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Abstract

Following Buchberger’s approach to computing a

Grobner basis of a polynomial ideal in polynomial rings,

a completion procedure for finitely generated right ide-

als in Z[’H] is given, where ‘1-l is an ordered monoid pre-

sented by a finite, convergent semi–Thue system (X, T).

Taking a finite set F ~ Z[7-L] we get a (possibly infi-

nite) basis of the right ideal generated by F, such that

using this basis we have unique normal forms for all

p c Z[7f] (especially the normal form is zero in case

p is an element of the right ideal generated by F).

As the ordering and multiplication on ‘X need not be

compatible, reduction has to be defined carefully in or-

der to make it Noetherian. Further we no longer have

P ~z -+P O for P G Z[’H], z G Il. Similar to Buchberger’s

s–polynomials, confluence criteria are developed and a

completion procedure is given. In case T = 0 or (Z, T)

is a convergent, 2–monadic presentation of a group with

inverses of length 1, termination can be shown. An ap-

plication to the subgroup problem is discussed.

1 Introduction

The theory of Grobner bases for polynomial ideals in

commutative polynomial rings over fields lf[zl, . . . . z~]

was introduced by Buchberger in 1965 [Bu85]. It estab-

lished a rewriting approach to the theory of polynomial

ideals. A Grobner basis G is a generating set of a poly-

nomial ideal such that every polynomial has a unique

normal form using the polynomials in G as rules (es-

pecially the polynomials in the ideal reduce to zero).

Buchberger gave a terminating procedure to transform

a generating set of polynomials into a Grobner basis

of the same ideal. In case we have a finite Grobner
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basis many algebraic questions concerning polynomial

ideals become solvable, e.g. the membership prob-

lem or the congruence problem. Authors as Kandri–

Rody, Kapur, Lauer and Weispfenning extended this

theory to other coefficient rings as the integers, Eu-

clidean rings or regular rings [Bu85, KaKa84, KaKa88,

La76, We87]. Recently there have been some attempts

to expand these ideas to non–commutative polynomial

rings, which are in general non–Noetherian. Take for

example Z[’M] where M is the free monoid presented by

Z = {a, b, c}, T = 0. Then the corresponding (right-,

left-) ideals generated by {ab;c – bi I i G N} do not

have a finite basis. Authors as Mora, Baader, Kandri–

Rody and Weispfenning have investigated the situation

for special non–commutative polynomial rings, e.g. the

ring R (xl, . . . . Zn), where R denotes a field in [M085] or

the integers in [Ba89], and algebras of solvable type as

introduced in [KaWe90] or skew polynomial rings as in-

troduced in [We92]. They have shown that in these cases

finitely generated right ideals (or even ideals) admit fi-

nite Grobner bases. These approaches have in common

that their orderings are monotone with respect to mul-

tiplication on the respective structure: if tl > tz then

tl z > tz z. The results of Baader and Mora can be de-

scribed using the ring R[7f], where 7-/ is the free monoid

presented by X = {z1, . . . . Zn}, T = 0. The main idea of

this paper is to generalize these approaches to monoid

rings R[M], where M is an ordered monoid presented by

a finite, convergent semi–Thue system (X, T).

In the next section the basic definitions of monoid rings

R[7i] and some examples are given. Section 3 discusses

how polynomials can be used as rules. Two different def-

initions of reduction together with their properties and

(dis-) advantages are given. Since ordering and multi-

plication on ‘H need not be monotone, one main lack of

our reduction is that p z, where p c Z[7f], x c ‘H, need

not be reducible to zero by p. In section 4 the concept

of saturation is introduced, which gives a solution to

this problem. Section 5 gives an algorithmic approach

to this concept. We end up with a (possibly infinite) set

SAT(p) of polynomials, which allows us to reduce p. z to
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zero. Saturating sets in general are no Grobner bases,

i.e. the reduction induced by them need not be contlu-

ent. In section 6 a confluence test is developed using a

concept similar to Buchberger’s s–polynomials. A pro-

cedure is provided, which takes a finite set F ~ Z[’H]

and produces a (possibly infinite) Grobner basis of the

right ideal generated by F, such that using this basis

we have unique normal forms for all p E Z[7-t], and the

normal form is zero in case p lies in the right ideal gen-

erated by F. The procedure can be shown to terminate

in case T = 0 or (X, T) is a convergent, 2–monadic pre-

sentation of a group with inverses of length 1, so in this

case finitely generated right ideals admit finite Grobner

bases, even if the monoid ring is non–Noetherian. The

class of groups presented by convergent, 2–monadic pre-

sentations with inverses of length 1 is the class of plain

groups, i.e. free products of free and finitely many fi-

nite groups [MaOt89]. Further we give a short outline

how this approach can be successfully applied to other

special presentations (2, T) of ‘H, where T contains a

commutative system for all letters in Z. In this case

all finitely generated ideals admit finite Grobner bases.

Finally a brief application to the subgroup problem is

given, i.e. given a subgroup S of a group ~ and an el-

ement g E ~, decide whether g c S. The proofs of the

theorems of this paper can be found in [MaRe].

2 Basic Definitions

Let R be a ring and let H be a monoid. Then R[?L]

denotes the set of all mappings f : 7f -+ R where the

set {rn c ‘l-f I f(m) # O} is finite, Abbreviating f(m)

by am 6 R we can express f by the “polynomial”

f = &w am “ WL ~rther we define add~taon and m~l-

tiplication in R[7-i] as follows: Let f = &R% ~ m

and g = ~mcx b~ . m denote two elements of R[’M].

Then the sum of f and g is denoted by f + g, where

(f+ g)(m) = f(m) + g(m) or expressed in terms of
polynomials f + g = ~mEH(a~ + b~) . m. The prod-

uct of f and g is denoted by f . g, where (f ~g)(m) =

2. Y=mEM f(~) o9(V) or expressed in terms of polyno-
mials t.9 = ~mefi cm m with cm = ~r.v=m~~ ax ‘by.

It is easily seen that R[?f] is indeed a ring 1 and we call

R[’H] the monoid ring of ?-l over R or in case l-l is a

group the group ring of ?-l over R.

Example 1

(a) Let ~ be a group. Then Z[~] denotes the group

ring of ~ over the integers Z.

(b) Let ‘H = (x) be the free monoid with one generu-

tor. Then R[?t] is isomorphic to the well–known

polynomial ring in one indeterminate R[z].

1All operations mainly involve the coefficients in the ring R.

We will restrict our considerations to right ideals only.

For a subset F ~ R[’7f] we call idea/r(F) = {~~=1 ci ~

pi . mi I n c N,ci E Rjpi E F,mi E ?f} the right ideal

generated by F, Two elements f, g E R[?l] are said to be

congruent modulo idealr(F) (we write f ~idealrf~) g), if

f = g + h, where h 6 ideai,(F), i.e. f - g E idea/r(F).

As we are interested in methods of Grobner basis calcu-

lations for right ideals in R[’H], we need a presentation of

our monoid ‘H. Every monoid H can be presented by a

pair (~, T), where 2 is an alphabet and T a semi–Thue

system over 22. One only has to choose X = H and T

the multiplication table of the monoid. Since this pre-

sent ation might be infinite or even non–recursive, we are

only interested in monoids, which allow “nice” presen-

tations. Therefore, we will restrict ourselves to presen-

tations, where Z is finite and T is finite, confluent and

Noetherian. We will call such presentations convergent.

Then each word in E“ has a unique normal form with

respect to T and the monoid 7i is isomorphic to the set

lRR(T). The empty word A ~ X’ presents the iden-

tity of ‘H. If . denotes the binary operation on H, given

Z, Y E H we define z . y = (zy)l~, where ~~T denotes
the normal form of w with respect to T.

Example 2

(a)

(b)

3

Let Z={x~, ..., Zn} and T= = {~i~j ~ XjZi I

j < i, i,j G {1, n}}. Then H is the free com-

mutative monoid generated by X and R[7f] is wo-

morphic to RIx1, . . . Xn], the polynomial ring in n

indeterminates.

Let E = {CI,.. ., Zn, Z;l Z;l}Z; l} and T =

{x:$;’ - X; ’x; Ij < i, i,j C {1,... n}, 6,6’ E

{1,-1}} U {ZiZ~l + A,z; %: + A I i c

{1, . . . n}}. Then G is the free commutative group

generated by Z.

Right Reduction in l?[?i]

Throughout this section let ?-l be a monoid with a con-

vergent present ation (X, T). In order to define a re-

duction in R[’H] we have to use polynomials as rules.

Therefore, we introduce an ordering on monomials and,

as we are interested in Noetherian reductions, we need

a well–founded ordering on the elements of R[’H]. If not

stated otherwise our well–founded ordering on X is the

ordering induced by the admissible, i.e. compatible with

concatenation, well-founded tot al ordering on Z“ used

for orienting T — for example the length–lexicographic

ordering in case T is monadic and convergent — in par-

ticular w > J for all w c X* – {A}. We will take R to

be Z, the ring of the integers.

Definition 1 Let + denote a well-founded total or-

dering on ‘H and >Z a well-founded ordering on Z.
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(a)

(b)

Now

Let p G Z[’H].

A?’?’anging the wj G ?i with p(wj) # O accordzng

to > we get WI F . + w., where Wi # Wj for

i # j. Using this orderzng we write p z ~~=1 ai .

Wi, where ai = p(wi). We let HM(p) = al . W1

denote the head monomial, HT(p) = WI the head

term and HC(p) = al the head coefficient of p.

RED(p) = p – HiW(p) stands for the reductum

of P. T(P) = {w1, . . . . wn} is the set of terms

occurring in p.

Let P= ~~=lai wi,~=~~=lbj Vj c z[’M-
p is greater than q, i.e. p > q, if

(2) HT(p) > HT(q) or

(zi) HT(p) = H’T(q) and HC(p) >Z HC(q) or

(iti) HM(p) = HM(q) and RED(P)> RED(q).

we are able to use a polynomial p E Z[’H] as a

rewrite rule by splitting it into HiW(p) -+ -RED(p)

and HM(p) > –RED(p).

The following remark shows that in general a well-

founded ordering > on ‘H or ~ will not be monotone.

Remark 1 Let G # {1} be a group with a monotone

ordering +.

1. ~ cannot contain an element ofjinite orderg # 1.

Suppose g G G – {1} IS of finiie order, I.e. there

is n G N mintmal such that gn = 1. Wzthout loss

of generality let us assume g > 1. Then (as + is

monotone and transitive) we get gn–l % 1 gzuing

us 1 % g, contradicting our assumption.

2. The ordering > is not well-founded.

Without loss of generahty let us assume g >1 for

some g E ~ — {l}. Then (as + is monotone) we

have 1 + g-l and (as % is transdive] g + 1 +

9 -l+. ..+ n-n for alln E N 2.

Remark 2 We now will specify a total well-founded or-

dering on Z 3:

{

a~Oandb<O

a<zbiff a~O, b> Oanda<b

a< O, b< Oanda>b

anda~zbiffa=bora<z b.

Let c E N. We call the positive numbers O, . . . . c– 1 the

remainders of c. Then for each d G Z there are unique

a,b G Z such that d = a.c+b and b M a remainder of c.

Wegetb< candincased>O and a#Oevenc~d.

Further c does not divzde bl – b2, if bl, b2 are diflerent

remainders of c.

2,4~ no ~ ● g – {1} has finite order.

3 If not stated otherwise < is the usual ordering on Z.

In defining right reductions in Z[7-f] we have to be more

cautious than in defining reductions in the polynomial

ring If[xl, .,~n ] (compare [Bu85]). We will give two

possible definitions together with their advantages and

disadvantages.

Definition 2 (Right reduction)

Let p= ~~=lai Wi, g = ~~=1 b~ ~Vj G Z[fi]. We say g
right reduces p to q at ak . ‘Wk ~n one step, i.e. p-~ q,

if

(a) HT(g ~x) = VI x = Wk for some x E ‘H.

(b) HC(gz)> Oandak=a HC(g z)+

a, b c Z, a # O, b a remainder of HC(g . x).

b for

[c)q=p-agx.

We write p+; if there is a polynomial q as defined

above.

We can define $“ , 4’, ~’

set F ~ Z[’H] as usual.

and right reduction by a

In order to decide, whether a polynomial g right reduces

a polynomial p at a monomial a~. ‘Wk, the equation in (a)

must be solvable in (.2, T). Note that if this is possible,

there can be no, one or even (infinitely) many solutions

depending on H. In case H is left–cancellative we have

at most one solution. In case H is right–cancellative we

get HC(g ~z) = HC(g).

Example 3 Let Z = {a, b,c} with a > b > c and T =

{ab * a, cb ~ a}. Then p = b’ is not right reducible by

g=a+b–c, as HT(gb)=b2# a.b. On the other

hand p = a + c is right reducible by g = 2a – c + A, as

g. b=a+band HT(g. b)=a. b= a.

Note that we use HM(g . z) ~ –RED(g . z) as a rule

only in case HC(g . x) >0 and HT(g . x) = HT(g) z.

We do not use HM(g) + –RED(g), since then *’

would no longer be Noetherian, i.e. infinite reduction

sequences could arise. This is due to the unfortunate

fact that our ordering > on H is not necessarily mono-

tone (admissible) in the sense that ml > mz does not

imply ml z > m’ . r.

Example 4 Let X = {X, CC-l}, 2-1 > z and T =

{zX-l + A,z ‘lX +. A} be a presentation of the free

group generated by {z}. If we use HM(g) ~ –RED(g)

as a rule in definition 2 we can right reduce X2 + 1 by

X–l + x in the following manner:

Z2+1+:-l+= Z’+l— (X-1 +z?). z3=-z4+l

and –X4 + 1 agazn is right reductble by X-l + x causing

an infinite reduction sequence.
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Definition 3 (Prefix right reduction)

Let p = ~~=1 ai . b .vj c Z[H]. We sayW>9 = X;=l J

g prefix right reduces p to q at ak . ?Jk in one step, i.e.

P-$!l, if

(a) v~x = w~ for some x ● H, i.e. v, is a prefix of

‘Wk.

(b) bl>Oand ak=a. bl+bfora, b~Z,a #O, ba

remainder of bl.

(c)q= p–agx.

We can define p ag , 2, & , ~ and right reduction

by a set F ~ Z[’H] as usual.

Notice that in this case (a) has at most one solution

and we always have HC(g . z) = HC(g). We now can

use Hlf(g) ~ –R.ED(g) as a rule in case bl > 0 and

7Uk = HT(g)x. Without this trick of using a restricted

multiplication on ‘H it is very hard to say how a poly-

nomial will “behave”.

The following statements hold for both definitions of

reduction:

Lemma 1 Let F ~ Z[H].

1. For all p, q E Z[7-1], pa~ q implies p > q.

2. -~ IS Noethernan.

3. p~qO and q+w O imply p-+{ W,_W} 0.

Lemma 2 Let F ~ Z[fi], p, q, h ~ Z[li].

1. Let p – q ~~ h, where the reduction takes place at

the monomial d , t, and let t @ T(h). Then there

are p’, q’ E Z[?l] such that p~rp’, q~ji. q’ and

h=p’– q’.

2. Let O be the unique normal form of p # O with

respect to F, and t = HT(p). Then there w a

polynomial f E F such that p~, p’ and t @ T(p’).

3. Let O be the unique normal form of p – q with

respect to F. Then there exists a polynomial g c

Z[fi] such that P3F g and q ~P g.

4. P ~P q implies p – q G idealr(F).

Unfortunately, reduction aa defined above does lack

some of the nice properties that reductions in general

have, as e.g. p . x~PO or transitivity in the sense that

P--+q and q ~w ql imply P*W or p-q, .

Remark 3 1. Looking at right reduction as dejined

in definition 2 we get

(’a) We no longer have p . x$; O for p ~ Z[’H],

xE?f.

Taking ‘H to be the free group generated by

Z={z}we find that (z-l +z). z= Z2+1

is not right reductble by X-l + x. (Compare

example 4)

(b) Rtght reduction is not transitive.

Let E= {a, b,c} with a+ b+cand T=

{az-~, bz-~, ab+c, ac~b, cb~a}

be the presentation of a group. Looking at

p= ba+b, q=a+~andw= c2+bwe

getp-~p –q. ca=–ca i-band q*~q-

w.bc= –C+ A=: ql. Further p is neither

right reducible at ba by w or ql, as w. bc2a =

ba + cza and ql . bca = –ba + bca both violate

condition (a) of definition 2, nor at b, as w .

bc2=b+c2 andql, bc=–b+bc.

2. Looking at prejix right reduction as defined in def-

inition 3 we get

(a) We no longer have p X3 O for p c Z[’H],

Xc ?-i<

Taking ‘l-t to be the free group generated by

Z = {z} wejnd that (X-2+J) z = Z-l+X

is not prefix rtght reducible by X-2 + A.

(b) Prefiz right reduction is transitive.

Let p < and q JW ql. In case H&f(q) =

HM(ql) we immediately get p-$, . Other-

wise HT(q) = HT(w)y, for some y c 7f, and

O < HC(W) ~ HC(q) together imply p~w

Unfortunately the reflexive, symmetric and transitive

closure of (prefix) right reduction with respect to a set

of polynomials need not capture the congruence induced

by the right ideal generated by these polynomials.

Remark 4 p – q ● ideal,(F) does in general not imply

p ‘F‘(r’p)q. Let E={a, b,c} with a+ b+cand T=

{a2 - J,bz * A,ab -+ c,ac * b,cb -+ a}. Taking

p=a+b+c, q= b–Jand F= {a+ b+c} we get

P–q=a+c+~=(a+b+c)b ~idealr(l’)but

a+ b+c~~)p)b–~.

Next we define Grobner bases for right ideals.

Definition 4 A set G ~ Z[7f] is called a Grobner basis

(with respect to right reduction) of a set F ~ Z[H], if

(ii) A“ ~ is confluent.

As remark 4 shows both reductions in general violate

condition (i) of this definition.
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4 Saturation of a Polynomial

p E Zpf]

As stated in the previous section, reduction as defined in

definition 2 and 3 does not have the property p.x ~~’p) O

and the reflexive, symmetric, transitive closure need not

capture the right ideal congruence relation. The main

purpose of this section is to find sets of polynomials in

Z[’H], which allow us to (prefix) right reduce all a ~p. z

to zero, where a c Z,x c X.

Definition 5 Letp E Z[ll] and F s {p z,–p z I z E

‘H}. F is called a saturating set for p, if for all x E ?-l,

p . x+; o holds. F as called a prefix saturating set for

p, if for all x E H, p. x -$0 holds. SA7(p) respectively

SATP (p) are the families of saturating respectively pre-

flz saturating sets for p.

Remark 5 1. Note that m dejining (prefix) saturat-

ing sets we demand (prefix) rvght reducibility to O

in one step.

2. To learn more about (prefix) saturating sets for

polynomials, we will take a more constructive look

at them.

Let p = ~~=1 c~ ti, where ci G Z,ti E %.

Let X~, = {x c H I HT(px) = ti x}, i.e. the

set of all elements, which put t, in head posit~on 4.

Let Yt, = {canon(p. z) I z E Xt, }, where canon(p.

z)=p. z if HC(p. z)>O andcanon(p. x)= –p. z

otherwise.

(a) Choosing B,, ~ K, such that for all pj c K,

We ha”e P.i --%,, O) Ut=l % ~ SA7(p)-

(b) Choosing B,, c ~, such that for all pj ~ Yt,

we have Pj -%?,, o~ Lt=lBt!‘=sd7P(P)-

3. In 2 we do not specify how to choose the Bt,

and, therefore, (prefix) saturating sets might not

be unique. Choosing Bt, = Yt, we always get sat-

urating sets, which are in general infinite.

4. Yt, must at least contain canon(p), but all other

Yi, can be empty. In case the ordering on %

is monotone, we get Yt, = {canon(p z) I r ~

Ii}, Yt, = 0 for i # 1, and B~l = {canon(p)} is a

finite saturating set for p.

5. The right ideal generated by p is the same as the

right ideal generated by a (prefix) saturating set

for p.

4Note that if ‘H is not right–cancellative one z may belong to

different sets.

6.

7.

SAT(p) and SA7P(p) need not contain finite sets.

Take E={a, b,c, d,e, f} with a+ b+c+d+

e + f and T = {abc * ba, bad- e,fbc - bf},

Then (2, T) IS a convergent presentation of a can-

cellative monoid. Now look at p = a + f:

Then X~ = {(bc)idzo I i c N, w E lRR(T)},

and Yj = {bi+lfdw + biew I z’ E N,w E IRR}

has no finite basts in ezther sense. Since if it

had a jin~te basis Bj, we could choose k c N

such that bkh~fd + bke @ Bj. But then we get

bk+lfd+ bke %$;p) O as bi+l fdw . x = bk+lfd has

no solution in 7-t unless w = A and i = k 5.

If q = p ~ x then a (prefix) saturating set for p

M also a (prefix] saturating set for q but not vice

versa. Take for instance Z = {a, b, c}, a + b s

c, T={ab-c}andp=a+l, q=p. b= b+c.

Definition 6 Let F ~ Z[7f]. We call F (prefix) satu-

rated, if for all f E F, x E X there is g E F such that

f ~x ~g O using the corresponding reduction.

Note that saturating sets for a polynomial p are satu-

rated and prefix saturating sets are prefix saturated.

Further prefix saturated sets are saturated sets and

unions of (prefix) saturated sets are again (prefix) satu-

rated. The next lemma gives some insight in the reflex-

ive, symmetric, transitive closure of reduction induced

by (prefix) saturated sets.

Lemma 3 Let p E Z[lt].

1. Let S1, Sz E SAT(P). Then ~~, = ~~,

2. Let S G SA7(p) and SP G SA7p(p). Then

%
*r=4+ s, .

3. Let S E SAT(P), SP ~ SA7P(p), f, g E Z[7f].

Then f*; g if and only zf f -~p g,

Right now we know that (prefix) saturating sets for a

polynomial p (prefix) right reduce the set {a ~p. x I a E

Z, z c 7f} to zero in one step. However, (prefix) satu-

rated sets allow special representations of the elements

belonging to their right ideal and, therefore, enable us

to capture their right ideal congruence.

Lemma 4 1. Let F ~ Z[H] be a saturated set.

Every g E ideal, (F) has a representation g =

~~=~Ci ~ f: t ,, where ci c Z,fi 6 F,xi G ‘H,

and HT(fi . ~i) = HT(fi) . xj, HC(fi . ~j) >0.

2. Let F ~ Z[?t] be a prejix saturated set. Every g E

ideal,(F) has a representation g = ~~=1 ci , fi . xi,

where ci ~ Z, fi E F, xi E H, and HT(fi . xi) =

HT(fi)x; , HC(fi) >0.

5Every S E SAT(p) or S c SATP (p) must (prefix) right re-
duce the set Xj to zero in one step.
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Theorem 1 Let F G Z[’H] be a saturated set and FP G

Z[7f] be a prejiz saturated set, p, q c Z[?t].

1. Then p ~~ q if and only if p – q E ideal,(F).

2. Then p L>, q if and only if p – q c ideaL(FP).

Corollary 1 Let p E Z[7-t], S c SA7(p). Then we get

+% = ~idea/. (S) = ~;deal, (p) .

Corollary 2 Let PI, . . . p. 6 Z[ll] and SI E SAT(PI),

. . . . S. E SAT(pn). Then

&y
slu... usn = ~ideaI, (SIU... USn) = ~ideal.(pi,...,p~)

Notice that (prefix) saturating sets for a polynomial p

satisfy (i) of definition 4 but in general are no Grobner

bases of idealr ({p}), i.e. the Noetherian relation ~

induced by them need not be confluent, even restricted

to {a ~p . x I a ● Z, z ~ ‘H} as the following example

shows.

Example 5 Let Z = {a, b,c} with a > b > c, T =

{a’-~, b’+~, ab+c, ac~b, cb~a}, andp=a+

b+c . Then S = {a+b+c, a+c+~, bc+c2+b} c SAT(p),

SP={a+b+c, bc+c2+b, a+c+A, ba+ca+~, ca+a+

J, c’ + b + c} 6 SATp(p). Ne~ther +3 nor ~~p are

confluent on {k . p . x I k e Z, x c ‘H} as the following

example shows:

We have a + b + c+j+c+~ b–~ anda+b+c~~+b+c(l

but b–A~s Oandb– A~sp O.

Even (prefix) saturated sets F do not guarantee that

p~~() implies p.z SjOforp~ Z[’H], x~71.

Example 6 Let Z = {a, b,c, d} with a > b > c > d and

T = {abc ~ ba, dbc - bd}.

Then the set F = {a – c, cbc – ba, c + d} M (prefix)

saturated.

Looking atp=a+dweget p&&O. Butp. bc=ba+bd

is F–irreducible.

5 Prefix Saturation for Monoids

with Convergent Presenta-

t ions

We will give a procedure, which enumerates a prefix

saturating set for a polynomial in Z[?i].

Procedure Prefix Saturation

input: p = ~~=1 c1 .t~ 6 Z[H],

(E, T) a convergent presentation of H

output: SATP (p) G SAT(P).

SATP(P) := {canon(p)};

If := {canon(p)};

while H # 0 do

q := remove(H);

t := HT(q);

for all z ● C(t) do

q’ := canon(q . z)

‘f q’%&~,(p) o

then SATP (p) := SATP(P) U {q’};

H := H u {q’}

end for

endwhile

where C(t) = {z E M I tz = tltzz= -tll,t,z# A for

some (/, r) E T}, remove removes a polynomial from a

set and canon canonizes a polynomial, i.e. multiplies it

by – 1 in case its head coefficient is not positive.

The procedure is illustrated by the following example.

Example 7 Let Z = {a, b,c} with a > b > c and T =

{a’ --i ~,b2 + A,ab --t c,ac ~ b,cb ~ a}. Saturating

p=a+b+c we get:

Initialization: H := {a+ b + c}, SATP(P) := {a+ b + c}.

1. Taking a+ b+c~Handz~{a, b,c} wegetba+

ca+ A,a+c+ A, bc+cz + b, which are all added to H

and SATP(P).

2. Taking ba + ca + J c H and x c {a, b,c} we get

a + b + c, bc+ C2 + b, a+ c + A, which prejz right reduce

to zero by SATp(p).

3. Taktnga+c+A~H andz={a, b,c} wegetca+

a+ A,a+b+c, c2+b+c and ca+a+J, c2+b+ care

added to H and SATP(p).

4. Taking bc+c2+b E H and z c {b} we get ba+ca+~,

which prefix right reduces to zero by SATP (p) .

5. Taking ca + a + A c H and z E {a, b,c} we get

a + c + A, C2 + b + c, a + b + c, which prefix right reduce

to zero by SATP(p).

6. Taking c2+b+c~H andx~{b} wegetca+a+~,

which prefix right reduces to zero by SATP (P).

7. AsH=O weget SATP(p) = {a+ b+c, bc+c’+b, a+

c+~, ba+ca+~, ca+a+~, c’+ b+ c}.

Theorem 2 The procedure is correct, i.e. for all p ●

Z[’1-t], x c ‘H the polynomial p. x is prefix right reducible

to zero by SATp(p).

Theorem 3 The procedure terminates for le&cancel-

lative monoids with a finite convergent monadic presen-

tation.

6 Completion h Z[7f]

As we are interested in Grobner bases of right ideals we

are looking for a finite test for checking, whether the re-
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duction relation induced by a finite set of polynomials is

confluent, using the concepts of superpositions, critical

pairs and s–polynomials, as introduced by Buchberger.

First we consider a general definition of superpositions,

which does not correspond to the usual critical situa-

tions in reduction systems, but nevertheless provides a

criterion for confluence.

Definition 7 Given two polynomials pl, PZ E Z[7i]

with HZ’(Pi) = i!i for i = 1, 2. If there are Zl, Z2 E ‘H

with tl . xl = t2 . X2 = t, let cl, C2 be the coeflcients

of t in pl . Z1 respectively pz . X2. If C2 ~ c1 > 0 and

C2 = a . c1 + b, where a,b E Z,b a remainder of cl, we

get the following s–polynomial

Spol(pl, pz, zl, zz) =a. pl .zl–p2 .Z2.

Let uHM(pl),HM(p,) c fi2 be the set containing all pairs

xl, X2 E ‘H as above.

Notice that pl = p2 is possible. The set UHM(P, JHM(P~)

can be empty, finite or even infinite depending on X, i.e.

given a finite set F ~ Z[H] the set of critical situations

belonging to the polynomials in F can be infinite.

Theorem 4 Let F ~ Z[’H], F saturated. Equivalent

are:

1.

2’.

3.

F is a Grobner basis.

ideal, (F) =~ O.

For al! not necessarily different fk, f~ G F,

(xk, zl) e UHM(~k),HM(t,) we have:

sPo~(fk , fl, xk, ZI) :$0.

Unfortunately theorem 4 is only of theoretical interest

as in general it only provides an infinite test for verify-

ing that a set is a Grobner basis. Trying to localize this

test severe problems arise, as our reduction relation is

not transitive (compare remark 3).

In ordinary polynomial rings as Z[zl, . . . Zn] one can

select a “smallest” critical pair by taking the least com-

mon multiply of tl and t2and it is sufficient to examine

this case [KaKa84, KaKa88]. In Z[74] the situation is

more complicated. Reviewing definition 7 we see that

it is important to solve the equation tl . x = tz . y.

Therefore, we are looking for a suitable basis of a set

u*1,t2 = {(X1,X2) Itl ~21 =tz .Z2}.

One idea might be to look at a basis Btl,t, ~ Ut,,t2

such that for all (z1, z2) ~ Utl,f, we have (bl, bz) &

B:,,~,, m ~ ‘H fulfilling Z1 = bl . m, X2 = b2 . m. But this

is not sufficient as the following example shows:

Example 8 Let X = {a, b,c, d,e, f} with d > a > b >

c + e % f and T = {abc * d2, b2ce * d2f}. Take

F = {a+ b, b2c+d2, d2e+d2f, d+~}. Looking at a+b

and d + J we get a critical situation in d2 which leads

to bzc – d and b2c – dbF O. But d2e gives us d2f – de,

which does not reduce to zero by F. The clue is that d2

is no real critical situation, i.e. a + b cannot be applied

to reduce d2, but d2e can be reduced by both, a + b and

d+~.

Example 8 is due to the fact that we have an s–

polynomial SPOI(P1, PZ, ZI, ZZ), where RED(P1) . ZI >

HM(pl) . Z1 or RED(p2) . Z2 > HMp2) .22, which can

be reduced to zero by saturating sets of PI and PZ, while

Spol(pl, pz, Z1, 22) . z with z c M is not trivial accord-

ing to them. Even taking a saturated set of polynomials

into account does not guarantee the Grobner basis prop-

erty, as the set F in our example is a (prefix) saturated

set.

Another approach might be to look for a suitable basis

of a set Upl,p= = {(z~, x2) I HT(pl ~ Z~) = tl . xl =

t2 .22 = HT(p2 ~ X2), HC(p~ . zl), HC(p2 . 22) > O},

which describes real critical situations in the sense that

tl . Z1 = t2 .22 is an overlap, where both pl and p2 can

be applied for reduction. But even a basis for such a set

is not sufficient.

Example 9 Let Z = {a, b,c, d,e, f,g} with a > b >

c+d+e%f+gand T ={ac-d, be-e, dg~

b,eg~f}. Take F={a+b, d+e, b+ f, fc+e, d+

~, b+g, gc+e, e+g, g2+f, g+~}. Looking ata+b and

d + A we get a real critical situation in d, which leads

toe–~~~+g – g–}~J+~O, but(e– J). g=f– gis

F-irreducible.

As seen in example 6 even (prefix) saturated sets do not

guarantee that p fi~ O implies p . z ~~ O for p G Z[H],

z E ‘H. Now prefix right reduction is transitive and

gives enough information to cope with this defect. It

will enable us to formulate another characterization of

Grobner bases.

Lemma 5 Let F ~ Z[’H] and p, q ~ Z[7f]. Let p% O

and q ~> O. From these reduction sequences we get the

representations p = d . q . x and q = ~~=1 di . gi . Zj,

for d, di c Z, gi G F, X, zi c R, where the following

statements hold:

1. HM(p)~di .gizi. zfora//i Cal,... k}.

2. If HT(p) = HT(gi . zi . X) then HT(gi . Z; ~Z) =

HT(gi . Zi)Z and HC(gi Zi . Z) s lHC(p)l.

We can even restrict ourselves to special s–polynomials

to localize our confluence test.
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Definition 8 (Prefix s–polynomials) Given two

polynomials pl, pz c Z[7-f] with HC(pi) = c~ > 0,

H!I’(Pi) = ti, RED(pi) = ri for i = 1,2. If there iS

x E ‘H with tl = tzx we have to distinguish:

1.

2.

Ifcl ZCz, cl =a. cz+b, where a, bEZ, ba

remainder of cz, we get the following superposition

causing a critical pair:

a.c2. t2z+b. t2x=c1. tl

J \

—a.rz. x+ b.t2z —rl

This gives us the prefix s-polynomial

SPOIP(P1, P2) =a.rz”x—b”tzz–rl =a. p2. x–pl.

Ifcz>cl, cz=a. cl+b, wherea, b ● Z,ba

remainder of cl, we get the following superposition

causing a critical pair:

c2. t2x=a. cl, tl+b. tl

/ \
—rz . x —a. rl+b. tl

This gives us the prefix s-polynomial

spoip(pl, pz)=a”rl –rz”z —b”tl=a”pl–p2. c.

Notice that a finite set F ~ Z[’H] only gives us finitely

many prefix s–polynomials.

Theorem 5 Let F ~ Z[H], F prefiz saturated. Equiv-

alent

1.

2.

3.

This

are:

F is a Grobner busts.

idealr(F) ~~ O

For all fk, fl E F we have SP ~~ O, where

SP C Sd7P(spo&(fk , fl))

theorem gives rise to the following procedure.

Procedure Completion with respect to Prefix

Sat urat ion

input: F~ Z[’H], F= {fl,. ..fn} and

(Z, T) a convergent presentation of ‘H.

output: GB(F), a Grobner basis of F.

G := lJ~=l SATP(~i);

B := {(ql, q2) [ ql,q2 c G,m # o};

while B # 0 do

(!ll, ~2) := remove(~);
if h := spolP (ql, q2) exists then;

S := SATP(/t);

while S # 0 do

g := remove(S);

g’ := hnf(g, G);

if g’ # O then

B := B U {(f)j) I f ● G,j C SATP(g’)};

G:= G U SATp(fJ’);

endwhile

GB(F) := G

where SATP denotes the output of our prefix satura-

tion procedure, remove removes an element from a set

and hnf(g, G) computes a “canonized normal form” of

g with respect to G, where only right reduction at the

head monomial is allowed.

There are two critical points, why this procedure might

not terminate: prefix saturation of a polynomial need

not terminate and the set B need not become empty.

Theorem 6 In case the procedure terminates the out-

put is a Grobner basis.

Note that in general monoid rings are not (right-, left-)

Noetherian, i.e. not every ideal can be finitely gener-

ated. We can show that in special cases finitely gener-

ated right ideals allow finite Grobner bases, even when

the corresponding monoid ring is not right–Noetherian.

Theorem 7 Let F ~ Z[?t] be finite.

7

1.

2.

The procedure terminates when X is a free monoid

presented by finite Z and T = 0.

The procedure terminates when W is a group pre-

sented by a jinite convergent 2–monadic system

providing inverses of length 1 for the generators.

Relations to Other Work and

Applications

In our approach to generalize the concept of Grobner

bases to monoid rings, we find that in order to give a

criteria for a set to be a Grobner basis (in our case of

a right ideal), there are two main problems to solve.

They arise from the fact that in general the ordering

and multiplication on our monoid are not compatible,

i.e. ml + m2 need not imply ml . x + mz . x. Let -+

be a computable reduction on our monoid ring R[?i]

(e.g. as described in definition 2). Trying to character-

ize a set F ~ R[?i] as a Grobner basis of a (right, left)

ideal by means of s–polynomials and their reducibility

w in Buchberger’s work, we have to solve the following

problems:

1. We have to localize our critical situations.
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2. We have to guarantee that p-0 O and q LP O

implies the existence of a represe~tation of p-as

p = D:=l di . g,.zi, di c Z,gi eF, xi E’lfsuch

that llkf(p) ~ da. gi. xi for all i 6 {1, . . k}. Note

that this is weaker than demanding p ~J. O.

In case these problems are solved we immediately get:

F ~ R[H] is a Grobner basis for the (right, left) ideal

generated by F if and only if for all f, g E F the “ap-

propriate” s–polynomials reduce to zero by LF

In the previous sections we have solved these problems

by introducing prefix right reduction, prefix saturation

and prefix s–polynomials. Unfortunately prefix satura-

tion need not be finite in general. For example take

T = {ba - ab} and p = b + A. Then a prefix saturating

set of p must prefix right reduce the set {a” b+afl In E N}

to zero. It is obvious that no such finite prefix saturat-

ing sets of p exist.

In case T contains the commutator set of Z, TC =

{azal A alazlal, az ~ Z, al < az} the two problems

can be solved in a similar way by introducing commuta-

tive right reduction, commutative saturation and com-

mutative s–polynomials. Due to Dickson’s lemma we

always get finite Grobner bases (in this case even of

ideals) ([Mare]).

Now we want to sketch, how the results of Buchberger

[Bu85], Kandri-Rody, Kapur [KaKa84, KaKa88], Mora

[M085], Baader [Ba89] and Weispfenning [We92] can be

seen in this context. Note that the approach can easily

be modified for K[7f], where K is a field.

1. Grobner bases for R[zl, . . . z.], where R is a field

or Z, as described in [Bu85, KaKa84, KaKa88]:

We can view R[xl, . . . Zn] as the monoid ring over

the free commutative monoid ‘H generated by

{xl, . . . . Xn} and for instance the lexicographic-

degree ordering is monotone on 7f. Therefore, p it-

self is (commutatively) saturated and we can take

the usual definition of s–polynomials as a basis

for our set of s-polynomials. Such s–polynomials

are for example in case R = Z defined as follows:

Given two polynomials pl, p7, with ~C(p2) = C2 >

HC(pl) = c1 >0, HT(pi) = ti , RED(pi) = ri for

i= 1)2. Let Z1, Z2 such that tl. zl =tz.zz is the

least common multiple of tl,t2 and a, b E Z, b a

remainder of c1 with C2 = a . c1 + b. We get the

following spol(pl, pz) = a pl . ZI – pz . X2.

Equivalent are:

(a) idea/r(F) ~~ O

(b) For all f~, ~1 E F we have: Spol(jk, jl) ~r O.

2. Grobner bases for R (z1, . . . z~), where R is a field

or Z, as described in [M085, Ba89]:

We can view R (xl, . . . Zn ) as the monoid ring over

3.

the free monoid ‘H generated by {Cl, . . . . z~ }. We

know that p itself is (prefix) saturated since T = 0

and we can take prefix s–polynomials as described

in definition 8.

Equivalent are:

(a) idea/r(F) ~~ O

(b) For all ~~, j, ~ F we have: spol, (f~, j~) ~~ O.

Grobner bases for skew polynomials rings

K (X, Y) as described in [We92]:

We can view the skew polynomial ring K (X, Y)

as a monoid ring over a monoid ‘H presented

by Z = {X, Y}, T = {YX ~ X’Y}, where

e c N+. Since the ordering used by Weispfenning

is monotone, p itself is saturated and taking his s–

polynomials as a basis for our set of s–polynomials

we are done. Weispfenning’s s–polynomials are

defined as follows: Given two polynomials PI, P2

with HC(pi ) = ci, HT(pi ) = ti, RED(pi) = ri for

i= 1)2. Let zl, z2 such that tl. zl =tz. xz is the

“least common multiple” of tl, tzaccording to the

“modified” multiplication. We get the following

Spol(pl, pz) = C2 .pl .X1 —cl “P2”~2.

Equivalent are:

(a) idea/,(F) ~~ O

(b) For all ~~, ~, ~ F we have: spol(f~, f,) $r O.

Now we want to discuss an application to the subgroup

problem.

Definition 9 Let G be a group, S ~ ~ and (S) denote

the subgroup generated by S. The subgroup problem is

to determine, given w E ~, whether w c (S).

Let (Z, T) be a convergent presentation of a group ~.

Further let S = {ul, . . . . u.} be a subset of ~ (we

will identify ~ and IRR(T) throughout this section),

PS = {ui – 1 I ~i E S} and GB(Ps) the output of our

procedure.

Lemma 6 Let S ~ ~. Then the following statements

are equivalent:

1. w e (s)

.2. w – 1 E ideaL(Ps)

3“w–1_%B(P,) 0

Example 10 Let Z = {a, b,c}, T = {a4 + ~,b2 ~

A,ab -+ c,a3c + b)cb * a} denote a group ~ and S =

{ca, a2ca3, b} a subset of ~. Then {b – l,ca – 1,c2 –

b,a2c – a,as – C} is a right Grobner basis of F’s with

respect to ~“ .
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A word of caution: This cannot be generalized to the

submonoid problem as the following example shows:

Example 11 Let Z = {a, 6}, T = {ab ~ J} denote a

rnonoid M. Let U = {an I n c N} be the submonoid

of H generated by S = {a}. Then we have b – 1 ~

idea/r(Ps) since b – 1 = –l(a – 1) . b but b @ U.

Further research is done on the termination of the prefix

completion procedure in case e.g. (2, T) is a monadic

present ation of a group or a monoid. We will investi-

gate if and how the approach described in this paper

can be extended to Grobner bases of ideals and to other

structures, as e.g. polycyclic groups.
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