Network Stack Diagnosis and Visualization Tool

Krist Wongsuphasawat, Pornpat Artornsombudh, Bao Nguyen, and Justin McCann
University of Maryland, College Park, MD 20742
kristw@cs.umd.edu, apornpat@umd.edu, baonn@cs.umd.edu, jmccann@cs.umd.edu

ABSTRACT

End users are often frustrated by unexpected problems while
using networked software, leading to frustrated calls to the
help desk seeking solutions. However, trying to locate the
cause of these unexpected behaviors is not a simple task.
The key to many network monitoring and diagnosis ap-
proaches is using cross-layer information, but the complex
interaction between network layers and usually large amount
of collected data prevent IT support personnel from deter-
mining the root of errors and bottlenecks. There is a need
for the tools that reduce the amount of data to be processed,
offer a systematic exploration of the data, and assist whole-
stack performance analysis.

In this paper, we present Visty, a network stack visualiza-
tion tool that allows I'T support personnel to systematically
explore network activities at end hosts. Visty can provide
an overview picture of the network stack at any specified
time, showing how errors in one layer affect the performance
of others. Visty was designed as a prototype for more ad-
vanced diagnosis tools, and also may be used to assist novice
users in understanding the network stack and relationships
between each layer.

Categories and Subject Descriptors

H.5.2 [Information Interfaces and Presentation]: In-
formation Interfaces and Presentation

Keywords
Visty, Network Stack Visualization

1. INTRODUCTION

While using networked software, end users often encounter
unexpected situations, such as stuttering and delay in video
chat, disconnections from instant messaging servers, and
slowly loading web pages and applications. Users often have
little insight into the causes of such poor performance, lead-
ing to frustrated calls to the help desk. Network adminis-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CHIMIT 09, November 7-8, 2009, Baltimore, Maryland.

Copyright 2009 ACM 1-60558-572-7/09/11 ...$10.00.

trators and IT support personnel are left to perform labor-
intensive troubleshooting, but determining the root cause of
the problem is difficult because of the complexity of modern
systems.

A large body of research has focused on monitoring and
diagnosis of services over the network. However, determin-
ing whether errors and bottlenecks are caused by software
or the network infrastructure is still a complicated problem.
The key to many proposed approaches is using cross-layer
information to aid analysis [5, 6].

To gather consistent cross-layer information, we created a
data collection tool that captures statistical snapshots from
each layer of the network stack on an end host. To cap-
ture performance problems over periods of a few network
round trip times, these snapshots are taken approximately
every 100 milliseconds. However, this can result in a very
large amount of data in a short period of time. Even if an
expert understands the significance of each protocol statis-
tic and cross-layer interaction, analyzing this amount of data
and keeping track of complex interactions across the network
stack are still challenging tasks. Therefore, an analysis tool
is required that can reduce the amount of data to be pro-
cessed, offer a systematic exploration of the data, support
cross-layer network traffic analysis and suggest interesting
information.

Visualization is the use of graphical techniques to help
people see, explore, and understand large amounts of in-
formation at once. Network data visualization has a long
history [7, 9, 10, 14, 18, 19, 22, 24], but most approaches
focus on large-scale network diagnosis tasks, and are not de-
signed to troubleshoot problems with a particular machine,
which is what IT help desks often encounter.

Hence, to support network problem analysis from a single
machine perspective, we created a simple visualization tool
called Visty, which has the following contributions:

1. Visty allows I'T support personnel to explore the rela-
tionship of end host protocol statistics over time, and
provides them with an overview picture of the network
stack at any specified time to help locate performance
problems seen by end users.

2. Visty serves as a prototype for more advanced diagno-
sis tools.

3. In addition, Visty can be used to assist novice users
and developers in understanding the network stack and
relationships between each layer.

Our design approach is according to Shneiderman’s in-
formation visualization mantra: overview, zoom and filter,

29

details on demand [23]. An abstract representation of the
network stack and a timeline are used to reduce the amount
of data shown on screen and to provide an overview of the
network stack over time; zooming and filtering are employed
to provide systematic exploration; color-coding techniques
suggest interesting spots in the data; and detail information
is hidden until it is requested.

Visty loads the data provided by our end host data collec-
tion tool and creates the network stack visualization. Users
first select a period of time from the timeline that displays all
running applications over time. By relating all in-layer and
cross-layer information within the selected period of time to-
gether, Visty can build the network stack for that timespan.
It allows the users to see all traffic being passed over the
network stack. Users can then use zooming, filtering and
color-coding mechanisms to further explore the data.

The rest of this paper is organized as the following: Sec-
tion 2 covers the relevant history of network diagnosis and
network visualization tool. Section 3 describes motivation.
Section 4 defines terms that are used throughout the paper.
Section 5 explains high-level design concepts. We introduce
Visty and discuss implementation in Section 6. We describe
use case example and findings from collected data in Sec-
tion 7 and conclude in Section 9.

2. RELATED WORK

A large body of research on network performance moni-
toring and diagnosis had been done. Many researchers had
presented ideas that were relevant to this study. We divided
these related researches into two areas: cross-layer network
diagnosis and network traffic visualization tool.

2.1 Cross-Layer Network Diagnosis

Some approaches to network diagnosis focus on perfor-
mance of a single layer [16, 17, 20, 26, 27]. While such
approaches are useful, they cannot give an accurate picture
of overall system performance since losses at one layer may
or may not cause problems at other layers. For example,
backoff and retransmissions on a wireless link do not nec-
essarily mean that higher-level protocols such as TCP are
limited by the wireless link; TCP losses may be occurring
somewhere else in the network.

Some enterprise network researchers use a cross-layer view
to detect the causes of network defects. There are two differ-
ent approaches in enterprise network diagnosis: centralized
and decentralized.

On the centralized side, Cheng et al. [12, 13] developed
the Jigsaw framework for enterprise wireless network diag-
nosis. From raw frame data, Jigsaw reconstructs a complete
description of all link and transport-layer conversations. Us-
ing this synthesized information, Jigsaw provides a global
view of the network. However, to achieve this goal, Jigsaw
requires a centralized system to collect and monitor data
from all network nodes. In other words, Jigsaw focuses on
large scale monitoring tasks while our work here focuses on
the single host viewpoint.

On the other hand, Chandra et al. [11] developed a decen-
tralized system called WifiProfiler. Unlike Jigsaw, WiFiPro-
filer relies upon peer diagnosis among clients without the in-
volvement of system administrators. The analysis tool must
be installed on every client to collect data. Those data was
later exchanged between peers. The clients could then use
the exchanged data to analyze across the network layers to

locate the problems. Although WiFiProfiler was designed
from the end user perspective, it requires cooperation be-
tween users, which could be difficult to achieve.

In this study, we also use cross-layer information to solve
network diagnosis problems. However, our approach is dif-
ferent from the other alternatives because it is based on vi-
sualization rather than rule-based inference or data mining
techniques.

2.2 Network Traffic Visualization Tool

Other approaches to network data visualization focus on
network traffic diagnosis tasks. One of the earliest works in
this theme was SeeNet by Becker, et al. [9]. SeeNet visu-
ally represents the amount of data being sent between two
network nodes using three visualization techniques: static
displays, interactive controls, and animation. Two of these
use geographical relationships, while the third is a matrix
arrangement that gives equal emphasis to all network links.
With this tool, an administrator can easily identify over-
loaded nodes as well as the data flow between them.

Later work includes from Ball [7], Patwari [22] and Kim [18]
describes various visualization techniques applied to support
network traffic analysis and management tasks. NetGrok
[10] employs zoomable interfaces and treemaps to make the
network structure and traffic flow information more visible
to network administrators.

Several authors have applied visualization techniques to
network security problems. McPherson et al. [19] use his-
tograms to summarize coarse data collected from TCP and
UDP ports; activity levels are color-coded to help users eas-
ily uncover interesting security events. In a similar effort,
Tehsin et al. [24] propose a visualization of packet headers
to highlight the features of the network data most vulnerable
to attacks.

Gerald Combs et al. [15] developed Ethereal, which was
later renamed to Wireshark. Wireshark captures data from
an ongoing network connection and perform offline and on-
line analysis. It provides a graphical front-end and many
information sorting and filtering options that allow the user
to analyze traffic being passed over the network. Wireshark
is able to display the packet encapsulation and protocol fields
along with their interpretation for many different network-
ing protocols. It also provides simple visualizations, such as
simple timeline and throughput graphs. However, it does
not provide a visualization for cross layer analysis. In addi-
tion, Wireshark depends on packet-level capture on a given
interface. Our data collection tool collects protocol statistics
across the entire host, and as such should be more scalable.

Most current network analysis tools such as WireShark[21],
Nagios[8], and INAV[25], focus on traffic diagnosis tasks.
Data is collected from different protocols and visualized in
forms of log tables or summarized graphs. Some data analy-
sis techniques such as sorting, filtering or color coding are ap-
plied to enhance the data readability. Those visualizations
are useful in analyzing data from a single layer or identify-
ing the data trends. However, it is not easy to interpret the
relationships between particular data coming from different
network layers. By organizing network data the way peo-
ple think about it—as a protocol stack—and visualizing the
connections between all protocol layers, Visty helps users
explore and highlight the cross-layer relationships. More-
over, by taking the advantages of zoomable interfaces, Visty

30

users can analyze those relationships in different levels of
abstraction.

The idea of visualizing data by querying data from dif-
ferent time slots is done in RRDTool based tools such as
Cricket[3], Munin[4], and Big Brother[2]. However, these
tools lack the ability to search time series, which would al-
lows the users to effectively explore and identify the time
slots of interest. In contrast, the timeline searching bar in
Visty enables users to quickly navigate through the network
data over time. Using this interactive interface, users can
first scan the data as a whole to get some hints about prob-
lem areas, and then zoom into particular time slots to get
the insights.

3. MOTIVATION

Applications which run over the network can encounter
many problems. For example, an instant messaging appli-
cation that was working fine could suddenly fail every out-
going message attempt, creating frustrated users. The IT
help desk is then called to solve the problem. However,
these kinds of problems can come from any point of the sys-
tem, from the application code, network congestion, or even
hardware error.

Locating the causes of the problem is a difficult task be-
cause the abstract interface provided between protocol lay-
ers does not include much diagnostic information. The main
challenge is that each layer of the network architecture can-
not be looked at in isolation. Errors or performance prob-
lems at each layer may be compounded by layers above and
below, making it impossible for one layer to distinguish its
own problems.

Furthermore, the amount of data collected via a network
trace can be very large even for a very short period of time.
For example, our data collection tool collects protocol statis-
tics from the entire network stack approximately every 100
milliseconds. This amount of data requires significant time
and effort to analyze without assistance from a proper anal-
ysis tool.

To the best of our knowledge, current network analysis
and monitoring tools do not provide an appropriate support
for cross-layer network traffic analysis, which can relate and
track the cross-layer abstraction. Therefore, there is a need
for an analysis tool than can assist network administrators
in analyzing cross-layer information from a single machine
viewpoint.

Visualization takes advantage of human visual perception
to allow users to see, explore, and understand large amounts
of information at once. This makes it possible to improve
the understanding of the network stack captured by the un-
derlying data and the complex interactions between network
layers.

Therefore, we created Visty, a network stack visualization
tool, which displays a graphical representation of the net-
work stack and relationships between each layer, and allows
users to explore the data via user interaction. Unlike other
network tools, which focus on packets captured at network
interfaces, Visty visualizes the flow of network traffic across
layers within a host. While packet captures are useful, they
provide little insight when packets are not transmitted—
software bugs, slow applications, and backoffs to avoid con-
tention are hidden to capture-based tools. By looking at
the entire network stack, Visty enables users and systems
administrators to diagnose which network layers are experi-

encing degraded performance. In the future, more features
related to automated performance diagnosis can be added to
assist analysis. Visty can also be used for educational pur-
poses at the starting point of studying networks by showing
examples of real network stacks to end users and developers
unfamiliar with network protocols.

4. DATA DICTIONARY

Before discussing our implementation in detail, we define
the entities in our network stack ontology:

A Module is a generic type of modules in the network layer,
e.g., Firefox, TCP, IP, or Ethernet. If we compare this to
object-oriented programming, Module will be like a class.

A Modulelnstance is an instance of a Module that ex-
ists over a period of time, e.g., Firefox(PID=#1), Fire-
fox(PID=+#2), IP 10.1.1.1, IP 192.168.0.1. A Moduleln-
stance is analogous to an object in object-oriented program-
ming.

A ModuleSnapshot is a collection of a Modulelnstance
statistics at a point in time, e.g., "Firefox(PID=+#1) at
4/30/2009 11:01:03”. All the data (number of bytes in, num-
bers of bytes out, number of errors, retransmissions) is col-
lected here.

A Relationship is a relationship between Modulelnstance,
e.g., Firefox(PID=+#1) is above Socket(fd=7), which is above
“TCP conn. 192.168.0.1:42295 < www.google.com:http”.

5. HIGH LEVEL DESIGN

The data used by Visty is collected over a period of time,
which may be hours, days, or possibly weeks. Displaying the
network stack for the entire data set may be not desirable,
especially when the data is very large. Users specify a time
range that they are interested in. Then, the first question
users might encounter is, “When is the interesting time pe-
riod that I should look at?” So, we design a timeline panel
to give an overview of the data by showing the lifetime of
all applications. Users then can specify the duration from
the timeline, using the knowledge of when applications were
running to help them make their decision.

After the users specify the time period, Visty fetches all
the required information from the database and builds the
network stack. A major goal of Visty is to reveal insight into
every part of the networking stack, from device drivers to
transport protocols to applications. The module instances
(e.g., an application, TCP connection, or an Ethernet in-
terface) are represented as boxes and placed on the screen
according to their layers— applications at the top, down
to physical interfaces at the bottom. Lines are drawn from
each module instance to all its dependencies to express the
relationships between module instances.

Sometimes, module instances are unrelated to the anal-
ysis of a given stack trace, for example when a particular
application is being diagnosed. In such cases, users should
be able to filter out these modules. Therefore, we add fil-
tering mechanisms that allows users to remove such module
instances from the stack.

Each module instance contains detail information: num-
ber of packets in, number of packets out, number of errors,
etc. It is not possible to show all the information on the
screen at the same time. Therefore this information is hid-
den by default. Users can click on a module instance to view
detail information.

31

Visty : Network Stack Visualization Toggle Layout Showing snapshot from 2009-4-23 12:38:59 to 2009-4-23 15:33:11

2009-4-17 14:59:41 Create NetworkSnapshot from 2008-4-23 12:38:58 to 2009-4-23 15:33:11 Zoom into Selection
18 19 20 Fal 22 23
Apr Apr Apr Apr Apr Apr r

12 16 20 18 4 8 12 16 20 19 4 8 12 16 20 20 4 B 12 16 20 21 4 & 12 16 20 22 4 8 12 16 20 23 4 & 12 06 20 24
Apr Apr Apr Apr Apr Apr Apr

wgst
firafox-bin
geonfd-2

[svn

o .
‘wget:8396:jmecann - d

(= Color Coding #1 |

i s_phkts_in A
fd=7 UDP 172.16.5.4:32777<=>128.... | fd=7 UDP 172.16.5.4:32777=<->128.... | fd=7 UDP 172.16.5.4:32777==>128... |fd=7 TCP 172.16.5.4:42205<->184.... T
|_Apply | |_Clear |

TCP: 172.... |TCP:172.... |TCP: 172.... |TCP:172.... |TCP:172.... |TCP:172.... |TCP: 172.... |TCP:172.... |TCP: 172.... | TCP: 172....

(= Color Coding #2 |

i s_phkts_in A
qijéh‘__ ‘"_""‘\;__;-_2=¥ min [T e
IPV4: local address=127.0.0.1 IPV4: local address=172.16.5.4 IPV4: local address=127.0.0.1 IPV4: local address=172.16.5.4 éﬂﬂm Clear

| Custom Label #1 |

lofloopb... |wifi0fath... |athO[ma... |sitO[ipvBl... | ethieth... | ethO[via-.. | lofloopb... |wifiO[ath... |athO[ma... |stO[ipvEl... | ethi[eth... |ethO[via-.. [s_pkts_in v
Apply Clear
(= Custom Label #2 |
i s_phkts_in A
Redraw relationships Apply Clear

Figure 1: Visty - The timeline panel on the top displays lifetime of all applications. The user can draw
a selection (black rectangle) on the timeline to specify the range of interest and click on “Create Network
Snapshot”. The result network stack is displayed in the bottom left part of the screen. The control panel in
the bottom right can be used to specify color-coding scheme or additional labels on the module instances and
filter non-relevant module instances. Please see filtered, labeled and color-coded network stack in Figure 2.

Visl‘y : Network Stack Visualization Toggle Layout Showing snapshot from 2009-4-23 12:38:59 to 2009-4-23 15:33:11
2009-4-17 14:59:41 Create NetworkSnapshot from 2008-4-23 12:38:59 to 2008-4-23 15:33:11 Zoom into Selection

18 19 20 Fal 22 23

Apr Apr Apr Apr Apr Apr r

12 16 20 18 4 8 12 16 20 19 4 8 12 16 20 20 4 B 12 16 20 21 4 & 12 16 20 22 4 8 12 16 20 23 4 B 1 6 20 24
Apr Apr Apr Apr Apr Apr Apr

wgst
firafox-bin
geonfd-2

[svn

o .
‘wget:8396:jmecann - d

0/48504 (= Color Coding #1 |

| s-e rrors_in A

fd=7 UDP 172.16.5.4:3277 7=-=128.... | fd=7 UDP 172.16.5.4:32777=-=128.... | fd=7 UDP 172.16.5.4:32777==>128... |fd=7 TCP 172.16.5.4:42205=->194.... P e
oM oM oM Apply Clear

TCP: 172.16.5.4:42295<->184.71.11.69:80

(= Color Coding #2 |

i s_phkts_in A
min [T e
Apply Clear
(= Custom Label #1 |

lofloopback]: Local MAC A... | ethOfvia-rhinel: Local MAG .. | lofloopback]: Local MAC A... sthD[via-rhinel: Local MAG .. (Rs=amrocs -in v
oo oo 7393/36474 0/15842 |_Apply | | Clear |

| Custom Label #2 |

IPV4: local address=127.0.0.1 IPV4: local address=127.0.0.1 IPV4: local address=172.16.5.4

0/15808 0/15808

i s_phkts_in A

Redraw relationships Apply Clear

Figure 2: Network stack from 12pm to 3pm on Apr 23 - The users filtered out non-relevant instances, and
use green and red to represent high numbers of incoming packets and errors, respectively. The first and
second numbers under the module instance name are number of incoming errors and packets, respectively.

32

LSE rspace —
application
-u::';: sy D_merioan I .
collection fe- [= "
daemon application
e = [
O " P
H b4 el HE
f— application -
AR e esnnsssnanenny] LD PRELOAD : E
P e : H
et i i
: : ¥ ¥_¥
| NETLINK I Iproc I ioctl I I syscalls]
kernel

Figure 3: Data collection architecture. The collec-
tion daemon retrieves statistics from the kernel and
a custom library call interposition module invoked
via LD_PRELOAD, and stores them in a database
for later analysis.

Moreover, we would like to provide an easy way for users
to locate possible problems in the network stack. As a result,
we add color-coding mechanisms to the tool. Users can select
what data field (e.g., number of packets in, number of errors,
etc.) they want to color-code the module instances by, and
makes it easy to locate outliers.

6. IMPLEMENTATION

Visty is a web-based application developed using Adobe
Flex 3. We use a library called asSQL [1] to connect to a
MySQL database that contains statistical snapshots of the
entire network stack, retrieved several times a second by the
collector shown in Figure 3.

Visty consists of 3 panels: timeline, stack and control
panel. (See Figure 1.) The timeline panel is located at
the top. It shows lifetime of all the applications in the data.
Users select a period of time from the timeline and click on
“Create NetworkSnapshot” button to load data within that
period from the database. Once the data is returned from
the database, the network stack is visualized on the stack
panel, which is located in the bottom left of the screen. The
control panel in the bottom right corner of the screen pro-
vides filtering and color-coding mechanisms for further ex-
ploration.

6.1 Timeline Panel

This panel is designed to show an overview of the data
and help users choose the time range that they want to see
the network stack. There are two timelines in this panel.
(See Figure 4.) The one on the top is called main timeline.
This timeline shows the entire range of the data. Users can
draw a box on the main timeline to specify the duration
of data shown in the detail timeline beneath it. The detail
timeline displays the lifetime of all application instances,
grouped by application (e.g., wget, firefox, and svn) using

color-coded rectangles. The darker the color of the rectan-
gle is, the higher number of that application instances are
running at that time. Clicking on the “+” symbol in front of
the application name shows all instances of that particular
application. Users can draw a selection box on the detail
timeline to specify a time range to build the network stack.
The label on the top of the timeline changes according to the
selected range. Users can zoom into the selected range by
clicking on “Zoom into Selection”. When users have finished
choosing the time range, they can click on “Create Network-
Snapshot” button to load data from the database and build
the network stack.

6.2 Stack Panel

Once users have clicked on the “Create NetworkSnapshot”
button, the network stack is visualized in the panel below.
(See Figure 5.) A major obstacle to representing the net-
work stack trace is the diversity of behaviors and features ex-
hibited in network architectures. Communication functions
are grouped as layers according to their common features.
Different authors have interpreted the RFCs differently re-
garding whether the Link Layer (and the four-layer TCP /IP
model) covers physical layer issues or a “hardware layer” is
assumed below the link layer. In this paper, we use the OSI
model as a reference.

Each module instance is represented as a box. Relation-
ships between module instances are visualized as lines be-
tween the boxes. The boxes are placed vertically by lay-
ers and horizontally by time. The highest layer module in-
stances are placed on the top of the stack panel while the
lowest layer module instances are placed in the bottom of the
stack panel. Module instances are placed from left to right
according to its creation time; oldest on the left to newest
at the right. Moving the mouse pointer over a module in-
stance triggers a tooltip that shows details of that particular
module, highlights all of its relationships. Clicking on the
module instance creates a popup that displays all detail in-
formation about that module instance.

6.3 Control Panel

The control panel consists of two tabs:

6.3.1 Customize Tab

Users can open the popup to see information in each mod-
ule instance. However, there should be a way to show some
part of the information in all module instances at the same
time. Visty allows users to show any two specified data
fields on the box using the custom label controls. (See Fig-
ure 6.) Moreover, a number alone does not help the users
see the trends or spot anomalies. Therefore, we implement
a customizable color-coding mechanism into Visty. Users
can select up to two fields that they want to color-code the
boxes by. The boxes are divided into two parts; the upper
part has color corresponding to color code 1 (white to red)
while the lower part has color corresponding to color code 2
(white to green). The darker color represents higher value.

6.3.2 Filter Tab

Visty allows users to filter out irrelevant data from the net-
work stack. In control panel, there are checkboxes labeled by
module instance names, which are grouped by layer. Users
can show or hide the module instances in the network stack
by checking or unchecking these checkboxes. (See Figure 7.)

33

2009-4-17 14:59:41 | Create NetworkSnapshot | from 2008-4-17 14:38:27 to 2008-4-17 16:00:36 Zoom into Salection 2009-4-23 23:08:36
18 19 20 21 22 23 24
Apr Apr Apr Apr Apr Apr Apr
B 42 45 48 51 54 57 15 3 & 9 12 15 1B 21 24 27 30 33 36 39 42 45 48 51 54 57 16
hr hr
[+ wgst | | | 1 1 1
finafonx-bin 2009-4-17 15:23:50
geonfd-2 wget (2 instances)
[+ svn
2009417 14:59:41 | Create NetworkSnapshot | from 2008-4-17 14:38:27 to 2008-4-17 16:00:36 Zoom into Salection 2009-4-23 23:08:36
18 19 20 21 22 23 24
Apr Apr Apr Apr Apr Apr Apr
F 42 45 48 51 54 57 15 3 B 9 12 15 18 21 24 27 30 33 3B 30 42 45 48 51 54 57 16
hr hr
o woet m |] I
I-
—
-.
! I
—
-
' -
L
L]

Figure 4: Timeline Panel - (above) This dataset was collected while four applications were running: wget,
firefox, gconfd, svn. (below) Users can expand to see all instances of each application.

| ﬂ
wyet:8388:jmccann Detalls x

IPV4: local address=172.16.54
/”/N P in 118540

fd=7 UDP 172.18.54:327 . | fd=7 UDP 172.16 5.4:327 .. | fid&=T UDP 172.18.5.4:327 .. | fd=T TCP 172.18.5.4:422 .

g
i
g
5
R

Data in

\ Data packets out
TCP: 172.16.5.4:2... |TCP: 172.16.542... | TCP: 172.16.542... | TCP: 172.16.54:2... | TCP: 172.16.5.4:4... Confrol packets in
Control packets out

Errors in

Errors out
IPV4: local address=127.0.0.1

Deferrals in

Deferrals out

Bytes in
lofloopback]: L... | wifilfath pcil L... | athO[madwifi): L... | sitO[ipvElip]: Lo... | sthi[sth1384]: ... | sthO[vis-rhing]: ... Byies out

Data bytes in
Data bytes out

Control bytes in
Confrol bytes out
Retries

| Redraw relationships | Reconfige

c o 0o 0o 0o 0o 0 0o 0 0o 0 0 0 o o o

Figure 5: Stack Panel - The network stack is shown on the left. Placing a cursor over a box highlights it and
all of its relationships. The user clicks on a box the bring up the popup that shows more details.

34

T |

Lz Color Coding #1 J

| s_errors_in ¥ |
min T e
Apply | | Clear |

| = Color Coding #2 |

| s_pkts_in v
min [max
|_Apply | | Clear |

[w Custom Label #1 J

| s_errors_in v |
|_Apply | | Clear |

| « Custom Label #2 J

s_pkts_in

| #

s_pkts_in

i

pkts_out

W

data_pkts_in

[

data_pkts_out

W

control_pkts_in

i

contrel_pkts_out

errars_in

W

errors_out

W

deferrals_in

W

deferrals_out -

[

Figure 6: Control Panel - Customize Tab: Visty
allows users to select up to two fields that they want
to use to color-code the boxes. Also, the users can
choose to display any two specified data fields on the
box by selecting the field names from the “custom
label” drop-down lists.

ey - T
= Layer 6 | =]
[v] wget:6396:jmocann

l w Layer 5§]
[+ fd=7 UDP 172.16.5.4:327 ..

| fd=7 UDP 172.16.5.4:327 ...
v fd=7 UDP 172.16.5.4:327...

] fd=7 TCP 172.16.5.4:422...

l w Layer 4]
|v] TCP: 172.16.5.4:22<->12...

[] TCP:172.16.5.4:22<->12...
|»] TCP:172.16.5.4:22<->12...
[v] TCP:172.16.5.4:22=->12... | &
|v] TCP: 172.16.5.4:42295<- ..

= Layer 3 [
[v] 1PV4: local address=127.0...
[+] 1PV4: local address=172....

-

Figure 7: Control Panel - Filter Tab: Users can show
or hide the module instances in the network stack
by checking or unchecking these checkboxes. The
module instances are grouped by layers.

7. RESULTS

7.1 Use Case Examples

This section describes two example scenarios when Visty
may be used.

7.1.1 IT Support

Steve, a typical user, is running an alpha version of an
instant messaging application. He runs into network prob-
lems while using the software, and is not sure whether it is
caused by the bugs in this software, a network connection
problem, or something else. To find out what really hap-
pened, Steve contacts the instant messaging support team
to send someone over. Jane, a technician, visits Steve and
starts the data collection tool. She then asks Steve to use
the instant messaging software the same way as he did be-
fore until the same problems occur again. Jane stops the
data collection tool and loads the collected data into Visty.
She specifies the time when the problem occurred from the
timeline panel on the top and creates network snapshot for
that period. Visty generates and displays the network stack
for that period of time. Jane filters out irrelevant module
instances on the generated network stack so using the con-
trols on the “filters” tab on the right. She then sets the color
coding scheme to help her locate module instances with high
error or retransmission rates. There is a red spot in several
of the TCP socket module instances. From the stack visu-
alization, Jane notices that these TCP sockets were created
by several different applications, and the instant messaging
software appears to be waiting for TCP to transmit outgo-

35

ing segments. She also sees that the Ethernet interface is
displaying errors, and suspects the messaging application is
not at fault. Further diagnosis reveals that auto-negotiation
between the host and Ethernet switch had malfunctioned,
resulting in mismatched Ethernet duplex settings.

7.1.2 Learning

Wayne is an instructor of Introduction to Computer Net-
works course. After going over the slides and explaining the
details of each network layer, he wants to show the real ex-
ample of how these layers are tied together to the students
in addition to illustrated graphics from the textbooks, so he
starts the data collection tool and opens his web browser
and Twitter client. He visits the department website and
tweets a few short messages into Twitter, then stops the
data collection tool and opens Visty. He specifies the time
range of the data that was just collected and creates net-
work snapshot. The students now can see the network stack
of Wayne’s recent activities. He can use the visualization
to explain more about how data flows from his web browser
through the layers to the web server, and vice versa.

7.2 Analysis of Sample Data

This sample data was a modification of collected data on
one machine from Apr 17, 2009 to Apr 23, 2009. The ana-
lysts loaded data into Visty and saw from the timeline that
the user was running wget from 12:50 to 15:15, approxi-
mately, on Apr 23. They wanted to see what was happening
during that period so they specified that range and created
a network snapshot. (See Figure 2.) From the links rep-
resenting dependencies between modules, they found that
wget created four sockets: three services were in connection-
less mode using ports number 32777 and one service was in
connection-oriented mode using port number 42285. With
the connection-oriented mode, the wget application estab-
lished a connection to the other end by requesting a service
from the TCP/IP protocol. A connection was created be-
tween host IP address 172.16.5.4 on port number 42295 and
the server IP address 194.71.11.69 on port number 80. By
using IPv4 (i.e., Internet Protocol version 4), packets were
sent to the eth0 module, an Ethernet card, which was con-
nected to an ISP.

The color coding method was used to locate module in-
stances with high errors. They used green to represent high
numbers of incoming packets and red to represent high num-
ber of incoming errors for each module instance. A green
spot in connection-oriented socket showed the highest usage
of this module among all four sockets, while a red spot in the
wifi0 module pointed out high numbers of incoming errors,
indicating some problems which this interface. They dis-
cussed with the data collector who explained that this net-
work card was not used during that time, but not disabled.
This concluded that the high number of incoming errors was
caused by wireless sensing from this device. There was also
another red spot in the IP layer which suggested a possible
problem. This could be caused by the fault in IP layer on
the machine or from the medium. They made an assump-
tion that IP layer on that machine was working properly
and therefore looked for other possible problems from the
source. They discussed with the data collector again and
finally found that the router malfunctioned and corrupted a
large number of packets.

8. FUTURE WORK

The timeline can still be improved by showing not only
the application layer information, but also information from
lower layers.

The network stack visualization could be improved by
making better use of the available space. We tried to use
the width of the boxes to encode another dimension of the
data, e.g. number of incoming or outgoing links, however,
we found that the labels for instances which had low num-
ber of links could not be displayed because the boxes were
too small. An appropriate trade-off decision has to be made.
Scalability is another important issue. One interesting prob-
lem would be how to display the module instances when
the number of instances is very large, e.g. for servers with
large numbers of simultaneous connections. Also, the cur-
rent design supports only data that follows the OSI model
strictly. However, real networks can be more complex, with
tunneling, VPN, proxies, etc. which can be more difficult to
visualize.

More features related to automatic performance diagno-
sis can be added to assist analysis. The tool may provide
suggestions of possible problems in the data and allows the
users to examine the details.

For educational purposes, it may be useful to be able to
have a video playback feature to show how the network stack
was constructed and changed over time. This will allow the
students to see changes and understand the data flow step-
by-step.

9. CONCLUSION

Communication across the network is complicated. Com-
munication functions are grouped into related and manage-
able layers, but each layer hides information such as loss and
retransmissions from layers that depend upon it. Even if an
expert understands how each layer of network architecture
is actually related, locating errors and bottlenecks caused by
these layers is still a challenging task. Combining with the
fact that the amount of data which the network data collec-
tion tool can generate is usually large, this kind of analysis
can take an unreasonable amount of time and effort.

In this paper, we describe a network stack visualization
tool called Visty that assists in cross-layer network perfor-
mance analysis. Visty provides users with an overview of the
network stack over time, allows them to systematically ex-
plore the network stack within any specified period of time,
and to use their knowledge to locate errors or bottlenecks
hidden shown by the data. Visty is designed to be simple
but can be enhanced into a more advanced diagnosis tool
for advanced users. Moreover, Visty may be used as an edu-
cational tool to help students understand the network stack
and relationships between each layer.

10. ACKNOWLEDGEMENT

The authors would like to thank Dr. Neil Spring for his
guidance and all the reviewers for their thoughtful com-
ments.

11. REFERENCES

[1] assql. http://code.google.com/p/assql/ (Jul 2009).
[2] Big brother. http://bb4.com (Sep 2009).
[3] Cricket. http://cricket.sourceforge.net (Sep 2009).

36

[4]
[5]

Munin. http://munin.projects.linpro.no (Sep 2009).
ApYA, A., BaHL, P., CHANDRA, R., AND QIU, L.
Architecture and techniques for diagnosing faults in
ieee 802.11 infrastructure networks. In MobiCom ’04:
Proc. 10th Annual Int. Conf. Mobile computing and
networking (New York, NY, USA, 2004), ACM,

pp. 30-44.

BaHL, P., PADHYE, J., RAVINDRANATH, L., SINGH,
M., WOLMAN, A., AND ZILL, B. DAIR: A framework
for managing enterprise wireless networks using
desktop infrastructure. In Proc. Annual ACM
Workshop on Hot Topics in Networks (HotNets)
(2005).

BaLr, R., FINK, G. A., AND NoRTH, C.
Home-centric visualization of network traffic for
security administration. In VizSEC/DMSEC "04:
Proc. ACM workshop on Visualization and data
mining for computer security (New York, NY, USA,
2004), ACM, pp. 55-64.

BARTH, W. Nagios: System and network monitoring.
No Starch Press San Francisco, CA, USA, 2006.
BECKER, R., E1ck, S., AND WILKS, A. Visualizing
network data. IEEE Trans. Visualization and
Computer Graphics 1, 1 (1995), 16-28.

BLUE, R., DuNNE, C., Fucas, A., KiNg, K., AND
SCHULMAN, A. Visualizing Real-Time Network
Resource Usage. In Proc. Visualization for Computer
Security: 5th Int. Workshop, Vizsec 2008 (Cambridge,
MA, USA, September 2008), Springer, p. 119.
CHANDRA, R., PADMANABHAN, V., AND ZHANG, M.
WiFiProfiler: cooperative diagnosis in wireless LANs.
In Proc. 4th Int. Conf. Mobile systems, applications
and services (2006), ACM.

CHENG, Y.-C., AFANASYEV, M., VERKAIK, P.,
BENKO, P., CHIANG, J., SNOEREN, A. C., SAVAGE,
S., AND VOELKER, G. M. Automating cross-layer
diagnosis of enterprise wireless networks. SIGCOMM
Comput. Commun. Rev. 37, 4 (2007), 25-36.

CHENG, Y.-C., BELLARDO, J., BENKO, P., SNOEREN,
A. C., VOELKER, G. M., AND SAVAGE, S. Jigsaw:
solving the puzzle of enterprise 802.11 analysis.
SIGCOMM Comput. Commun. Rev. 36, 4 (2006),
39-50.

CHESWICK, B., BURCH, H., AND BRANIGAN, S.
Mapping and visualizing the internet. In USENIX
Ann. Tech. Conf. (2000), pp. 1-12.

CowmBs, G., ET AL. Wireshark.
http://www.wireshark.org (July 2009).

DunN, J., NEUFELD, M., SHETH, A., GRUNWALD, D.,
AND BENNETT, J. A practical cross-layer mechanism
for fairness in 802.11 networks. Mobile Networks and
Applications 11, 1 (2006), 37-45.

JARDOSH, A. P., RAMACHANDRAN, K. N.|
ALMEROTH, K. C.,; AND BELDING-ROYER, E. M.
Understanding link-layer behavior in highly congested
ieee 802.11b wireless networks. In E-WIND °05: Proc.
ACM SIGCOMM workshop on Experimental
approaches to wireless network design and analysis
(New York, NY, USA, 2005), ACM, pp. 11-16.

KiMm, S., AND REDDY, A. Netviewer: a network traffic
visualization and analysis tool. In Proc. 19th Conf.
Large Installation System Administration (2005),

(19]

20]

21]

(22]

23]

[24]

(25]

[26]

27]

vol. 19, USENIX Association Berkeley, CA, USA,

pp. 18-18.

McPHERSON, J., Ma, K.-L., KrRYsTOSK, P.,
BARTOLETTI, T., AND CHRISTENSEN, M. Portvis: a
tool for port-based detection of security events. In
VizSEC/DMSEC ’04: Proc. ACM workshop on
Visualization and data mining for computer security
(New York, NY, USA, 2004), ACM, pp. 73-81.
MISHRA, A., SHIN, M., AND ARBAUGH, W. An
empirical analysis of the IEEE 802. 11 MAC layer
handoff process. ACM SIGCOMM Computer
Communication Review 33, 2 (2003), 93-102.
OREBAUGH, A., RAMIREZ, G., AND BURKE, J.
Wireshark € Ethereal network protocol analyzer
toolkit. Syngress Publishing, 2007.

Patwari, N., HErO, ITI, A. O., AND PACHOLSKI, A.
Manifold learning visualization of network traffic data.
In MineNet 05: Proc. ACM SIGCOMM workshop on
Mining network data (New York, NY, USA, 2005),
ACM, pp. 191-196.

SHNEIDERMAN, B. The eyes have it: a task by data
type taxonomy for information visualizations. In Proc.
IEEE Symp. Visual Languages (Sep 1996),

pp- 336-343.

TEHSIN, S., KHAN, S., AND KHATTAK, N. Visualizing
Network Traffic as Images for Network Anomaly
Detection. In International Conference on Informatics
(2007).

WAGNER, [., CARLSSON, G., EKSTRAND, K., ODMAN,
P., AND SCHNEIDER, N. A comparative study of
assessment of dental appearance by dentists, dental
technicians, and laymen using computer-aided image
manipulation. Journal of Esthetic and Restorative
Dentistry 8, 5 (1996), 199-205.

Yana, H., Suu, J., MENG, X., AND Lu, S. SCAN:
self-organized network-layer security in mobile ad hoc
networks. IEEE Journal on Selected Areas in
Communications 24, 2 (2006), 261-273.

ZHANG, M. Understanding internet routing anomalies
and building robust transport layer protocols. Tech.
rep., Princeton University, 2005.

37

