
Teaching Tools for Data Structures and Algorithm s

Martin J . Biernatt
AT&T

1200 East Warrenville Roa d
Naperville, Illinois 6056 5
martin .j .biernat@att .com

Structures Jeopardy .® 1 Several 5-member teams are
formed(class size approximately 25) . A question is asked
by the instructor and each team must submit a writte n
response within a given time period . Time periods ar e
predetermined and length of time allowed depends o n
question difficulty . Each team receives one point for a
correct answer, and no points for an incorrect answer .
Two questions have "Daily Double " opportunities at
which time each team can wager up to their current scor e
on each of these questions . Any team can ask for a n
explanation of any question or answer during the game .
Correct answers to all the Data Structure Jeopard y
questions are distributed after the review. To make the
game a little more interesting and fun, small prizes ar e
awarded to all students with the prizes distributed on a
highest scoring team chores prizes first distributio n
scheme .

9

I . ABSTRACT

'This paper describes several teaching tools used in a n
Analysis of Algorithms course . The tools aid in reviewin g
data structures and explaining various algorithms whil e
actively involving the student with the algorithms . These
tools have helped students not only understand and retai n
the concepts behind the algorithms, but has also raise d
their level of interest in the class .
Keywords :Algorithms, Analysis of Algorithms, Data
Structure s

2. INTRODUCTIO N

My experience in both corporate training and academi a
indicates that most students enjoy personal involvemen t
with hands-on in-class exercises . With this idea I searched
for ways to transform Analysis of Algorithms from simpl y
lecturing about algorithms contained in a program ,
textbook, or chalkboard computer to an exciting hands-on
interactive learning process where all students use game s
and real-life examples to increase their understanding of
basic algorithms .

3. TEACHING TOOLS

The following teaching tools have been divided into
general categories of algorithms . These teaching tools are
used to aid in the explanation of the various algorithms an d
not as a replacement for programming, homework
assignments, and examinations .

3 .1 REVIEWING DATA STRUCTURE S

A prerequisite for the Analysis of Algorithms course i s
that each student be well-versed in data structures . Data
structures will play an important role in the analysis o f
algorithms so the course begins reviewing data structure s
to insure that all students have a common knowledge bas e
of data structures from which to start . I do this by
employing an academically competitive game of Data

t Adjunct Faculty Membe r
Department of Computer Science
Illinois Institute of Technolog y
Rice Campus
201 East Loop Road
Wheaton, Illinois 6018 7

SIGCS E
BULLETIN Vol . 25 No . 4 Dec . 1993

3 .2 DIVIDE-AND-CONQUER

The basic strategy for Divide-And-Conquer is given a
function with n inputs, divide the input into k distinct set ,
1 <k<_n, creating k subproblems . Continue to divide unti l
the subproblems can be easily solved . Then determine a
method to combine the subsolutions into the solution o f
the whole .

A tool that works extremely well for teaching sortin g
and searching techniques involves using a set of variabl e
length pieces of wood . I use nine pieces of wood, each a
different length from one inch to nine inches, and eac h
labeled with its ' corresponding lengtll[See Figure 1] . I
mix up the pieces of wood and the students apply th e
MERGESORT or QUICKSORT algorithms to the block s
by moving the blocks accordingly to each algorithm .

/ (O~b	 71 1
Figure 1 . Sorting Block s

1 . Jeopardy is a registered trademark of the Milton Bradley Company .

f
/ /

7

http://crossmark.crossref.org/dialog/?doi=10.1145%2F164205.164211&domain=pdf&date_stamp=1993-12-01


1 0

33 GREEDY METHOD

The basic strategy for the GREEDY METHOD is to take a
problem and find a solution, normally a subset of the input,
that satisfies some predefined constraints . A solution that
satisfies the constraints is called a feasible solution . A
feasible solution that maximizes or minimizes a give n
objective function is called an optimal solution .

One way to the students ' mind is through his/her
stomach and I take full advantage of this for the group of
Greedy Method algorithms . I place one pound of
M&M's® 2 Brand Chocolate Candies in a bowl . Have on e
small paper cup per student . Select one student to
distribute the M&M's from the bowl using the paper cups .
The directions for distribution are : "Make one pas s
through the class . Each student must have a cup filled with
some amount of M&M's and no M&M's can remain in th e
bowl when you complete the one pass through the class . "
Students see a form of the Greedy Method in practice
immediately if the student distributing the M&M ' s likes
M&M's and fills his/her cup to the brim and then attempt s
to equally distribute the remaining M&M's . After the
M&M's are distributed, I give the student that distributed
the M&M's a moment to describe their distributio n
algorithm in terms of the constraints and objective functio n
and whether they produced a feasible or optimal solution .

Before the students eat their M&M 's I use the M&M ' s
as an introduction to an example of the Knapsack problem .
Each student separates his/her M&M 's by color and
assigns a numerical value to each color . Each student then
chooses a value for their knapsack(their small paper cup )
such that all the M&M ' s with their associated numerical
values cannot be used. I ask the students to fill their
knapsacks . Upon completion I discuss with them wha t
"algorithm" they used by having them define thei r
constraints and objective function . After all that work th e
student then can enjoy their M&M ' s .

I also teach the knapsack problem by using a real lif e
venue . As a homework assignment, each student mus t
bring to class a paper bag from a fast food restaurant .
Students have no idea what this is all about until I sho w
them a form of the knapsack problem by looking at th e
bottom of the bag . Nearly all fast food restaurants no w
have at least item counts or illustrated packing pictures for
every bag [See Figure 2] .

To illustrate PRIM' S and KRUSKAL'S minimu m
spanning tree algorithms I use a Tinkertoy 3 Building Set
where the connector spools are nodes of the tree and the
rods are the weighted branches of the trees . I step through

2. M&M' s is a registered trademark of Mars Inc .

3. Tinker Toy is a registered trademark of Playskool Inc .

SIGCSE
Vol . 25 No . 4 Dec . 199 3BULLETIN

the algorithm and use the Tinkertoys to construct th e
minimum spanning tree using each technique . Not only
does the student understand each algorithm but, it easil y
illustrates the differences between each algorithm . I find
students coming up on a class break to run through th e
algorithms and construct the minimum spanning tree s
themselves using the Tinkertoys .

3 .4 BACKTRACKIN G

Backtracking is one of the most fundamental algorith m
design techniques for problem searching for a optima l
solution or a set of solutions which satisfy some
constraints . The solution is expressed as a n-tupl e
(x 1, x 2 , . . . , x„) where x ; is some value from a finite se t
of possible values . A state space tree can be created where
a value is chosen for one element of the tuple at each leve l
of the tree .

I use an illustration of the entire state space tree for th e
4-queens problem to show how backtracking finds a
solution by traversing the state space tree discardin g
subtrees and moving toward a solution . Although thi s
picture can become large and cumbersome its use is wel l
justified because it allows the students to easily see the siz e
of the state space tree for a given problem and how muc h
of the state space tree is not traversed using backtracking .

I have also created for the 4-Queens problem a larg e
felt chess board with accompanying four felt queen
crowns . In real-time as I hand compute the 4-Queen s
problem the students learn what the program does b y
seeing how the board appears after each value of the tupl e
is selected[See Figure 3] . The added value of using the 4 -
Queens Board is that students can see how a certain board
configuration relates to the state space tree.

Figure 3 . 4-Queens Board

w

w

ITEM COUNT : 2- 4

Figure 2 . Bottom of Fast Food Ba g

"./W\/

0 0
00



1 1

3 .5 BRANCH-AND-BOUND

Branch-And-Bound refers to the state space traversal
technique which all children of the E-node 4 are generated
before any other live nodes5 can become the E-node .

A real life game that makes an interestin g
programming problem for Branch-And-Bound and tha t
students can easily access and enjoy playing is the 15 -
Puzzle Game[See Figure 4] . 6

1 2 3
i

4

5 6 7 8

9 11 1 210

open1 513 14

Figure 4 . 15-Puzzle Game

A more challenging game to play and to program a
Branch-And-Bound Solution is Top SpinTM [See Figure 51 .7
Here the student is to arrange the balls in order by movin g
the balls forward or backward and changing the order o f
the four balls in the "round house" .

Figure 5 . Top Spin Gam e

Another challenging programming assignment for

4 . A E-node or Expanding-node is a live node whose children ar e

currently being generated .

5 . A live node is a node whose children have not all been generated .

6 . The 15-Puzzle Game was invented in 1878 by Sam Loyd .

7 . Top Spin is a trademark of Binary Arts Corporation .

SIGCSE

	

Vol . 25 No . 4 Dec . 199 3BULLETIN

Branch-And-Bound is to have students write a maz e
traversal program for the Amazing Micro-Mous e
Contest[See Figure 61 . 8 The Objective is to reach "home" ,
usually located in the center of the board, in the leas t
number of moves . One Mouse move is restricted t o
moving forward one square in the direction the mouse i s
facing or turning in place left or right 90 degrees .

home

Figure 6 . Amazing Micro-Mouse Maz e

4 . OBSERVATIONS

There are three distinct observations I have made whe n
using these teaching tools .

1. Students comprehend the algorithms faster b y
playing with the teaching tool . With the hands-on
approach the student can figure out what a n
algorithm is doing by physically manipulating the
teaching tool . Many students will spend non-clas s
time working with the teaching aid . Some students
have even invented their own teaching aids .

2. Students remember the algorithms . Two years after
the course, students can still tell me how a particular
algorithm works . The students credit the use of th e
teaching tools to help them visualize an algorithm' s
behavior .

3. Students are excited to come to class to see what's i n
store . Students have told me they are eager to do th e
preclass reading assignment so they can clarify thei r
understanding of the algorithms when the teachin g
tool is introduced . When these tools are employed
in class it is obvious that most students have indee d
read the assigned material prior to attending class .

8 . The Amazing Micro-Mouse Contest originally created by Donal d

Christiansen in May 1977 .



5. CONCLUSIO N

This paper has described various teaching tools for an
Analysis of Algorithms course . The teaching tools aid the
students in learning, understanding, and remembering th e
algorithms . Secondary benefits derived from using thes e
teaching tools is an increased level of interest by the
student and an eagerness to prepare for classes that ar e
educational as well as fun . These teaching tools can also
be created at minimal expense to the instructor o r
institution .

6. REFERENCES

Baase, Sara. Computer Algorithms Introduction to Desig n
and Analysis . Reading, MA : Addison-Wesley
Publishing Company, 2nd edition, 1988 .

Connen, Thomas H. and Leiserson, Charles E . and Rivest,
Ronald L. Introduction to Algorithms.
Cambridge, MA: MIT Press, 1992 .

ACM/IEEE-CS Joint Curriculum Task Force. Computin g
Curricula 1991 . New York, NY: ACM Press,
1991 .

Manber, Udi . INTRODUCTION TO ALGORITHMS A
creative Approach . Reading, MA: Addison-
Wesley Publishing Company, 1989 .

Moret, B .M.E. and Shapiro, H .D . Algorithms from P to NP
Volume 1 Design & Efficiency . Redwood, CA:
The Benjamin/Cummings Publishing Company,
Inc ., 1991 ,

Silberman, Mel assisted by Auerbach, Carol . ACTIVE
TRAINING - A Handbook of Techniques ,
Designs, Case Examples, and Tips . Lexington,
KY : Lexington Books, 1990 .

Smith, Jeffrey D . Design and Analysis of Algorithms .
Boston, MA: PWS-KENT Publishing Company,
1989 .

****************************OBJECT-ORIENTED Continued From Page 8''''''''.''"

1 2

matrix : :matrix(int height, int width )
{
mbody = new vector [height] ;
for (int i=0 ; i<height ; i++ )

mbody[i] = * new vector(width) ;
for (i=0 ; i<height ; i++ )

mbody[i][i] = 1 .0 ;
m=height ;
n=width ;

}

matrix : : - matrix( )
{
delete [] mbody ;

}

matrix& matrix : :operator+(matrix& b )
{
matrix *temp= new matrix(m,n) ;
for (int i=0 ; i<m ; i++ )

temp->mbody[i ] =mbody[i]+b[i] ;
return *temp ;

}

matrix& matrix : :operator*(matrix& b )
{
matrix *temp= new matrix(m,b .n) ;
for (int i=0 ; i<m ; i++ )

for (int j=0 ; j<b .n ; j++ )

temp->mbody[i][j] =mbody[i]*b .tr(j) ;
return *temp ;

}

SIGCSE

	

Vol . 25 No . 4 Dec . 199 3BULLETIN

matrix& matrix : :operator. = (matrix& b )

{
mbody=new vector [b .m] ;
m=b .m ;

	

n=b .n ;
for (int i = 0 ; i<m ; i++) mbody[i]=b[i] ;
return *this ;

}

vector & matrix : :operator[](int i )
{
return(mbody[i]) ;

}

vector matrix : :tr(int i )
{
vector temp(m) ;
for (int j=0 ; j<m ; j++ )

temp [j] =mbody [ j ][ i l ;
return temp ;

}

int matrix : :sizeN() { return n ; }
int matrix : :sizeM() { return m ; }

matrix& matrix : :t( )
{
matrix *temp= new matrix(n,m) ;
for (int i =0 ; i<n ; i++ )

temp->mbody[i]=this->tr(i) ;
return *temp ;

}
	 end of file

	

matrix .cc	


