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ABSTRACT
This paper introduces Blackbone2, a novel fully decentral-
ized algorithm that aims at creating a robust backbone in
ad hoc networks. Backbone robustness is supported by a
2-Connected m-dominating Set, 2, m-CDS, and decentral-
ization relies on the usage of two rules that only require
two-hop knowledge in order to reduce the use of bandwidth.
Blackbone2 deterministic approach guarantees a density-in-
dependent valid solution and is proved correct. The algo-
rithm is also characterized by its efficient theoretical com-
putation time, O(∆2) with ∆ the average number of neigh-
bors, which outperforms known solutions. The domination
parameter, m, can be increased without changing the theo-
retical computation time. Efficiency of the Blackbone2 al-
gorithm compared to the equivalent literature solutions is
illustrated through simulations of a large panel of networks
with a wide density range.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Network topol-
ogy, Wireless communication; G.2.2 [Graph Theory]: Net-
work problems, Graph algorithms

General Terms
Algorithms, Design, Performance, Theory

Keywords
k-connected m-dominating Set, Wireless Sensor Networks,
Localized algorithm
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1. INTRODUCTION
Ad hoc networks distinguished themselves clearly from

other communication networks with many features such as
absence of a fixed infrastructure, wireless multihop commu-
nication, and strict resource limitations (e.g., limited band-
width and energy resources).

In this kind of networks, the shared medium and the lack
of global coordinator implies that the node throughput de-
clines rapidly to zero as the number of nodes in the network
increases [6]. In order to deal with large-sized networks,
the creation of a virtual backbone is a commonly proposed
solution [3, 7, 12, 14–16]. Backbone formation leverages the
scalability limits of traditional routing for ad hoc networks
by selecting a subset of the network nodes, the so-called
backbone, that is responsible for performing and managing
multipoint communication (routing, multicast, broadcast).

One of the most studied solution to create a virtual back-
bone is the computation of a Connected Dominating Set
(CDS) in the communication graph representing the net-
work. Given a simple undirected graph G = (V, E), where
V is a set of vertices representing the hosts and E is a set of
undirected edges representing the links. A subset V ′ ⊂ V is
a dominating set of a graph G = (V, E) if every vertex not
in V ′ is connected to at least one member of V ′ by some
edge. A subset V ′′ ⊂ V is a connected dominating set of
graph G = (V, E) if V ′′ is a dominating set of G and the
subgraph induced by V ′′ is connected.

The quality of a CDS depends on its size corresponding
to the number of nodes in V ′′. Indeed, if less nodes are in
charge of the routing process, the overhead due to routing
will be less important. The problem of finding the CDS of
the smallest size is called Minimum CDS and many approx-
imation algorithms have been proposed [1, 3, 12, 15, 16] to
solve this problem in a decentralized way with local infor-
mation.

The major drawback of the CDS approach in an ad hoc
context is its poor reliability due to node failure. Indeed,
most of the time, loosing one node that is part of the virtual
backbone will induce its breakage. In order to ensure the
robustness of the structure, we add the following constraint
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to the generated CDS: when the topology graph permits
it, every couple of node of the backbone should be able to
communicate through two independent paths.Two paths are
independent if they do not have any internal vertex in com-
mon. Computing such a CDS is equivalent to generating a
2-connected dominating set.

To solve this problem we propose Blackbone2, a fully de-
centralized algorithm for computing CDS or 2-Connected
m-Dominating Set. To compute a global solution, all the
nodes of the network require a 2-hop knowledge, which can
easily be gathered via beaconing packets. For bandwidth
consideration no other message has to be exchanged.

The remainder of this paper is organized as follows. In
Section 2, we review some existing CDS and k, m-CDS con-
struction algorithms. In Section 3, we describe an algorithm
for constructing a 2-Connected m-Dominating Set in an ef-
ficient and a decentralized way. and the Section 4 provides
an analysis of its theoretical performances and in Section
5, we evaluate the performances of our proposed algorithm
through simulation. Finally, we conclude this paper and
discuss some future research directions in the last section.

2. RELATED WORK
The most common approach to create a backbone is to

partition the network into clusters, composed of a set of
ordinary nodes and one clusterhead. After this step, con-
nections are established between clusterheads in order to
obtain a connected structure. As stated in [2], backbone for-
mation corresponds to computing a Connected Dominating
Set (CDS) of the nodes in the network topology graph. In
this graph, G = (V, E), nodes represent the network devices
and an edge between two nodes exists if and only if they
are neighbors, i.e. they are in each other’s communication
range.

Many different algorithms for computing CDSs can be
found in the literature [1, 3, 8, 12, 16]. Wu et al. [16] pro-
posed a localized connected dominating set approach, based
on the nodes marking rule (true means in the backbone) and
two pruning rules. A generalization of the pruning rules has
been proposed by Dai et al. [3]. This rule checks if a set of
k nodes covers the neighbor set. This modification achieves
better results concerning the size of the CDS.

Approximation algorithms have also been proposed to cre-
ate CDS. These algorithms are generally compared using
their approximation factor n, which means that in the worst
case, the size of the solution produced by the algorithm is n
times the size of the optimal solution. Alzoubi et al. [1, 12]
proposed an algorithm with an approximation factor of 8
and in [8], Li et al. introduced a completely localized one-
phase distributed algorithm, r-CDS, with a approximation
factor of 172. In [2], the authors proposed a simulation-
based comparison of the most representative solutions to
create CDS. In this work, the studied algorithms are sorted
based on their degree of localization, which is a measure
related to the locality of the information required by the al-
gorithm (the higher, the more local information nodes need
to gather).

As we are in an ad hoc context, the network may change
during the simulation, consequently the CDS should evolve
in order to reflect these changes. Indeed, we may have links
breaks between two nodes of the CDS (mobility), or a CDS
node might disappear (switch off, out of battery). As these
nodes are the backbone of the network, these events may

break some paths which will negatively affect the quality
of service. To enhance the robustness of the backbone, k-
Connected m-Dominating Sets (k, m-CDS) have been re-
cently studied for ad hoc networks. The requirement of
k-connectivity guarantees that between any pair of back-
bone nodes there exists at least k independent paths. The
requirement of m-domination takes care of fault tolerance
for dominatees, which ensures that every dominatee has at
least m adjacent dominator neighbors. These two properties
are displayed in Figure 2.

(a) 2-connected domina-
ting set

(b) connected 2-domina-
ting set

Figure 1: Robustness properties

To solve this difficult problem, several approximation al-
gorithms have been proposed. However most of them are
centralized, or have a high message complexity.

In [10, 11, 13, 18], the authors proposed centralized al-
gorithms. In [13], Wang et al. proposed CDSA, a 64-
approximation centralized algorithm that is only applicable
in the case where k = 2 and m = 1. Shang et al. [10] pro-
posed three centralized algorithms to construct 1-connected
m-dominating set, 2-connected m-dominating set, and k ≥
3-connected m-dominating set. In [11], the centralized al-
gorithm requires that the input graph is at least max(k, m)
connected. Wu et al. [18] proposed CGA, a centralized algo-
rithm, that in a first time creates a m-dominating set, and
then augments it until it becomes k-connected. In [17], the
authors proposed a centralized algorithm, ICGA, that has a
constant performance ratio and can construct k, m-CDS for
general k and m.

Centralized algorithms will generally obtain better theo-
retical results, because they benefit from the network global
knowledge. However gathering such knowledge is not real-
istic in an ad hoc network. As a matter of fact, only de-
centralized solutions can be implemented in such networks.
Decentralized algorithms have been proposed in [4, 17, 18].
Dai et al. proposed four localized k-CDS algorithms, where
k = m. The first one is a probabilistic approach which re-
quires the network size and the node density to compute a
probability pk of a node k to be in the backbone. The sec-
ond one maintains a fixed node degree in the backbone and
also requires network size and density. The third one is a
deterministic approach which is an extension from the cover-
age condition introduced by the same authors to construct
1-CDS [4]. This approach checks if there are k indepen-
dent paths composed of high priority nodes between each
pair of neighbors. The last one is an hybridization of prob-
abilistic and deterministic approaches. In [18], the authors
proposed a localized version of CGA called DDA. However,
DDA requires a huge number of messages, which is a major
drawback for a real application in ad hoc networks. In [17],
a distributed algorithm, LDA, is proposed to overcome the
problems of DDA. However, it requires the maximal node
degree to be constant and it uses CDS-BD-D [7], which re-
quires the election of a root node in the network.
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In summary, most of the proposed solutions to create a
k, m-CDS for managing ad-hoc networks are not realistic
enough (central approach), or not efficient because of the
huge number of message that they require. In this paper,
in order to overcome current limitations of existing algo-
rithms, we propose, Blackbone2, a decentralized algorithm
that requires very few messages and has a very efficient com-
putation time. However, Blackbone2 is not designed to cre-
ate k, m-CDS for any k and m. We restricted ourselves to
k = {1, 2} and m ∈ N+.

3. BLACKBONE2 ALGORITHM
This section presents the Blackbone2 algorithm and two

variations. In a first time some notations are introduced and
the general characteristics of the algorithm are described.
Then the two main properties, biconnectivity and m-domi-
nation are developped and solutions are proposed to create
a backbone that fits their requirements. Finally the main
algorithm and its variations are presented.

3.1 Preliminaries
Let N1(v) be the 1-hop neighborhood of a node v. Let

N2(v) be the 2-hop neighborhood of a node v. Let N1∪2(v) =
N1(v)∪N2(v) be the complete neighborhood of node v. Let
CN(x, y) be the common neighbors of x and y.

3.2 Decentralized algorithm with 2-hop knowl-
edge

The main goal of this work is to create a robust topology
for ad hoc networks. As mobility may induce changes in the
network topology graph (loss of nodes and/or loss of edges),
node-disjoint alternative paths are required to reduce the im-
pact of these unpredictable events on the quality of service
of the real communication. Consequently we choose to de-
velop an algorithm that creates a 2-connected m-dominating
set. Finding a minimum 2-connected m-dominating set is
NP-hard [5] and mobiles nodes (e.g. sensors) are usually
lightweight devices, therefore a heuristic approach is pro-
posed.

Blackbone2 is decentralized and only requires 2-hop knowl-
edge to take decisions. To gather these pieces of information,
all the nodes of the network broadcast beacons containing
the list of their direct (1-hop) neighbors. As nodes are mov-
ing, topology may change, therefore every node has to reg-
ularly update its stored information. From a node point
of view, if one of its neighbors does not update its neigh-
bors list during some pre-defined time, then the information
about this neighbor is deleted.

3.3 Blackbone2 color scheme
Two colors are used to represent the state of a given node.

Black means ”backbone member” and white ”not backbone
member”. Black nodes regularly check if they are still needed
to guarantee the connectivity of the backbone, and white
nodes periodically check if they are needed to fulfill the min-
imum requirements.

Let NB
1 (v) be the black nodes in the 1-hop neighborhood

of node v. Let NB
2 (v) be the black nodes in the 2-hop neigh-

borhood of node v. Let NB
1∪2(v) = NB

1 (v) ∪ NB
2 (v) be the

complete black neighborhood of node v. Let CNB(x, y) be
the common black neighbors of x and y. The equivalent sets
are defined for white nodes: NW

1 (v), NW
2 (v), NW

1∪2(v) and
CNW (x, y).

3.4 2-Connected structure
The main idea of our algorithm is to create a 2-connected

structure. To achieve this property, another graph-related
notion will be used: articulation points, also called cut-
vertices.

3.4.1 Articulation point and biconnectivity

Definition 1. An articulation point or cut vertex is a
vertex that if removed (along with all edges incident with it)
produces a graph with more connected components than the
original graph.

Definition 2. A biconnected graph is a connected graph
with no articulation vertices.

Figure 2(a) is a classical example for simple biconnected
graph. Indeed, if one node is removed, the remaining graph
will still be connected. On the contrary, Figure 2(b) shows
a graph with one articulation point, the grey node. To con-
struct 2-connected backbones, we used definition 2. Let us
see how to detect articulation vertices.

(a) No cut vertex (b) One cut vertex

Figure 2: Illustration of articulation point

3.4.2 Algorithm to compute articulation points
An efficient algorithm to compute the cut-vertices has a

complexity of O(|V | + |E|). In order to do the processing,
some extra data are required for every node. Let v be a node
of G = (V, E).

• Num(v): the visit number obtained from a depth-first
search (from any node of the graph)

• Low(v): lowest-numbered vertex reachable from v us-
ing 0 or more spanning tree edges and then at most
one back edge

Finally Low(v) is the minimum of:

• Num(v)

• Lowest Num(w) among all back edges (v,w)

• Lowest Low(w) among all tree edges (v,w)

Num(v) and Low(v) can be computed in O(|V |+|E|) with
depth-first search for example. Algorithm 1 computes all
articulation points. However, in our case, we only require to
know if an articulation point exists, that is why we can even
stop the computation when an articulation point is found.
This optimization reduces computation in simulations but
does not change the theoretical computation time.

3.4.3 Global property
Let G(v) = (V (v), E(v)) be the local graph of the node

v. This graph represents what v knows about its neighbor-
hood. Blackbone2 only requires two-hop neighborhood to
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Algorithm 1: findArt: an efficient algorithm for articu-
lation point detection

Input: Vertex v

Visited(v) = true;
Low(v) = Num(v) = counter++;
for each w adjacent to v do

if not(Visited(w)) then
Parent(w) = v;
findArt(w);
if Low(w) >= Num(v) then

v is an articulation point

Low(v) = min(Low(v), Low(w));

else
if Parent(v) != w then

Low(v) = min(Low(v),Num(w));

take a decision, that is why V (v) = N1∪2(v). E(v) contains
a restricted set of edges defined by:

E(v) =
n

(u, w) ∈ E
‹
u ∈ N1(v) ∧ w ∈ N1∪2(v)

o
Let GB(v) = (V B(v), EB(v)) be the local graph of the node
v induced by black nodes only. V B = NB

1∪2(v) and EB(v)
represents the edges between two nodes of V B . In a more
formal way:

EB(v) =
n

(u, w) ∈ E
‹
u ∈ NB

1 (v) ∧ w ∈ NB
1∪2(v)

o
Let GB = (V B , EB) be the global black graph obtained by
the union of all local black graph.

GB = ∪v∈V B GB(v)

Property 1. If ∀v ∈ V , GB(v) is biconnected, then GB

is biconnected.

3.5 m-domination
Having at least 2 node-disjoint paths between any pair of

nodes in a backbone increases its tolerance to faults. How-
ever, it does not improve the fault-tolerance for nodes out-
side the backbone. Blackbone2 is able to change the dom-
ination parameter m, i.e. the nodes outside the backbone
will have at least m direct neighbors inside the backbone.

3.5.1 m-domination property

Definition 3. A subset V ′ ⊂ V is m-dominating if ∀u ∈
V −V ′ there are v1...vm ∈ V ′ for which (u, v1)...(u, vm) ∈ E.

As we are dealing with decentralized algorithm, our solu-
tion only considers the local point of view of a node. For a
given node v, the following property has to be checked:

∀wi ∈ NW
1 (v),

∃z1, ...zm ∈ NB
1∪2(v)

.
(z1, wi), ..., (zm, wi) ∈ E(v)

In a less formal way, every white 1-hop neighbor should have
m black neighbors (1 or 2 hop).

Algorithm 2: m-domination checking algorithm

Input: m, the domination parameter

Output: true if the subgraph is m-dominating,
false otherwise

dominating = true;
for each w ∈ NW

1 (v) do
if |NB

1 (w)| >= m then
dominating = false;
break;

return dominating;

3.5.2 m-domination checking algorithm
The proposed algorithm, is the direct translation of defini-

tion 3. Algorithm 2 checks if for a given node v all its 1-hop
white neighbors are covered by at least m black nodes, with-
out considering itself. With an appropriate data structure,
this algorithm is processed in O(|∆|).

3.5.3 Global property
Let DS(G) be a dominating set of a graph G = (V, E).

Property 2. If for all node v ∈ V , G(v) is m-dominated
by DSG(v), then the ∪v∈V (DSG(vi)) is a m-dominating set
of G.

3.6 Main algorithm
Blackbone2 algorithm is based on two rules, but only one

will be executed depending on the current node state, i.e. its
current color. Indeed, when a node v is outside the backbone
a construction rule will be triggered to determine if v can
stay ouside the backbone or has to be part of it. Based
on the same idea, backbone nodes regularly check with a
pruning rule if they are still required to fulfill the backbone
properties.

3.6.1 Subgraph for biconnectivity checking
For the connectivity property we will not consider the

complete local graph G(v), but a subgraph based on the
black nodes set, NB

1∪2(v). More precisely we will only con-
sider 1-hop black nodes and the useful 2-hop black nodes,
i.e. black nodes that help for the 2-connectivity. To do so,
2-hop black nodes with less than 2 black neighbors will be
removed from this set. Indeed, even if node v enters the
backbone it will not change the fact that the subgraph is
not biconnected. Moreover the considered subgraph does
not contain the node v.

Let Vul(v) be the set of useless 2-hop black nodes:

Vul(v) = {u ∈ NB
2 (v) / |NB

1 (u)| > 1}

In a more formal way, the set of considered nodes Vc(v) is:

Vc(v) = NB
1∪2(v) \ Vul(v)

Let Gc(v) be the graph induced by the set of nodes Vc(v).

3.6.2 Pruning rule
The pruning rule, algorithm 3, checks if the black induced

subgraph is a m-dominating set and if it is the case, it checks
if the graph Gc(v) is biconnected. When these two proper-
ties are met, a node can get out of the backbone.
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Algorithm 3: Pruning rule

Input: k ∈ {1, 2}, the connectivity
m ∈ N+, the domination parameter

Output: true if the node can get out of the backbone
false if it is still required

changeState = false;
if NB

1∪2(v) is a m-dominating set of G(v) then
if k = 1 and G(v) is connected then

changeState = true;

if k = 2 and Gc(v) is biconnected then
changeState = true;

return changeState;

Algorithm 4: Construction rule

Input: k ∈ {1, 2}, the connectivity
m ∈ N+, the domination parameter

Output: true if the node can get out of the backbone
false if it is still required

changeState = true;
if NB

1∪2(v) is a m-dominating set of G(v) then
if k = 1 and G(v) is connected then

changeState = false;

if k = 2 and Gc(v) is biconnected then
changeState = false;

return changeState;

3.6.3 Construction rule
The construction rule is the opposite of the pruning rule.

A node has to enter the backbone if its 1-hop nodes are not
m-dominated or if the graph Gc(v) is not biconnected.

3.6.4 Main algorithm
The main algorithm repeats the same operation during

the whole simulation. Depending on the current node color,
it selects the rule to be applied and changes the color when
it is required.

3.6.5 Proof of correctness

Proof. The domination property (prop 2) creates a m-
dominating set. The connectivity property (prop 1) ensure
to create a 2-connected set. Then, the resulting backbone is
a 2-connected m-dominating set.

3.6.6 Variation of the Blackbone2 algorithm
Two variations of Blackbone2 are proposed. The first one

is designed to create good quality 1, m-CDS and the second
one proposes to enhance the convergence process in order to
get a steady solution in less time.

1-connected version.
A simple variation of the algorithm consists in creating 1-

connected m-dominating set. The only modification resides
in checking the connectivity of the black induced subgraph.
For this variation we do not remove the previously defined
useless 2-hop nodes. The algorithms are unchanged, only the
parameter k has to be set to 1. The connectivity checking
is performed by a simple depth-first search based algorithm
and can be processed in O(|V |+ |E|).

Algorithm 5: Main algorithm of Blackbone2

Input: k ∈ {1, 2}, the connectivity
m ∈ N+, the domination parameter

for every time step do
if BLACK and pruningRule(k, m) then

color = WHITE;

if WHITE and constructionRule(k, m) then
color = BLACK;

Algorithm 6: Construction rule for fast convergence

Input: m, the domination parameter

changeState = true;
if NB

1∪2(v) is a m-dominating set of G(v) then
if GB(v) is connected then

if Gc(v) biconnected then
changeState = false;

else
if Gc(v) with v is biconnected then

changeState = true;

else
changeState = false;

return dominating;

1-connected fast convergence version.
The basic idea too achieve a faster convergence would be

to reduce the possibilities for a node to change its color. One
solution we found consists in adding another decision in the
construction rule. First, a node v checks if the black nodes
are a m-dominating set. Second, the connectivity of the
black node subgraph is tested. If these two first conditions
are met, then v will check if the graph Gc(v) is biconnected.
If not, it checks if Vc(v) ∪ {v} is biconnected. If not, the
node v does not enter the backbone, because it supposes
it cannot help achieving biconnectivity. This rule can be
found in algorithm 6. Of course, in some graphs, obtaining
a biconnected structure will require the cooperation of a
group of nodes. This case is not taken into account, that is
why this version does not guarantee the biconnectivity.

4. THEORETICAL PERFORMANCES
In this section we briefly discuss the theoretical perfor-

mances of the Blackbone2 algorithm in terms of time, band-
width and message complexity.

4.1 Time complexity
Let ∆ be the average node degree. In the worst case,

|V (u)| > ∆2 and |E(u)| > ∆2. Based on this, check-
ing the existence of an articulation point requires O(∆2).
As the domination checking algorithm only requires O(∆),
the two rules (pruning and construction) have a complex-
ity of O(∆2). Finally, Blackbone2 has a time complexity of
O(∆2).

4.2 Bandwidth and message complexity
Except the beacons, that are periodically broadcasted in

wireless networks, the Blackbone2 algorithm does not re-
quire additional messages to compute a solution. For this
reason, we say that the message complexity is O(1). How-
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ever, if we consider the bandwidth usage, we have to take
into account the fact that the size of the beacons increases
with the number of 1-hop neighbors. Let ∆ be the mean
density of the network. Then the bandwidth usage for each
node is O(∆).

5. NUMERICAL RESULTS
In this section, we will first briefly discuss the setting of

the algorithm parameters. In a second subsection, a per-
formance comparison will be achieved for regular CDS and
2-connected dominating sets. In a last subsection, the per-
formances of the algorithm different heuristics will be com-
pared.

5.1 Parametrization
The simulator used for all the experimentation is OM-

NeT++ version 3.3p1 with the Mobility Framework version
2.0p3. The first series of tests were used to fine tune the
algorithm parameters:

• The beaconing period

• The checking period that updates the state of a node

The speed of the algorithm, i.e. the required time to con-
verge to a steady solution (in static context), depends on
these two parameters. In order to compute the best ratio
between these two periods, we fixed the beaconing period to
500 ms and we tried different values for the checking period.
Based on these first experiments, we noticed that good val-
ues for checking state period are multiples of the beaconing
period (500, 1000 and 1500). Finally the beaconing period
has been set to 500 ms and the checking period to 1000 ms
for the remainder of the experimentations.

In order to initialize the simulation all the nodes will start
their beaconing process at a time defined by a random num-
ber. This randomness also reduces collisions at the begin-
ning of the simulation.

The simulation space is a 100 meters square. The trans-
mission range has been fixed to 25 meters. These exper-
iments have been repeated for different numbers of nodes
(20, 30, 40 up to 140), which permits to deal with a wide
range of average node degree or density [2, 22]. In table 1 a
summary of the mean densities by number of nodes in the
network is shown.

Table 1: Average density per number of node in the
network

Number of nodes Average density
20 2,87
30 4.52
40 6.18
50 7.73
60 6.37
70 10.93
80 12.47
90 14.06
100 15.6
120 18.68
140 21.76

The OMNeT++ default random number generator (Mer-
senne Twister RNG by M. Matsumoto and T. Nishimura)
has been used to distribute the nodes in the simulation
space. The seed of the simulation is equal to the number
of its run.

5.2 Performance comparison
We first compare results for biconnected backbones and

then for connected dominating sets.

5.2.1 Biconnected backbone
The main goal of this article is to propose a fully decentral-

ized 2-connected m-dominating set algorithm. As far as we
know, no equivalent algorithm has been proposed. There-
fore, our results cannot be fairly compared to the solutions
we found in the literature because of important differences.
First, a lot of algorithms are composed of distinct phases,
such as DDA and LDA, which is not realistic for ad hoc
networks where a synchronization of the whole networks is
hardly achievable. Moreover LDA is based on CDS-BD-D
which requires a node to be the root of the network. Second,
some algorithms may have access to some piece of informa-
tion that is very difficult to gather in a decentralized way,
such as network size and node density for the two first ap-
proaches in [4], or even constant maximal node degree for
LDA.

The only similar algorithm existing in the literature is the
deterministic approach of Dai et al., that proposes to create
k, m-CDS with k = m. This algorithm uses the k-coverage
condition [4] that checks if there are k independent paths
for every pair of neighbors. This computation is done using
a variation of the Edmonds and Karp maximum flow algo-
rithm. We have compared our results with this approach,
even if there is one main difference: our algorithm does not
require to have a synchronized network and can be easily
used in a dynamic context. We also compare our results
with the previous version of Blackbone [9] in its 2-connected
version, Blackbone1, that can only produce 1-dominating
backbones.

As we can see in Figure 3, Blackbone1 gives good solutions
only when the network density is not too high. This problem
is overcome with Blackbone2 which always provides better
solutions than the coverage condition of Dai et al. for k =
m = 2 without any density restriction.

Fair comparisons can be made by comparing:

• BB1 m = 1 with BB2 m = 1 for 2, 1-CDS

• BB2 m = 2 with DaiWu for 2, 2-CDS

In both cases we can observe that Blackbone2 gives better
results for all the simulated networks. Moreover, Blackbone2
can be computed in O(∆2) when the first version of Black-
bone required O(∆3 log(∆)). The k-coverge condition can
be computed in O(k∆4). This high computation cost may
be an important factor when dealing with mobile environ-
ments, where information may be incomplete and available
computation time is short. All computation times can be
found in table 2.

5.2.2 Connected backbone
The variation of the Blackbone2 algorithm does not guar-

antee biconnectivity that is the reason why we compared its
results to Blackbone1 set to create 1, 1-CDS. We have also
compared these results to the well-known algorithm of Wu et
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Figure 3: Quality of solution for biconnected back-
bone
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Figure 4: Quality of solution for connected backbone

al. in its most efficient version [16]. The pruning rule of this
version considers every subset of nodes that could cover the
set of marked nodes for a given node u. This algorithm will
be named WuLi(*). Moreover, the k-coverage condition [4]
with k = 1, more recently proposed by Kim et al. has been
implemented for comparison purpose.

In Figure 4 we can observe that Blackbone1 gives the best
results until the network is composed of 80 nodes. After 80
nodes and up to 100 nodes, DaiWu and Blackbone2 give the
best results and are almost equal. However, in very dense
networks Blackbone2 generates the best solutions.

All computation time can be found in table 2. Black-
bone1 require much more time than Blackbone2 but can
compute better solutions for low and moderatly dense net-
works. DaiWu algorithm gives good results but suffers from
a very high computation cost.

In addition to the computation cost, another major im-
provement of the variation of Blackbone2 is the stability of
the structure before convergence. In Figure 5 we can see that
Blackbone2 greatly reduces the number of required state
changes to achieve the final solution. This is particularly
suitable in mobile environment in which topology changes
induce recurrent backbone maintenance.

5.3 Impact of the domination parameter
In this subsection we present the impact of the domination

parameter on the results of the Blackbone2 algorithm and
its variation for 1-connected m-dominating sets.

Table 2: Computation time
Algorithm Computation time

Blackbone1 O(∆3 log(∆))

Blackbone2 O(∆2)

k Coverage Condition O(k∆4)

Coverage Condition O(∆3)

WuLi(*) O(∆2)
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Figure 5: Stability of the backbone before conver-
gence

In Figure 6, we can observe that the Blackbone2 algorithm
gives good results even when the domination increases. More-
over, the impact of the domination parameter is negligible
in very dense networks for m ∈ {1, 2, 3}. Indeed, when there
are 140 nodes in the simulation space, the results are almost
the same for the three first values of m. This is due to the
increasing density, a single backbone node will cover more
nodes when the density is higher.

In Figure 7 we can observe that the fast version gives
worse results than the first variation, which is more quality-
oriented. In high density networks the fast version outper-
forms the results of Blackbone1 [9]. However, if quality of
the solution is the main criterion, the first variation of Black-
bone2 obtains the best results for every network size.

We have seen that the first variation creates smaller back-
bones, however it requires much more time than the second
version. In Figure 8, the stability results of the fast version
outperform those of Blackbone1 and the first variation of
Blackbone2.

6. CONCLUSION
In this paper we have investigated the problem of con-

structing 2-connected m-dominating set in ad hoc networks.
As such we have proposed Blackbone2, a deterministic time-
and-message efficient algorithm composed of simple rules
based on node marking. This algorithm has been designed
to adapt itself to mobile environments by relying on two
computationally efficient rules. Moreover the algorithm im-
proves existing results proposed in the literature for any
network density and has a very low theoretical complex-
ity. This algorithm also shows very encouraging results for
1-connected m-dominating set with the two variations of the
algorithm, for both quality of the solutions and convergence
time.
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Figure 6: Impact of the domination parameter on
quality of solution
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