)
k 2 1

Uk-1

2.6
Jk+1 ( )

=Lg
=0,

2.3 Computation of Invariant Manifolds

We are now in position to precise the relationship
beetween normal forms computations and invariant
manifolds.

Consider the differential equation z =
€" which can be writen as follows:

= Bz + fi(21, 22)

Az+f(2), z €

{ :”i = Cz + fa(21,22) 27)
where = = (21,22), f(2) = (fi(z), f2(2)) and A =
< g g ) are as in equation (1.1). We suppose z; =
7z, then A7 = A = B and the following system can

be seen as the normal form of system (2.7), defined by
definition (1)
{ lL}l - B’Ll)l + gl(wl, ’11)2)

= Cwy + go{wy, wy) (2.8)

ng



If we put w = (w1, w3), wy = 7w and v = (v!,v?)

then
Lo(wy) = (L (v} (wy)), L} (v* (w1)))
where
L} (o' (wy)) = 2500 By, — Bol (wy)
L2(v?(wy)) = 2500 By, — Co?(wy)

Furthemore, let assume that the eigenvalues of B, C
satisfy theorem 2 for each order. It follows, that op-
erator L? is nonsingular, therefore the equations (2.6)
yields: ga(wq,0) = 0. This means that the set wy = 0 is
an invariant manifold, and the vector field on this mani-
fold is given by Bw; +g1(w1,0) which is in normal form.
Therefore, the algorithm 2.1 can be applied to perform
these computations. But, if the manifold is needed in
the initial coordinates system, then the algorithm has to
be modified. Suppose the set (22 = h(z;)) is invariant

on (2.7). This is equivalent to s = a’z;(zll)ﬂ
Oh(z ‘
¢=>_.6(z:)BZ1 —Cz = fa(z1, h(z1)) (2.9)

—Mfl(zh h{z1))

azl

Now, let 21 = wy; 29 = w2+ﬁ(w1) be the transformation
which brings (2.7) to (2.8), with the set w, = 0 invariant
n (2.8). This yields, after some computations to :

91(z1, 22) = fi(z1, 22 = h(21))
g2(wi, wq) = —(%%lllel — Cwy)

+ fo(w1, w2 + h(w1)) — Mfl(wuwz + h(w))

8w1

but, wy = 0 invariant implies go(w1,0) = 0 and leads to
the same equation as (2.9) in h. Then, h and h can be
identified. If u((21, z2), €) is defined from

( Z + h(z1) )

as in (1.4) and consider its generator U/

&
U(ru,€) = U(zy,¢€) = ZU’"(ZI)%

£>0

with U homogeneous of degree k + 2. The partial dif-
ferential equation (1.5) on functions u and {7 leads to:

Ur(z1) = < zm(n) )
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This relation together with definition (1) yields:

L*hpsr(z) = (I —m)f¥) ()

s 8 (2.10)

where L? is defined above, and f(")(zl) is computed by
formulas (2.1). Furthemore 7f®)(2,) is the vector field
on the invariant manifold z2 = h(z1), where h(z) is
computed by the previous linear system. Refer [3] to
find the similar result in the case of a center manifold
computation. Rather than giving a particular algorithm
derived from the general one 2.1, we prefer state the
algorithm 2.2 which sums up all cases. First, let us
notice that if dimx€" = m then :

L?: V(k,mn—m) - V(k,m,n—m)
v(z1) — -a—';,—(;l—‘lﬂ'A — (I —m)Av(z1)

zy € 7€", and (I — 7) is the projection of € onto the
last {n — m) coordinates of C",

Algorithin 2.2 mawm algorithm (A,f, K,n,m,InvOnly)

define w 1o be the projection on the m-first coordinates

of C"
of InvOnly = true then do
7= (I—m)
=n-m
else do
To=1
pi=n

B:=74:C =74

for ki 110 K-1 do
compute B(k + 1,n,n) and B(k +1,m,p)
FO = k'fyy1 encoded over B(k + 1,n,n)
compute matriz Liyy over B(k + 1, m, p)
compute f*) using formulas (2.1)
determine V(k+1 m ) and 7r(k+17m’p)

b= 7r(k+1mp)f
compute U( )1 solution of : Ly X = b
Gr+1 = f“”’ b)/k!
for van 1tok do
1(51-31 - f(i) —b
if InvOnly = false then do
compule hyy1 using (1.7) and (1.9)

If we want to compute the normal form, we apply
the main algorithm with in inputs (A, f, K, n, n, false).
To compute n — m-dimentionnal invariant manifold in



normal form the inputs are (4, f, N',n,m, false), and
not in normal form (A, f, K, n, m, true).

Before introducing the programming aspects, let us
show some particular kinds of differential systems whose
linear part verifies theorem 2 at each order, and there-
fore admit invariant manifolds. These cases are of
great interest and many authors state existence prop-
erties and applications of such invariant manifolds.See
{71, [91,[2], and [5] for an constructive proof which leads
to another kind of algorithm.

o(B)=0 o(C)#0 center manifold

o0(B) <0 ¢(C)>0 stable manifold

o(BY >0 o¢(C)<0 unstable manifold

0(B) <0 o(C) >0 center stable manifold
6(B) >0 ¢(C)<0 center unstable manifold

3 Programming Aspects

First at all, we point attention on the fact that if we do
computations on a space V (k, m, n) with its elements in-
coded over the basis B(k, m, n) then it is easy to write
and solve linear systems which arise from above algo-
rithm. The disavantage is that product and derivation
over such basis have to be defined. Let us take an ex-
ample: let u, v be polynomial components of some n-
functions in V(k,m,n). These polynomials have the
following representation:

u = (ug, Ug,...,uq), v = (v1,0s,...,0q)

where d is the number of terms of P(k,m) =
{p*,...,p%} and let fil be the number of terms of
P2k, m) ={q',...,q¢% }, then w = w.v = (w1...., wy).

and
wy = Z Ui, .
{1<s,y<d/pr+pi=¢*}

Therefore, for each monomial product the position of
p' + p’ in P(2k,m) has to be found, which yields an
important cost in O(d’). The cost of the product is
here O(d'd?). Also, it seems necessary to organize the
basis in a way which allows faster search of elements.

3.1 Polynomial Representation

We are going to construct a tree data structure which
will allow us to search a basis element in O(m) steps.
Let us define the set of nonnegative integers lists

Llk,m)={l=(,la, ... lm) k> 11> 1 = 0}

ordered by
ls=hs, s=1,...,m—1
I<h ={
- ly=h, s=1,...,r<m-1
Ir+1>h'r+1
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We define the map
or : Plk.m) — L(k,m)
k= 1P 0)

Remark 5 last element of ¢x(p) is 0, since by defins-
tion | pl=k

(3.1)
pr— (k~p1,...

let I = (I1,02,...,lm), Im = 0 then if we define p =
(k=1 li—1a, .. ;g —lm_1,1y,), it is easy to verify
that ¢r(p) = . Furthemore, let us take p, ¢ such that
or(p) = ¢r{q). This implies

r r
k—Ep,-:lc—qu,rzl,...,m
j=1 j=1

and by induction on r this implies that p = q. Therefore
@k is a bijection and we can define:

@,‘Tl s L(k,m) — P(k,m)
(3.2)
le—(k =l li = o, .. lo ~ L1 Immh)

Consider I < h then it exists r such that I, 4; > Ay
and the r first indices of { and h are equal. It is easy
to see that the r first indices of ¢7'(I) and ¢} '(h) are
equal. Then, the r+ 1-th verify I, — 41 < h, — hpyq
and therefore ¢; (1) < ¢5 ' (h).

Consequentely, if p*,1* are the i-th element of the or-
dered basis P(k, m), L(k, m) respectively then

ou(p') =1 (3.3)

Let § denote the binary relation ”is son of” over £(k, m)
defined by

1S h C>{l‘,:hs,s:l,...,f‘(?’n—l

© lr+1 > hr+l =0, lr+2 =0
Let, l = (11,12, . ..,Ir,O,...,O) then
h=(,l,...,,-1,0,...,0) is the unique list such that

[Sh, and a direct application of the definition provides
the set of its sons:

Son(l)y = {(li, 1o, ..., 1-,4,0,...,0),i=1,..., 1.}
moreover, Son(l) possess [, elements. We say that | =
{{y.la,...,1..0,...,0) is ¢-th son of h iff { is son of h and
I, = i. and we denote this by [ $* h

Remark 6 Lei notfice that if I 1s son of h then | < h.
Moreover, of | 1s i-th son of k, h s j-th son of k and
i < jthen h <1< k. Therefore, Son(l) is an ordered
set, and the i-th element of this set is the i-th son of .



Example 1 £(3,3) =
(2,1),(2,2),(3,0), (3,1

.(2.0),

In order to find out a better data structure for the bha-
sis P(k,m), a tree is defined from L£(k,m). But, rather
than defining a tree whose nodes are lists, we prefer
building an equivalent tree whose nodes are the posi-
tions of elements in the ordered basis L(k, m).

Definition 2

{

Let us recall that one list admits at most one ”father”.
Therefore the data structure defined above does not con-
tain any circuit and is a tree.

( position of I ) if Son(l) = 0

tree(l) == ( position of I tree(h) for h in Son(l) )

h=1
h € tree(l) &< ¢ or
' € Son(l) such h € tree( I')
(3.4)
The first element of P(k,m) is p! = (k,0,...,0), then
the first element of L(k,m) is I! = (0,...,0). Finally,

the data structure is defined by:
Definition 3 T(k,m) = tree(l!)

Let us verify that each node of the tree T'(k, m) belongs
to L(k, m) and conversely, that each element of L(k, m)
is a node of T'(k,m). Definition (2) with (3.4) vield
that each node of T(k,m) is an element of L(k, m).
Conversely, consider ! = (I1,...,1,,0,...,0),
m — 1 element of L(k,m). [ is son of ['V

(liy...,1-1,0,...,0) which implies that [ &€ tree({!)).
1) s son of I® = (I;,...,1,_5,0,...,0), then /1)

tree(I?)) and therefore | € tree(l""’). Repeating
this process we obtain ! € tree({'*!) where {'*) =

(li,.. ., r=5,0,...,0),1 < s < », which implies that
l is a node of T'(k, m).
This constructive proof  means that if
[=(l,ls,...,1.,0,...,0) then

=8 (SI=1(- - (Sh (1)) (3.5)

which means that entries of | represent the path which
leads to the node position of I through the tree T(k, m).
Let elt* denote the algorithmical function which per-
forms that search. Then the following statement holds:

Theorem 3 Let p be an element of P(k,m) then the
position of p in P(k,m) is computed by the function
elt? (or(p)) in at most (m — 1) steps

The cost is given by the lenght of ¢ (p) which is less or
equal to (m — 1).
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Example 2 7(3,3) = (1(2(3))(4(5)(6)) (7(8)(9)(10)))
elt3((3,1)) = 8. 3 leads to the third son of 1: 7, and 1
lcads to the first son of 7: 8.

Now, let us consider the basis P(k, m}, and the tree data
structure T'(k, m). We claim that this structure can be
used to localize the elements of P(k’, m), if k' < k. We
put:

pEP(k,m)={p!,...p%}
g Pk ,m)={q",...p"}

Then ¢y = k' — k + p; and it follows k' — q; = k — py,
which implies ¢x(p) = Pr:(q). Notice that if p is the
i-th element of P(k, m) then relation (3.3) yields that ¢
is the i-th element of P(k’, m). Moreover, if L(k,m) =

p= (17171)2)"'71)171))
q: (’]11P23'--spm)

{h, ..., h%} then
LE.m)=1{h" i=1,...,d} (3.6)
and therefore
elty’ (1) = elti(l), where I = ¢r(p) = ¢rr(q)  (3.7)
Example
={(0.0),(1,0),(1,1), ('2 0),(2,1),(2,2)}
( ):( (2(3)) 4(5)(6
elt3((2.1)) = 5 = elt3((2,1))

This structure is used to define the product and the
derivation of monomials in the following manner: let
p € P(ky,m), and ¢ € P(ke, m) and suppose k > k; +
ka. We put ¢y, (p) = {, ér,(q) = h, then, applying the
definition 3.2, it is easy to see that p+¢ = ¢k,+k,(l+h)
Then, the position of p + ¢ in P(k; + kg, m) 1s given
by elt] +hs (I + h). The property (3.7) states that this
position is obtained by elti*({ + h). Thus, the following
theorem holds:

Theorem 4 With the previous notations, the position
of p+q in Plky + ka,m) 1s computed by elt*(I + h)
i at most 2(m — 1) steps. Furthemore, if p > q then
the position of p— q in P(ky — ka,m) is computed by
et (il —h).

The cost comes from the componentwise sum I+h which
needs at most (m — 1) steps, and from the search in the
tree, in at most (m — 1) steps. The second statement
of the theorem 4 determines the monomial: 8*2z? /dz1.
Furthemore, it is easy to calculate the exponent factor of
the derivation, provided the total degree of the polyno-
mial is known. Thus, the representation has to contain
the total degree of the homogeneous polynomial:

) vdz)

u= [kl‘((ll,uz,”-,udl)], v = [kl’s(vlavZa"'

If v is homogeneous in n variables z1, g, -, T, of de-

gree ky and v is homogeneous in the m-first variables



of degree k2. Then d; = C','f tn-y and dz = Cy? m
We suppose that the cost of the coefficients product is
O(1). Then, the cost of the product u.v is:

OCytn1Cilem-1) (3:8)
and the cost of the derivation of u is given by:

(’)(an +n-1) (3.9)

3.2 Cost of the Algorithm

We are going to evaluate the cost of the algorithm 2.2
when we compute the approximation of the normal form
up to an order k. We start with the calculation of the
cost of the operator fog, where f, g belong to V(k;, n,n)
and V(kz,m,n), respectively. Let o[, n)(k,m) de-
note that cost. Then, the cost of f x g denoted by
X[(k1,n),(ka,m)) is given by

X[(k1,n),(k2,m)] = Of(k1,n),(k2,m)] T Ol(kz,m),(k1,n)]

Let us suppose p is an homogeneous polynomial in n
variables of degree k1, and ¢ is homogeneous in m vari-
ables of degree ks. Let C((k1,n),(k2,m)) denote the
cost of the product p.q :

((klan) (l"27m)) e nckﬁ-n 1 Cll::+n1 1

It is clear that the cost of fog is given by the cost of the
product Df.g which is n.C((k1 — 1, n), (k2, m)), then:

Ofkr ), (kzerm)] = 2 .Criim_2:Chlymoy

and, X[(k, n),(ksm)] 15 €qual to:

n?(Cylin—2-Chrgmar + Citinor Cilimon)  (3.10)

Moreover, the cost of the column ¢ in the triangle 1.10,
when computations are performed to the order £, is

k—i141

i ( Z X[(,n),(,m)}) (3.11)
j=1

The summation of (3.11) on 7, from 1 to k, provides the
cost of the complete computation to the order k. Using
(3.10), we obtain :

k—i41 k—i41

Z(Zl{c:wlz 2 Z Cm+] 1+Cn+z 1 Z C‘]In‘-:]—

which becomes

2(Z {C:l+i 2(Crlzm+‘lj-lz+1 1) + C:z-{-z—lcrfl———%—zk—r})

(3.12)

In order to simplify the above expression we introduce
the two formulas:

7C 4 —1 _pCp+r 1
(3.13)

r—1 —_ r
Z =0 p+th+r - C'}>+<1+7‘+1

and finally, we obtain

n*(2(n = DCy ik +Crnpmpr = (m+1)Cy k-2~ Ciy1)

(3.14)

In order to obtain asymptotic behaviour of 3.14, we

use Stierling formula which yields C?,, ~ s"/r! when

s — 00. Then, when & — oo the cost of the computation
is equivalent to
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Ln+m4-1
(n+m+ !

(3.15)

Conclusion

Firstly, we point out, the fact that the same algorithm
provides two usefull tools in the study of differential
equations. Basically, this algorithm provides a linear
system to be solved, at each step. Therefore, we sup-
pose it is quite natural to represent the homogeneous
polynomials in a vectorial form. This is why the data
structure described in the last section is important. It
will allow us to implement differentiation and multipli-
cation of homogeneous polynomials efficiently. Finally,
the cost of the algorithm given in the last section should
be helpfull to compare this tool with other methods.
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