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Abstract. This paper deals with an algorithm to com-

pute normal forms and invariant manifolds of ordinary dif-

ferential equations. This algorithm based on transforma-

tion theory, give us a usefool tool in the study of such equa-

tions, in the neighborhood of singular points This tool

involves a lot of computations on homogeneous polynomi-

als. Then in addition, a tree data structure is described

to represent homogeneous polynomials in an efficient way,

and we give the cost of the algorithm.

Introduction

This paper deals with normal forms and invariant nm]l-

ifolds, since these two theoretical tools are often msed

together, in order to have differential equations easier

to be studied. According to the theory, some effecti~e

algorithms are introduced. In the first part, we recall au

important theorem of transformation theory which \vill

allows us, following Hale, to give an algorithmic defini-

tion of normal forms relative to a projection,iu the sec-

ond part. That definition leads to an algorithm which

provides linear systems to solve. These linear systems

may be singular and arise from a linear differential oper-

ator. This operator will be described, and its spectrum

will be defined in an effective manner. The cases where

the linear systems are always regular, correspond to (he

case of computation of invariant manifolds in normal

form. Then some modifications are needed to obtain

an algorithm which computes the invariant, manifolds

on the initial coordinates, and the different cases are

summed up by a general algorithm. The computations

yields a lot of operations on the homogeneous pOlJnO-

mials, and in the third section, we define a tree data

structure which allows to encode homogeneous polyno-
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rnials over lexicographic basis, very efficiently . Then,

we calculate the cost of the algorithm at the end of this

section.

1 Transformation Theory

In this section we give a tool to perform a change of

variables to a differential equation.

Let the following differential equation defined in a

neighborhood of z = O :

:= Az+f(z), zEUY (1.1)

where .4 is a n x n constant matrix and f a C!m function

defined I>y the formal power series :

whew the ~,,, (;) are homogeneous polynomial in z of

degree 771.

The transformation relat;ve to the continuous projec-

tion ~ is defined by:

: = w + h(mu) (1.2)

with

h(w) = ~ h,,,(m)

m>?

where the /r,ll ( r w) are homogeneous polynomial in irw

of degree m. This change of variables applied to equa-

tion ( 1.1) leads to the differential equation for w:

w= Aw + g(WJ)W E C“ (1.3)

with

g(w) = ~ 9m(w)

m>?

!vhere the g)7z( u) ) are homogeneous in w of degree m.

Then it is easy to verify that transformation (1.2) is

equi!”alent to the following one:
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Let us introduce the notation:

fog . gg

fxg =g9–%f

Furthermore, ifnwe define the function U(zy, ~) =

~~20 ~m(~u)~ such that u(y, 6) is the unique solu-
tion of the equation:

au
— = u(m, 6)ae (1.5)

where Um (my) are homogeneous in my of degree m+2,

then the following theorem holds [6]:

Theorem 1 Suppose the notation as above. then tf toe

(m) u(m) i,?n = 0,1,2, . . . by fhedefine the sequences fi , , ,

recurszve relatzons

fp = f:yl-’) + ~ C: f::-’) x l~,$r, (1.(j)

J=o

i=o, l,...; m= 1,2, . . .

f(o) = i! f,+,, i = 0,1,2,...i

and

u(m) = U\~l-l) + ~ C! il~~-l ‘o[Jj ,i (1. 7)

j=O

i=o, l ,...; m= 1,2, . . .

up = ui, i=o, l,2,...

then

9m =
1 f(m-l), m= 1,2,... (lb’)

(m- 1)!0

hm =
1

(m-2)!

@ ‘Z–2), 171 = 2,3, (1.9)

notice that we put ~1 (x) = Ax. Therefore the coeffi-

cients g~ are computed recursively from f,,z and t,,,,
,

without the need of the function h. But the coefficients

hm can be computed recursively from the U,,, if the

transformation is needed. Let remark that comput a-

tions (1.6) and (1.7) can be performed according to tile

following so-called Lie triangles.

f$o)

f[o) f$)
(0) f[l) f$)

f,
(o) f;l) f[~) f:s)f3

. .

(1.10)

f;’”) depends on left-hand terms, from the same row
(m) is

to the top of the triangle 1.10. That is to say, fi

computed from the f$r), with r, s such that O < r +s <

177 + i and r < m.

“.

‘m) which de-The same remarks can be applied to Ui

pends on [J:’), with r, s such that O ~ r+s < m+i and

r < m.

2

2.1

Comput at ion

and Invariant

Nornlal Fornm

of Normal Forms

Manifolds

In this section the definition of normal forms relative to

a projection m is given, which leads to a normal form

computation algorithm. Before going further, we would

like to point, out special feature of formulas (1.6). The

(k + 1 )-th row of the triangle 1.10 is given by:

f[o) = k!fk+,

if we define the sequence ~(’~, i = 1, ., ., k by :

j[l) = ~~o) + ~~~j c~_~f\!!~_j x ‘Tjm

f(i) z f(i-l) + ~~~~C~_if~~~j X uj~, i = ‘2,.. .,k

(2.1)

it follows

jj~)l = ~(1) + f. x [Jk_l

and thus

j~k) = ~(k)+ fo X Uk--l (2.2)

furthermore, ;(A) depends only on f~i ), O < i+j < k and

[’0, t~l, . . . . [[k_2. Thus, at this step of the computation,

if (’[1. [11 , , Llk_2 are known f(k) is known too. Let us

recall that .f~o) = A then according to (1.8) we can

\vrit,e:

LIJk_l = f(k) – k!g~+l (2.3)

where L k the linear operator defined by:

dv(~x) Az _ Av(mc).
(Lv)(z) = ~
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Let us assume that AT = 7rA then 7rAT = TA. This

yields Algorithm 2.1 normal form

if c denote vor and B = rA, y = TX then

(L,)(,) = %Bu-Ati(y).

Let m = dim~C” then Cm with mCn can be identi-

fied. Let V(k, m, n) be the space of n-functions which

are homogeneous polynomials in m-vector of degree k.

Therefore, for each k:

L(V(k, m, n)) ~ V(k, m, n)

Let us notice that B is a m x m matrix. We define the

decomposition

V(k, m,n) = V’(k, m, n) @S(k, m, n)

, where Vr(k, m, n) stands for the range of L. Let

*&,m,?a) be the projection of V(k, m, n) onto V’(k, 771, n)

along S(k, m, n). Now a definition of a normal form can

be given:

Definition 1 Let f be as in (1.1), and assume .47r =

irA, then equation (1.3) is a normal form for equatton

(1.1) relative to the projection ir, if gk, U, sai~sfy :

Luk-1 = 7r;k+l,m,n)p ~i(k)

kbt+l = (~ – qk+l,m,n)
(2.4)

for k >1, and ~(k) defined as zn (!2.1)

Remark 1 if r = I then B = A, and the condition IS

nothing but a nonresonance condition on the ezgenvol-

ues of A. In this case, de$nitzon (1) becomes the clas-

s~cal Potncare normal form definztzon. For exlslel~(<,

properties and apphcattons see [1], [9] and [~], [s] for

an other algorithmical approach.

This definition yields the algorithm 2.1, which computes

gk+l, U~-1 and h~+l, z’ = 1, . . .Ii – 1. That is to say,

algorithm outputs approximation of the normal form to

the order J{.

Remark 2 if we want to compute classical normal

form we only have to put T = I and apply algordhm

2.1.

for k in 1 to K-1 do

f[o) := k~fk+~

compute f~k) using formulas (2.1)

‘etermilie ‘(\+lJm,n) and ‘fk+l,m,n)

b := n[k+l,m,n)f@~

deiermine the solution U~~l of: LX = b

gk+l := (~(k) – ~)/~1
for i in 1 to k do

f$~i := f(i) – b
compute hk~l using formulas (1. Y) and (1.9)

2.2 Spectrum of tile operator L

Sincei the algorithm 2.1 yields linear systems of the

form L.Y = 6 , we are going to describe in an effec-

tive way the structure of L, identifying it with a matrix

on 1’(1!, ?7?, ??).

For further discussion, we introduce the notation,

s E 4Y

s = (Sl,..., sm)

q = (ql!...>f?m)!9j~lN
Iql = ql+”””+qm

Sq = s~lsy... $i’il (2.5)

If d denote the number of different k-degree monomials

in m-vector s then let

P(k, m)={pl,..., pd}

be the set of m-indices with module k, ordered by the

usual lexicographic order:

[

p, = qi i=l, . . ..m

or

p<qu p, = q, i=l ,.. .,r<m

and

Pr+l < 9r+l

Let e~ be the i-tb element of the U-canonical basis,

then

stands for the ordered basis of V(k, m, n). Now, the

operator L on V( k, m, n) can be identified to its matrix

representation Lk over 13(k, m, n). In order to determine

Lk, Lu. v E L$(k, m, n) needs to be computed:
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L(d’’.e~) = S(xp’ .e~) – Azp’.ef

with

where

furthermore n,.
Axp’.ej’ = E AjlxP’.e~

j=l

these computations lead to the matrix :

Lk =

where sk is the d x d matrix arrising from the operator

s.

Remark 3 IfA is diagonal then Lk as bloc-diagonal, /f

A is upper triangular then Lk is upper-bloc triangular.

The end of the section is devoted to the statement

of a non-singularity criterion for the operator L, which

will allow us to produce an algorithm of computation

of invarariant manifold, The first step consist of the

computation of the spectrum u(L) of L, which will give

us the NullSpace of L.

Let P be a n x n nonsingular matrix, Q a m x m

nonsingular matrix. Let y = Qz and g(;) = P-l v(Q; ).

It follows

~g(z) Q-lBQ: – .~~g(;)
L(v(y) = Lv(Qz) = PT

we put

~9(~) -lBQz – P-lAP[/(. )
~g(z) = P-lLv(y) = ~Q

it is clear that the operator ~ has the same spectmm

as L. Also, the matrices P and Q can be choosen such

that P–l AP and Q–~BQ are upper triangular.

Then in order to determine c(L) A and 1? are as-

sumed to be upper triangular. Let s~(i, j) denote the

element on th i-th row and j-th column of sk. Since B

is upper triangular, B$r = O ifs > r then

Sk(i, j) = ~ ~~$r,

I(a,j)

where

l(i, j)={(s, r)/~>O, zr~=zp’,l<s<r <m}

then for (s, r) C I(i, j)

J
Zr ~

?/Jl pJ2 >s-1 Jr+l 3%
=Xl X2 . ..x. . ..x. . ..x~

=x f’J, ifr=s

< ~P3 , otherwise

therefore Sk is lower triangular, furthermore Sk (i, i) =

Dr=l P:~ss ~ thus

m

~(Lk)={Aij=~p~B~~—Aii, i=l, . . ..n. j=l, d}. ,d}

$=1

Remark 4 According to the assumption that matrices

A and B are upper triangular, the diagonal elements of

these matrices are thezr ezgenvalues.

Then, the following statement holds:

Theorem 2 If A,, pj denote eigenvahtes of A and B

respecituely. Lk IS non singular if and only if

171

E 9Y. –&# 0,1 Si<n; [gl=k
S=l

Consequently, if the above condition is satisfied, for

every k, L is non singular, and we obtain, according to

the definition 1:

uk-~ = L;&j(~)

gk+l =0, k>l
(2.6)

2.3 Computation of Invariant Manifolds

IVe are now in position to precise the relationship

beetween normal forms computations and invariant

manifolds.

Consider the differential equation ~ = Az+f(z), z G

C)’ ~rllich can be writen as follows:

{:

~1 = Bzl +fl(zl, zz)

= CZ2 + fa(zl,zz)
(2.7)

z~

where 3 = (21, z2), f(z) = (fl(z), fz(z)) and A =

(W
are as in equation (1 .1). We suppose 21 =

n-” then .4~ = TA = B and the following system can

b: ‘seen as the normal form of system (2.7), defined by

definition (1)

{

lU~ = 13’w~ + gl(wl, WJ2)

Lu~ = CW2 +g?(wl, wz)
(2.8)
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If we put w = (W1, W2), W1 = mw and v = (L,l, V2)

then

~~(wl) = (L1(J(W1)), L2(V2(Z01)))

where

Ll(vl(wl)) = *BwI

L2(v2(wI)) = *l?wl

Furthermore, let assume that the

– BV1(W1)

– Cd(wl)

eigenvalues of B, C

satisfy theorem 2 for each order. It follows, that op-

erator L2 is nonsingular, therefore the equations (2.6)

yields: g2(w1, O) = O. This means that the set W2 = O is

an invariant manifold, and the vector field on this mani-

fold is given by BW1 +gl ( WI, O) which is in normal form.

Therefore, the algorithm 2.1 can be applied to perforlm

these computations. But, if the manifold is needed in

the initial coordinates system, then the algorithm has to

be modified. Suppose the set (ZZ = h(zl )) is invariant,

on (2.7). This is equivalent to ~z =
ah(., )
~~1

* dh(z, )
—B.zl – C.Zl =

8ZI
f?(~l, h(~l)) (2.9)

–Qy#fl(zl,h(:l))

Now, let Z1 = WI; Z2 = w2+k(w1) be the transformation

which brings (2.7) to (2.8), with the set W2 = O invariant,

on (2.8). This yields, after some computations to :

91(4, ~2) = fl(zl, Z2 – h(zl))

92(W, W2) = –(WBW1 – CW,)

+f2(wl, w2 + i(wl)) – *.fl(w1,w2 + i(q))

but, W2 = O invariant implies gz(wl, O) = O and leads to

the same equation as (2.9) in h. Then, h and ~ can be

identified. If U((zl, 22), c) is defined from

as in (1.4) and consider its generator 0’

with uk homogeneous of degree k + 2. The partial dif-

ferential equation (1.5) on functions u and LT leads to:

‘k(z)=(‘k+dzd)

This relation together with definition (1) yields:

L2h~+l(zl) = (1 – r)~(k)(zl)

gk+l(~l) = O
(2.10)

where L2 is defined above, and-~(~)(zl ) is computed by

formulas (2. 1). Furthermore, r~(k)(zl ) is the vector field

on the invariant manifold Z2 = h(zl ), where h(zl ) is

computed by the previous linear system. Refer [3] to

find the similar result in the case of a center manifold

computation. Rather than giving a particular algorithm

derived from the general one 2.1, we prefer state the

algorithm 2.2 which sums up all cases. First, let us

notice that if dirndY’ = m then :

L2 : V(k’,rn,n– m) - V(k,rn,rz—m)

U(21 ) - w~A -(1 - T) AV(ZI)

cl c nCn, and (1 – m) is the projection of C“ onto the

last (n – m) coordinates of Cn.

Algorithm 2.2 mam algorithm (A,Jh’, n,m,InvOnly)

define T to be the projection on the m-first coordinates

of c

tfInvOnly = true then do

fi:= (I-T)

p:= n-m

else do

%:=1

p := n

B := TA; C := TA

for k xn 1 to K-1 do

compuie B(k + 1, n, n) and B(k + 1, m,p)

f~.o) := k!fk+~ encoded over B(k + 1, n, n)

compute matrix Lk+l over B(k + 1, m,p)

compute f(k) using formulas (2.1)

determine ~k+l ~,P1 and r~k+l ~,P)

fj’!, := j(’) - b
If InvOniy = false then do

comp~iie hk+l uszn.g (1

Lk+l X = b

7) and (1.9)

If we want to compute the normal form, we apply

the main algorithm with in inputs (A, f, K, n, n, false).

To compute 72- m-dimentionnal invariant manifold in
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normal form the inputs are (A, f, Ii, n, m, false), and

not in normal form (A, f, K, n, m, true).

Before introducing the programming aspects, let us

show some particular kinds of differential systems whose

linear part verifies theorem 2 at each order, and there-

fore admit invariant manifolds. These cases are of

great interest and many authors state existence prop-

erties and applications of such invariant manifolcls. See

[7], [9],[2], and [5] for an constructive proof which leads

to another kind of algorithm.

u(B) = O a(C) # O center manifold

u(B) <0 u(C) >0 stable manifold

IY(~) >0 u(C) ~ O unstable manifold

u(B) <0 c(C) >0 center stable manifold

a(l?) ~ O a(C) <0 center unstable manifold

3 Programming Aspects

First at all, we point attention on the fact that if we do

computations on a space V(k, m, n) with its elements in-

coded over the basis l?(k, na, n) then it, is easy to ~vrit,e

and solve linear systems which arise from above algo-

rithm. The disadvantage is that product and derivation

over such basis have to be defined. Let us take an ex-

ample: let u, w be polynomial components of some 71-

functions in V(k, m, n). These polynomials have the

following representation:

(u= U1, U2, ..., Ud), vs(vl, vz,... ,vd)

where d is the number of terms of P(k, m ) =

{P1 , . . . . pd} and let d’ be the number of terms of

P(2k,771) = {ql,..., q~’ },tbenw = U.V= (w~i...,,[d).

and

‘w~ =
x

Uj ‘lIj

{l<t,j<d/pl+PJ=yk}

Therefore, for each monomial product the position of

pi + P“ in ‘P(2k, 7n) has to be found, which yields an

important cost in Cl(d’). The cost of the product, is

here 0(d’d2). Also, it seems necessary to organize the

basis in a way which allows faster search of elements.

3.1 Polynomial Representation

We are going to construct a tree data structure ~vhich

will allow us to search a basis element in 0(m) steps,

Let us define the set of nonnegative integers lists

L(k, m)={/ =(/1, /2,. ,,,lm)/k >/l. ..>/,,l=O}

ordered by

(
l,= h,, s=l, . . ..7l–l

i

l~h w ‘r
l,=h$s=l ,.. .,<m <l-l

lr+~ > hr+l

\lre define the map

ok : T(k, 7?2) — ,c(k,7n)

(3.1)

p+--+(k-p l,..., k–~;=lpj, . . ..o)

Remark 5 last element of ok(p) a’s 0, since by defin~-

tto?l I p 1= k

let 1 = (11, /2,. ..,lm), lm = O then if we define p =

.,.4 ., L2-im-l, ire,), it is easy to verify(k–1~,11–i,

that I#L(p) = 1. Furthermore, let us take p, q such that

~k(p) = @k(q). This implies

r r

~–~pj=k–~qj,r=l,..., ~

j=l j=l

and by induction on r this implies that p = q. Therefore

dk is a hijection and we can define:

Consicler 1< h then it exists r such that 1,+1 > h,+l
and the r first indices of 1 and h are equal, It is easy

to see that> the r first indices of d~l(l) and d~l(h) are

ec[ual. Then, the r + l-th verify 1, — 1,+1 < hr — h~~l

and therefore ~jl(l) < ~~l(h).

Consequently, if p’, 12 are the i-th element of the or-

dered basis T(.k, m), Z(k, m) respectively then

Let S denote the binary relation “ is son or over L(k, rn)

defined by

[s11 w
{

I,=h,, s=l, . . ..r<rl-l

l.+l > hr+~ = 0, 1.+2 = 0

Let 1 = (l~,l~,..., ir, o,o)., o) then

/)=( 11,12,, ... [ 7-1,0,. .,, 0) is the unique list such that

1S1}, and a direct application of the definition provides

the set of its sons:

~so??(l)={(11, ~?, . . ..ir,i, o,. ... o), i= l,..., /r}

moreover, Son (1) possess 1. elements. We say that 1 =

(l~.l?%...,lr, o , . . . . O) is i-th son of h iff 1 is son of h and

1, = i. and we denote this by / S* h

Remark 6 Let nojzce thai If 1 M son of h then 1< h.

ilforeouer, if 1 M i-th son of k, h M j-th son of k and

i ~ j then h ~ / < k. Therefore, Son(1) is an ordered

set, ond the i-ih element of this set is the i-th son of 1.
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Example 1 L(3,3) = {(0,0),(1,0),(1,1),(2,0),

(2, 1),(2,2),(3,0),(3, 1),(3,2),(3,3)}

In order to find out a better data structure for the l>a-

sis ‘P(k, m), a tree is defined from .C(k, m). But, rather

than defining a tree whose nodes are lists, we prefer

building an equivalent tree whose nodes are the posi-

tions of elements in the ordered basis L(k, m).

Definition 2

tree(1) ==
{

( position of 1 ) if Son(l)=@

( posit~on of 1 tree(h) for h z,, SOn(l) j

Let us recall that one list admits at most one “father”.

Therefore the data structure defined above does not con-

tain any circuit and is a tree.

{

11=1

h c tree(l) ~ or

31’ g Son(l) such h ● tree( /’)

(3.-I)

The first element of ‘P(k, m) is pl = (kt O, ., .,0), then

the first element of Z(k, rn) is 11 = (O, .,0). Finally,

the data structure is defined by:

Definition 3 T(k, m) = tree(il )

Let us verify that each node of the tree Z’(k, m) belongs

to L(k, m) and conversely, that each element, of L( 1., m )

is a node of T(k, m). Definition (2) with (3.4) yield

that each node of T(k, m) is an element of Z( 1, m).

Conversely, consider 1 = (il, . . .,lr, O, . .,()), 1 < r <

m – 1 element of Z(k, m). / is son of /(1) =

;;:; i;, ;:;:;;(21. , O) which implies that 1 C iree(O i ) ).

= (1,,..,, /r-z, O,. ... O), then 1(1) E

tree(l(2J) and therefore 1 G tree(lf~)). Repeatiug

this process we obtain 1 E tree(l(’ ) ) where /(S) =

(l,,... r_$,o, o,..., O), 1 ~ s < r, which implies that

1 is a node of T(k, m).

This constructive proof means that, if

i=(ll, /z, . ..r.O, O, O) then then

i =S1”(S1’-l(. ..(s’l(P)...j) (3.5)

which means that entries of 1 represent the path which

leads to the node position of 1 through the tree T(,L, m).

Let elt~ denote the algorithmical function which per-

forms that search. Then the following statement holds:

Theorem 3 Let p be an element of P(k, m) Ihell thf

position of p in ?(k, m) is computed by the function

eit~(d~(p)) in at most (m – 1) steps

The cost is given by the leught of +k (P) which is less or

equal to (m – 1),

Example 2 T(3,3) = (1(2( 3))(4(5)(6))(~( 8)(9)(10)))

6/i~((:l, I)) = S. s leads to the third son of 1: 7, and 1

[cods to the jirst son of 7:8.

Now, let us consider the basis ~(k, m), and the tree data

structure T(k, m). We claim that this structure can be

used to localize the elements of P(k’, m), if k’ < k. We

put:

P=(P1, P2,. . . ,P~~), PG P(k, m) = {Pi,...pd}

fl=(fll!l%?,....zk) ,qCP(k’, m)= {ql, . ..p}’}

Then yl = k’ – k + pl and it follows k’ - ql = k – pl,

which implies @k(p) = @kI(g). Notice that if p is the

i-th element of P(k, m) then relation (3.3) yields that q

is the i-th element of

{//1 , . . . . hd} then

L(k’, m)

and therefore

elt~(l) = eltfi(i),

Example 3

P(k’, m). Moreover, if L(k, m) =

={h’,i= l,...,}’} (3.6)

where 1 = ~~(p) = ~~l(q) (3.7)

L(2$3) = {(0,0 ),(1,0 ),(1,1 ),(2,0 ),(2,1 ),( ’2,2)}

T(2,3) = (1(2 (3)) (4(5)(6))).

c/f]( (’2,1)) = 5 = eltj((2,1))

This structure is used to define the product and the

derivation of monomials in the following manner: let

p 6 T(kl, m), and g G P(kZ, 77z) and suppose k ~ kl +

k~. \\Je put ~k,(p)= /,@k,(q) = h, then, applying the

definition 3.2, it is easy to see that p+q = +~,~k?(l+ h).

Then, the position of p + q in P(kl + kz, m) 1s given

by elt~~ ~i,, (1+ h). The property (3.7) states that this

position 1s obtained by elt~ (/ + h). Thus, the following

theorem holds:

Theorem 4 iihfh the prevtous notations, the position

of ]) + q in ‘P(kl + kz, m) as computed by elt~(l + h)

In of most 2(I1? – 1 ) steps. Furihemore, if p > q then

the postt)on of p – q in P(kl – kz, m) is computed by

C/t;’ (/– h).

The cost comes from the compouentwise sum/+ h which

needs at most (m – 1) steps, and from the search in the

tree, in at most (m – 1) steps. The second statement

of the theorem 4 determines the monomial: ak’ xP/8@.

Furthermore, it is easy to calculate the exponent factor of

the derivation, provided the total degree of the polyno-

mial is knowu. Thus, the representation has to contain

t IIr total degree of the holnogeneous polynomial:

Ua[kl, (ul, uz, ..., w,)], V= [km(w,w,tw,)
If u is homogeneous in n variables Zl, Z2, . . . . Zn of de-

gree kl and v is homogeneous in the m-first variables
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of degree k2. Then dl = C~~+n_l and d? = C~~~+,,,_l

We suppose that the cost of the coefficients product is

0(1). Then, the cost of the product u.u is:

~(@:+n_lc!:+m_l) (3.8)

and the cost of the derivation of u is given by:

@@:+n_l) (3.9)

3.2 Cost of the Algorithm

We are going to evaluate the cost of the algorithm 2.2

when we compute the approximation of the normal form

up to an order k. We start with the calculation of the

cost of the operator ~og, where $, g belong to V(kl, n, n )

and V(k2, m, n), respectively. Let OK~,,~I,(~,,~,Il de-

note that cost. Then, the cost of ~ x g denoted hy

x[(~l ,nl,(~z,~)l is given by

x[(kl, n), (k2,m)] = O[(kl,n), (kz,nl)] + o[(k2,nJ),(~1),~)l

Let us suppose p is an homogeneous polynomial in n

variables of degree kl, and g is homogeneous in m vari-

ables of degree /cz. Let C((kl, n), (kz, m)) denote the

cost of the product p.q :

C((kl, n), (kz, ~)) = n@:+n-lC:;+n,-l

It is clear that the cost of fog is given by the cost of the

product Df.g which is rz. C((kl – 1, n), (kz, nj)), then:

o[(~1,n),(k2,m)l “-1 ,.c:;+nl_l= n2. Ckl+n_w

and, X[(kl,n),(kam)l is equal to:

k,
d’-’ ) (3.10)n2.(C~~~~_2.C~~+m–l + Ckl+n–l. l.!~+na-?

Moreover, the cost of the column i in the triangle 1.10,

when computations are performed to the order k, is

k–i+l

~ x ( z X[(i,n)?(j, nl)l) (3.11)

jzl

The summation of (3.11) on i, from 1 to k, provides the

cost of the complete computation to the order k. Using

(3.10), we obtain :

k k-i+l k-i+l

nz(~ ~{G~~-2 ~ ci+j-l+c~+i–l ~ G7,-+\-2} )

i=l jzl J=l

which becomes

i=l

(3.12)

Ill order to simplify the above expression we introduce

the two formulas:

r—l
I’C;;+v-l = pcp+v _ 1

{3.13)

XL CM&;-i= q+,+r+l

and finally, we obtain

,,
(3.i4)

In order to obtain asymptotic behaviour of 3.14, we

use Stierling formula which yields C~+~ w Sr /r! when

s - cm. Then, when k - cm the cost of the computation

is equivalent to

2n3 kn+rn+l

(n+ m+ 1)!

Conclusion

(3.15)

Firstly, we point out the fact that the same algorithm

provides two usefull tools in the study of differential

equatiom. Basically, this algorithm provides a linear

system to be solved, at each step. Therefore, we sup-

pose it is quite natural to represent the holnogeneous

polynomials in a vectorial form. This is why the data

structure described in the last section is important. It

will allow us to implement differentiation and multipli-

cation of homogeneous polynomials efficiently. Finally,

the cost of the algorithm given in the last section should

be helpfull to compare this tool with other methods.
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