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ABSTRACT
An energy efficient distributed Change Detection scheme based on
Page’s CUSUM algorithm was presented in [2]. In this paper we
consider a nonparametric version of this algorithm. In the algo-
rithm in [2], each sensor runs CUSUM and transmits only when
the CUSUM is above some threshold. The transmissions from the
sensors are fused at the physical layer. The channel is modeled as
a Multiple Access Channel (MAC) corrupted with noise. The fu-
sion center performs another CUSUM to detect the change. In this
paper, we generalize the algorithm to also include nonparametric
CUSUM and provide a unified analysis.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: distributed functions, renewal
theory, queueing theory, stochastic processes; H.3.4 [Systems and
Software]: distributed systems

General Terms
Algorithms, Design, Performance, Theory

Keywords
Nonparametric CUSUM, Decentralized Change Detection, Reflected
Random Walk.

1. INTRODUCTION
In the problem of distributed change detection, there are multi-

ple geographically distributed sensors, each sensing a sequence of
observations. The distribution of the observations of all the sen-
sors changes simultaneously at some random point of time, and the
observations are independent and identically distributed(iid) con-
ditioned on the time of change. The sensors send processed ver-
sion (e.g., scaled or quantized) of their observations to a decision
maker (fusion center) and the fusion center fuses the information
from various sensors to detect the change of law as soon as possi-
ble. The performance metric is a measure of the number of extra
observations taken after the distribution has changed under some
false alarm constraint (the constraint corresponds to the cost asso-
ciated with declaring a change when it has not taken place). This
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model finds application in biomedical signal processing, intrusion
detection in computer and sensor networks ([19], [18]), finance,
quality control engineering, and recently, distributed detection of
the primary in cognitive radio networks ([7], [15]).

In the Bayesian formulation of the change detection problem,
where the distribution of the change variable is known, the objec-
tive is to minimize the mean delay of detection subject to probabil-
ity of false alarm. The optimal solution is obtained in [16] when
the sensors transmit the raw observations (and hence a centralized
solution is feasible), and in [19] when the sensors transmita quan-
tized version of the observations.

In theMin-Max formulation, when no knowledge is assumed of
the distribution of change, the worst case delay is minimized sub-
ject to a constraint on the mean time to false alarm. When the
sensors send the observations in raw, the CUSUM algorithm (first
proposed by Page in [12]) was shown to be optimal in [8] and
[11]. When the sensors process the information before transmit-
ting, CUSUM based schemes were shown to be optimal in [10].

The above algorithms minimize delay subject to constraintson
only false alarm. Hence, it is not clear if they are also energy effi-
cient. As a result, the distributed algorithm which optimizes delay
under any of the above two formulations, underboth false alarm
and energy constraints, is not yet known. Recently, a Bayesian for-
mulation of the decentralized change detection problem with en-
ergy constraints was considered in [20]. The problem is solved by
restricting the solution to a class of algorithms where the sensors
send scaled and shifted versions of their observations to the fusion
center. The algorithm in [20] is energy efficient but leaves out a
class of algorithms where the sensors can decide not to transmit
based on the available information. This latter technique can be
used to save more energy.

This issue is exploited in [2] to propose a CUSUM based algo-
rithm called DualCUSUM. This new algorithm was shown to per-
form much better than the one in [20] and the gap in performance
was shown to increase at lower energy and false alarm constraints.

In this paper we provide the false alarm and delay analysis ofDu-
alCUSUM. We also extend DualCUSUM to detect changes when
the exact information about the pre-change and post-changedistri-
butions is not available (nonparametric setting) and provide a uni-
fied analysis.

As will be seen from the paper, the analysis of such distributed
cooperative systems is very challenging. We use results from Re-
newal Theory, Extreme Value Theory and theory of Brownian Mo-
tion to analyse our algorithm. Since CUSUM is, or will be a fun-
damental element of many distributed algorithms for detection of
change, the tools and techniques used here can be used to analyse
those other algorithms as well.

DualCUSUM has been used for cooperative spectrum sensing in
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Cognitive Radio Systems also in [15] and shown to provide better
performance than other algorithms available in literaturenot only
in delay in detection but also in saving energy.

The knowledge of pre-change and post-change distributionsmay
not be practical in many cases: random time varying fading inthe
wireless channels ([5], [7]) and due to lack of information related
to transmit power and/or receiver noise ([17]). Thus in thispaper
we also extend DualCUSUM to a nonparametric set up.

We analyse the generalized version of DualCUSUM of which
parametric and nonparametric versions are special cases. Afew
interesting facts emerge from this analysis: mean detection delay
is independent of the distribution of the observations but the false
alarm probability crucially depends on the tail behavior ofthe dis-
tributions (at least for the nonparametric case). The lighter the
tail, the lower the false alarm probability. Therefore for agiven
false alarm constraint, under both parametric and nonparametric
settings, a system where the observations are lighter tailed, will
have lower detection delay.

We also show that the log likelihood function converts a heavy
tailed distribution to a light tail distribution, or in general, makes
the tail of the distribution lighter. Since, parametric CUSUM uses
log likelihood and nonparametric CUSUM does not, the former
performs better than the latter for a given distribution of observa-
tions. This interesting property of log likelihood and its implica-
tions for CUSUM seem to have gone unnoticed so far.

The paper is organized as follows. We explain the model and
introduce the algorithm in Section 2. Section 3 analyzes theperfor-
mance of the algorithm and provides comparison with simulations.
Section 4 concludes the paper.

2. MODEL AND ALGORITHM
Let there beL sensors in a sensor field, sensing observations and

transmitting to a fusion node. The transmissions from the sensor
nodes to the fusion node are via a MAC. In our system we assume
that all the sensor nodes can transmit at the same time. Thereis
physical layer fusion at the fusion node (commonly studied Gaus-
sian MAC is a special case). The fusion node receives data over
time and decides if there is a change in distribution of the observa-
tions at the sensors.

Let Xk,l be the observation made at sensorl at timek. Sensor
l transmitsYk,l at time k after processingXk,l and its past obser-
vations. The fusion node receivesYk = ∑L

l=1Yk,l +ZMAC,k, where
{ZMAC,k} is iid receiver noise. The distribution of the observations
at each sensor changes simultaneously at a random timeT , with a
known distribution. The{Xk,l , l ≥ 1} are independent and identi-
cally distributed (iid) overl and are independent overk, conditioned
on change timeT . Before the changeXk,l have densityf0 and after
the change the density isf1. The expectation underfi will be de-
noted byEi, i = 0,1, andP∞ andP1 denote the probability measure
under no change and when change happens at time 1, respectively.
These assumptions are commonly made in the literature (see e.g.,
[10] and [19])

The objective of the fusion center is to detect this change assoon
as possible at timeτ (say) using the messages transmitted from all
the L sensors, subject to an upper boundα on the probability of

False AlarmPFA
△
= P(τ < T ) andE0 on the average energy used.

Often the desiredα is quite low, e.g.,≤ 10−6 in intrusion detection
in sensor networks. Then, the general problem is:

minEDD
△
=E[(τ −T )+],

Subj toPFA≤α andEavg= E

[

τ
∑
k=1

Y 2
k,l

]

≤ E0,1≤ l ≤ L. (1)

Our algorithm in [2] does not provide an optimal solution to the
problem but uses several desirable features to provide better per-
formance than the algorithms we are aware of. We reproduce the
algorithm, DualCUSUM, for an easy reference:

1. Sensorl uses CUSUM,

Wk,l = max
(

0,Wk−1,l + log
[

f1
(

Xk,l
)/

f0
(

Xk,l
)])

, (2)

where,W0,l = 0,1≤ l ≤ L.
2. Sensorl transmitsYk,l = b1{Wk,l>γ}. Here 1A denotes the in-

dicator function of set A andb is a design parameter.
3. Physical layer fusion (as in [20]) is used to reduce transmis-

sion delay, i.e.,Yk = ∑L
l=1Yk,l +ZMAC,k, whereZMAC,k is the

receiver noise.
4. Finally, Fusion center runs CUSUM:

Fk = max

{

0,Fk−1+ log
gI(Yk)

g0(Yk)

}

; F0 = 0, (3)

whereg0 is the density ofZMAC,k, the MAC noise at the fu-
sion node, andgI is the density ofZMAC,k + bI, I being a
design parameter.

5. The fusion center declares a change at timeτ(β ,γ ,b, I) when
Fk crosses a thresholdβ : τ(β ,γ ,b, I) = inf{k : Fk > β}.

Multiple values of (β ,γ ,b, I) will satisfy both the false alarm and

the energy constraint. One can minimizeEDD
△
= E[(τ −T )+] over

this parameter set. In Section 3 we obtain the performance ofDu-
alCUSUM for given values(β ,γ ,b, I) which then can be used in
the optimization algorithm developed in [2] to efficiently solve the
optimization problem above.

DualCUSUM, as the original CUSUM itself, has a strong limi-
tation. It requires exact knowledge off0 and f1. This information
will be available apriori to varying degrees in a practical scenario.
Depending upon the type of uncertainty inf0, f1, different algo-
rithms/variations on CUSUM are available ([4], [6]). One common
algorithm, called nonparametric CUSUM is to replace (2) by

Wk+1,l = max{0,Wk,l +Xk,l −D}, (4)

where,D is an appropriate constant such thatE[Xk,l −D] is nega-
tive before change and positive after change. If the mean ofXk,l
is known before and after the change,D can be chosen as the av-
erage of the two means. Depending on the uncertainties involved,
we should be able to obtain such aD. More generally, we should
be able to estimateD. For Gaussian and exponential distributions,
nonparametric CUSUM becomes CUSUM for some appropriateD
and scaling. If at the fusion nodeg0 is not known (in our CUSUM
algorithm (3) at the fusion node,gI(x) = Ib+g0(x)), then one can
use (4) even at the fusion node.

In the following we will computePFA andEDD for a generalized
class of algorithms where at the sensor nodes and at the fusion node
we use the algorithm,

Wk+1 = max{0,Wk +Zk+1}, (5)

where,{Zk} is an iid sequence with different distributions before
and after the change. We will assume thatE[Zk] < 0 before the
change andE[Zk] > 0 after the change. We will denote byfZ ,FZ
andPZ the density, cdf and probability measure forZk.

Algorithm (5) contains CUSUM and nonparametric CUSUM as
special cases. In the next section we analyze the generalized Du-
alCUSUM with (5). We emphasize that unlike DualCUSUM, this
algorithmdoes not require knowledge off0 and f1; we only need
to choseD appropriately. But, the performance of this algorithm,



as we show in the next section, does depend on the underlying dis-
tributions. This is typical of such algorithms.

3. ANALYSIS
In this section, we first compute the false alarm probabilityPFA

and then the delayEDD. The idea is to model the times at which
the CUSUM{Wk} at the local sensors, crosses the thresholdγ (we
drop subscriptl for convenience) and the local nodes transmit to
the fusion node (Fig. 1).

Wk Sojourn time aboveγ

γ

τγ

Γ

τ0

Figure 1: Excursions of Wk above γ can be approximated by a compound Pois-

son process. A local node transmits to the fusion node during these excursions.

ComputingPFA requires finding (whenZk has distributionf0) the
distribution ofτγ , the first timeWk crossesγ , the amount of time it
stays aboveγ (sojourn time aboveγ), and the probability that the
fusion node declares a change during a sojourn time. These are
computed in Sections 3.1-3.5. Computation ofEDD is sketched in
Section 3.7.

We will need the following notations and definitions. LetX be a
random variable with distributionF . ThenF∗n denotes then-fold
convolution ofF andF̄(x) = 1−F(x).

DEFINITION 1. ([1]) F is heavy tailed if for any ε > 0, E[eε |X |] =
∞. F is subexponential if F̄∗2(x)/F̄(x)→ 2 as x → ∞. If F is not
heavy tailed, we call it light tailed.

Gaussian, Exponential and Laplace distributions are lighttailed.
Pareto, Lognormal and Weibull distributions are subexponential.
Subexponential distributions are a subclass of heavy tailed distri-
butions.

Often it is said that light tailed distributions may providebetter
system behavior than the heavy tailed ([3]). We demonstratethis
for the probability of false alarm. In particular we will show that
if FZ is light tailed before change thenPFA is much less than if it
is heavy tailed. Interestingly, we will also show thatEDD is largely
insensitive to the tail behavior ofFZ .

CUSUM has the interesting property that it transforms a large
class of heavy tailed distributions into light tailed distributions.
Consider the class of Pareto distributions:

K
xK

m

x(K+1)
for x ≥ xm, wherexm > 0.

For f0, we takeK = (α +1) and for f1, K = α whereα is a posi-
tive constant. Then, ifZ = log( f1(X)/ f0(X)), P∞[Zk > z] ∼ e−zα .
On the other hand, light tailed distributions stay light tailed. This
important property of log likelihood seems to have escaped the at-
tention of investigators before. This makes CUSUM perform bet-
ter than the nonparametric CUSUM because as mentioned above,
for CUSUM with Pareto distribution, thePFA will be as for a light
tailed distribution. But for nonparametric CUSUM, it will be much
larger, while theEDD in the two cases will be comparable.

3.1 Behavior of Wk under P∞
The process{Wk} is a reflected random walk with negative drift

underP∞. Figure (1) shows a typical sample path for{Wk}. The
process visits 0 (regenerates) a finite number of times before it
crosses the thresholdγ at,

τγ
△
= inf{k ≥ 1 :Wk ≥ γ}. (6)

We callτγ theFirst Passage Time (FPT). Theovershoot Γ =Wτγ −
γ . Let

τ0
△
= inf{k : k > τγ ;Wk ≤ 0}− τγ and

η = #{k : Wk ≥ γ ;τγ ≤ k ≤ τγ + τ0}. (7)

During timeη (called a batch) a local node transmits to the fu-
sion node. Thus, these are the times during which the fusion node
will most likely declare a change. The overshootΓ can have signif-
icant impact onη.

It has been shown in [13] that the point process of exceedances of
γ by Wk, converges to a compound Poisson process asγ → ∞. The
points appear as clusters. The intervals between the clusters have
the same distribution as that ofτγ in (6) and the distribution ofη
in (7) gives the distribution of the size of the cluster, i.e., the batch
of the compound Poisson process. Since, one has to choose large
values ofγ to keepPFA small, a batch Poisson process provides a
good approximation in our scenario.

In the next few sections we give results on the distribution of τγ ,
overshootΓ, and the distribution of the batchη which will be used
in computingPFA.

3.2 First Passage Time under P∞
From the compound Poisson process approximation mentioned

above,

lim
γ→∞

P∞{τγ > x}= exp(−λγ x), x > 0, (8)

where,λγ a positive constant.
In [2] a formula forλγ was used which is computable for Gaus-

sian distribution only. However, by solving integral equations ob-
tained via renewal arguments ([14]), one can obtain the meanof
FPT for any distribution. Epochs whenWk = 0 are renewal epochs
for this process. LetL(s) be the mean FPT withW0 = s ≥ 0. Hence
λγ = 1/L(0). Then from renewal arguments:

L(s) = FZ(−s)L(0)+
∫ γ

−s
L(s+ z)dFZ(z)dz+P[Z > γ − s]. (9)

The equation is obtained by conditioning onZ0 = z. If Z0 ≤ −s,
thenW1 = 0, providing the first term on the right. IfZ > γ − s,
then the threshold is approached in one step only, providingthe last
term. This equation can be solved recursively onL(s),0≤ s ≤ γ .
An algorithm provided in [9] can be used to compute (9) efficiently.
Table 1 providesE[τγ ] for Pareto distribution withK = 2.1 and
Gaussian distribution withEZk = −0.5 andvar(Zk) = 1. We see
that asγ increasesE[τγ ] for Gaussian distribution becomes much
larger than for the Pareto distribution. This implies thatPFA for the
Gaussian distribution should be much less than for Pareto,K = 2.1
if γ is large.

γ E[τγ ] Gauss E[τγ ] Pareto
5 930 800
6 2551 1100
7 6950 1455
8 19020 1880

Table 1: Mean FPT E[τγ ] for Pareto (K = 2.1) and Gaussian with EZk =−0.5.



3.3 Distribution of overshoot
Next we consider mean and distribution of the overshootΓ. From

renewal equations as in (9), we can exactly computeEΓ for any dis-
tribution. If R(x) = EΓ with W0 = x,

R(x) = E[Zk − (γ −x)|Zk > (γ −x)]PZ(Zk > γ −x)

+
∫ γ

y=0
R(y) fZ(y−x)dy+R(0)FZ(−x). (10)

Mean overshootEΓ = R(0). For light tailsEΓ converges quickly
to a constant value asγ → ∞.

The distribution of the overshoot for heavy tails is reported in
[1]. One can show that for light tailed distributions, overshoot is
exponentially distributed. One can also obtain exact distribution
using renewal integral equations as in (9) and (10). We plot the
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Figure 2: Complementary CDF of Γ for Pareto K = 2.1, EZk = −0.3 and

var(Zk) = 1 and γ = 8
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Figure 3: Complementary CDF of Γ for Zk ∼ N(−0.3,1) and γ ≥ 6

distribution of overshoot for Pareto distribution withK = 2.1 in
Figure (2) and for Gaussian distribution in Figure (3). The mean
overshootE[Γ] was obtained using equation (10). The distribution
of Γ for Pareto distribution was obtained via the result in [1] and
for the Gaussian distribution by exponential distributions.

Comparing Figures (2) and (3), we see that the analytical approx-
imations are very good. Also, the overshoot for Pareto distribution
is much more than for the Gaussian distribution.

3.4 Distribution of the Batch
3.4.1 Distribution of batch for heavy tail

Theorem 2.4 of [1] provides the batch size distribution for subex-
ponentialZ. Figure (4) shows the plot of Batch complementary
CDF for Pareto distribution with parametersK = 2.1. One sees a
good match with simulations.

3.4.2 Distribution of batch for light tail
Let G j(x) be the conditional batch distribution,G j(x) = P(η ≤

j|Wτγ = γ + x), when the overshoot isx. G j(x) was obtained in [2]
by the Brownian Motion (BM) approximation of{Wk}. We use this
approximation along with exponential distribution forΓ to obtain

P(η ≤ j) =
∫ ∞

0
G j(x)

1
E[Γ]

exp(−
x

E[Γ]
)dx (11)

for light tailed distributions. Figure (5) plots the distribution ofη
for Zk with Laplace distribution via (11) and via simulations.

For Lognormal distribution, which can be approximated via both
heavy tailed and light tailed approximations provided above, (11)
provides a better approximation.

Comparing Figures (4) and (5) one sees that the batch size for
a Pareto distribution is larger than for a Laplace distribution even
when they have same mean and variance. This is a direct conse-
quence of having larger overshoots.
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Figure 4: Complementary CDF of Batch η for Pareto K = 2.1, EZk =−0.3 and

var(Zk) = 1 and γ = 15.
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Figure 5: Complementary CDF of Batch η for Laplace Zk with EZk = −0.3

and var(Zk) = 1 and γ ≥ 7.

3.5 False Alarm Analysis
The false alarm in DualCUSUM can happen in two ways: one

within a batch (we denote its probability by ˜p) and another outside
it, i.e., due to

{

ZMAC,k
}

. We will compute these later on. Now, we
compute thePFA from these quantities.

From the assumptions made and the above approximation, the
inter-arrival time of the batches in the system (at the fusion center)
is exponentially distributed with rateLλγ (because the processes
{Wk,l} are independent for different nodes each generating batches
as Poisson processes with rateλ ). Then, the number of batches
appearing before the time of change is a Poisson random variable
with parameterLλγ i, whenT = i. In the following, we will show



that the time to FA outside a batch is exponentially distributed with
parameterλ0 (to be defined below). Therefore, ifT ∼ Geom(ρ),
then one can show that:

PFA = 1−
e−(λ0+λγ Lp̃)ρ

1−e−(λ0+λγ Lp̃)(1−ρ)
. (12)

Similarly, one can obtain expression forPFA whenT is not geomet-
ric.

False Alarm within a Batch:
We have seen above that for light tailedZk, theE[τγ ] is large and
the batch sizes are small. Thus, the batches by different local nodes
do not overlap. However, it is not true for heavy tailed distributions.
Thus we compute ˜p for the two cases separately.

Light Tailed
The false alarm probability ( ˜p) within a batch, can be computed

as,p̃ ≈ ∑∞
i=1 P(η = i)P(FA |η = i), whereP(FA |η = i) represents

the probability of FA (CUSUM at the fusion center crossingβ ) in
i transmissions when one local node is already transmitting,i.e.,
Yk = b + ZMAC,k. If τβ is the FPT variable at the fusion center,
then,P(FA |η = i) = P(τβ ≤ i). Sinceη is small for negative drift
under f0 (D in (4) is chosen that way) we use integral equations
to compute the distribution ofτβ for observationsYk given in this
paragraph.

Table 2 gives the comparison of thePFA values obtained via (12)
and simulations for light tailed distributions Gaussian and Laplace.
It turns out that the expression is also valid for heavy tailslike Log-
normal (also shown in Table 2). One can see a good match.

Heavy Tailed
Now, we use different arguments to compute ˜p and then use it in

(12). For simplicity, in the following, the fusion center isassumed
to use (3) for detection and not nonparametric CUSUM. From [2],
the optimal choice ofI is found to be always greater than 1.

Let m be the minimum number of sensors required to make drift
of Fk positive. We denote the drift, withm nodes transmitting, by
µm. Then we approximate ˜p by the probability thatFk will have
positive drift during a batch and that the batch lasts forβ/µm time
(the time needed forFk to crossβ when the drift isµm) after m
sensors start transmitting. We use this approximation to compute
PFA for ParetoK = 2.1 distribution. This is also provided in Table
2. We see that the approximation is indeed good for ParetoK = 2.1.

L I γ β PFA PFA

Anal. Sim.
×10−4 ×10−4

Gauss 5 2 15 18 1.22 1.1
10 2 15 18 2.43 2.28

Laplace 6 2 16 16 2.57 2.06
12 3 16 16 0.66 0.55

Log- 5 2 25 20 1.47 1.76
normal 10 2 25 20 2.97 3.5
Pareto 5 3 30 30 1.93 1.77
K=2.1 5 3 50 50 0.23 0.25

Table 2: PFA for various distributions using (4) at the local node and (3) at the

fusion node: EZk =−0.3, var(Zk) = 1, ρ = 0.005and b = 1.

False Alarm outside a Batch
In the absence of any transmission from the sensors,Yk ∼N(0,σ2

MAC)

if ZMAC ∼ N(0,σ2
MAC), whereN(0,σ2

MAC) denotes Gaussian distri-
bution with mean 0 and varianceσ2

MAC. Hence,Fk has negative

drift. Thus the time to first reachβ , i.e., time till FA, is approx-
imately exponentially distributed with parameterλ0 which can be
obtained from Section 3.2.

3.6 Comparative overall performance
The effect of tail ofZk on FPT, overshoot and batch size was

shown in the previous sections. This causes much largerPFA for
heavy tailedZk compared to the light tailed distributions for same
mean and variance. This gets reflected into largeEDD for heavy
tailed distributions for a givenPFA. Table 3 confirms these con-
clusions as theEDD for a light tailed system is much smaller as
compared to the one from a heavy tailed system. The individual
systems are optimized to make sure that each performs at its best.

Table 4 shows the comparative performance of paramentric and
nonparametric DualCUSUM’s for givenf0 and f1. The difference
in performance is most pronounced when the tail off0 is heaviest,
i.e., for K = 7, while the performance is same for Gaussian distri-
butions on which log likelihood function has no effect.

Note that in Table 4, the variance ofZk is different for parametric
and nonparametric CUSUMs. The overall effect is thus a combina-
tion of the effect of tails and that of the variances. However, as can
be seen from the table, the effect of tail dominates and the general
conclusion that light tailed systems are better, still holds.

EDD in Tables 3 and 4 are computed via simulations. However
in the next section we theoretically evaluateEDD and then compare
with the simulated values.

ρ PFA E∗
DD E∗

DD
Gauss Pareto

K=2.1

5e-4 e-2 29 36
5e-4 e-3 33 49
1e-4 e-3 41 95

Table 3: Comparison of E∗
DD of Gaussian (I∗ = 3) and Pareto (I∗ = 4) with L= 5,

E0 = 5, EZk =−0.5, var(Zk) = 1 and ZMAC = N(0,1).

3.7 Computation of EDD
The detection delay,EDD, at the fusion node, after the change

has occurred, can be written as,

EDD = E
[

(τ −T )+
]

= E[τ −T |τ ≥ T ](1−PFA). (13)

TheEDD is atleast equal to the time it takes for some of the sen-
sors to transmit and make the drift ofFk positive. After that the
additional delay is due to the time it takes forFk to crossβ with
this positive drift, or due to the additional positive driftgiven by
transmissions due to the other remaining sensors. This concept is
used to compute theEDD in the following.

Whenµ = EZk > 0, the timeτγ for Wk at a local node to cross
thresholdγ satisfies,E[τγ ]/γ → 1/µ asγ → ∞. Thus for largeγ ,
τγ ∼ γ/µ. Again for largeγ , one can invoke Central Limit The-
orem and approximateτγ by a Gaussian random variable:τγ ∼

N( γ
µ ,

σ2γ
µ3 ), where,σ2 = var(Zk).

Let µl be the drift of fusion CUSUMFk whenl local nodes are
transmitting.

Let ti be the point at which the drift ofFk changes fromµi−1 to
µi, i.e., when the drift ofFk is alreadyµi−1 and one additional node
(out of the remainingL− i+1) starts transmitting. Callti the ith
transition epoch. Letτx,1,τx,2, . . . ,τx,L be iid with distribution of
τx. Thent1, the time at which the first transmission happens, can
be written as,t1 =M(L,γ)=min(τγ ,1,τγ ,2, . . . ,τγ ,L). Let m(L,γ) =
E[M(L,γ)] = E[t1]. ThenE[t2]≈ m(L,γ)+m(L−1,γ−m(L,γ)µ).
The termm(L−1,γ −m(L,γ)µ) represents the mean time for one



of the remainingL−1 sensors to crossγ given that their respective
CUSUMs have run fort1 slots, i.e., ifγL−1 = γ −m(L,γ)µ, then
m(L − 1,γ −m(L,γ)µ) = E[min(τγL−1,1,τγL−1,2, . . . ,τγL−1,L−1)]. In
t1 slots each of theWk has moved up by approximatelyE[t1]µ and
hence the correction. This way we can compute the approximation
to mean of each of the transition epochs:

E[ti] =
i

∑
l=L

m(l,γl),

where,γL = γ andγl = γl+1− µ.m(l +1,γl+1) and i ≤ L. It may
happen for large values ofµ that,m(k,γk)≤ 1; for somek. In that
case we setm(i,γi) = 0;k ≥ i ≥ 2.

f0 → f1 L/I E∗
DD E∗

DD
nonparametric parametric

Paretoxm = 1 5/4 54.8 4.4
K = 7 to K = 3

Paretoxm = 1 5/4 69.1 24.9
K = 40 toK = 30

Gaussianσ = 1 5/3 10.1 10.1
EZk = 0 toEZk = 0.6

Table 4: Comparative performance of parametric and nonparametric Dual-

CUSUM for PFA = 0.01 with ρ = 0.05, E0 = 7.61, and ZMAC = N(0,1).

Now define,F̄i = E[Fti−1], the mean value ofFk just before the
transition epochti. Then a recursion can be written to approxi-
mately compute thēFi:

F̄k = F̄k−1+1{µk−1>0} [µk−1m(L−k+1,γL−k+1)] ; F̄1 = 0.

Let, j = min{i : µi > 0 andβ−F̄i
µi

< E[ti+1]}, thenEDD can be ap-
proximated by,

EDD ≈ E
[

t j
]

+
β − F̄j

µ j
, (14)

where,m(k,x) can be computed as,m(k,x) = ∑∞
i=0P(τx > i)k.

Since, the strong law of large number and the central limit theo-
rem suffice to build the approximations, theEDD is independent of
the distribution ofZk but depends only on its mean and variance.
The results are shown in Table 5 for different distributions. The
second column is our approximation (14) and the rest are obtained
via actual system simulations. It can be seen that, asγ reaches 50,
theEDD of all the distributions considered is nearly 147.

EDD EDD

γ EDD EDD EDD Log− Pareto
Anal. Gauss Laplace normal K = 3

5 5.3 9.1 9.3 9.3 10.7
8 11.4 16.6 16.8 16.9 18.7

15 30.3 36.3 36.5 36.7 38.5
50 146.7 146.8 147.1 147.6 150.5

Table 5: Comparison of EDD for various distributions: L = 10, I = 1,β = γ
EZk =−0.3, Var(Zk)=1 and b = 1.

4. CONCLUSIONS
We have proposed an energy efficient distributed change detec-

tion scheme in [2] which uses the physical layer fusion technique
and CUSUM at the sensors as well as at the fusion center. In this
paper we extend the algorithm to also include the nonparametric
CUSUM. We have theoretically computed the probability of false
alarm and mean delay in change detection. The analytical results
provide a good approximation which can then be used to choose
the optimal parameters using the optimization technique in[2].
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