Check for
Updates

Teaching Tools for Data Structures and Algorithms

Martin J. Biernatf
AT&T
1200 East Warrenville Road
Naperville, Illinois 60565
martin.j.biernat@att.com

1. ABSTRACT

This paper describes several teaching tools used in an
Analysis of Algorithms course. The tools aid in reviewing
data structures and explaining various algorithms while
actively involving the student with the algorithms. These
tools have helped students not only understand and retain
the concepts behind the algorithms, but has also raised
their level of intercst in the class.

Keywords: Algorithms, Analysis of Algorithms, Data
Structures

2. INTRODUCTION

My experience in both corporate training and academia
indicates that most students cnjoy personal involvement
with hands-on in-class exercises. With this idea I searched
for ways to transform Analysis of Algorithms from simply
lecturing about algorithms contained in a program,
textbook, or chalkboard computer to an exciting hands-on
interactive learning process where all students use games
and real-life examples to increase their understanding of
basic algorithms.

3. TEACHING TOOLS

The following teaching tools have been divided into
general categories of algorithms. These teaching tools are
used to aid in the explanation of the various algorithms and
not as a replacement for programming, homework
assignments, and examinations.

3.1 REVIEWING DATA STRUCTURES

A prerequisite for the Analysis of Algorithms course is
that each student be well-versed in data structures. Data
structures will play an important role in the analysis of
algorithms so the course begins reviewing data structures
to insure that all students have a common knowledge base
of data structures from which to start. I do this by
employing an academically competitive game of Data

t Adjunct Faculty Member
Department of Computer Science
Tllinois Institute of Technology
Rice Campus
201 East Loop Road
Wheaton, [llinois 60187

SIGCSE
BL(JES_SE%IN Vol. 25 No. 4 Dec. 1993

Structures Jeopardy.®' Several S-member teams are
formed(class size approximately 25). A question is asked
by the instructor and each team must submit a written
response within a given time period. Time periods are
predetermined and length of time allowed depends on
question difficulty. Each team receives one point for a
correct answer, and no poinis for an incorrect answer.
Two questions have ‘‘Daily Double” opportunities at
which time each tcam can wager up to their current score
on cach of these questions. Any team can ask for an
explanation of any question or answer during the game.
Correct answers to all the Data Structure Jeopardy
questions are distributed after the review. To make the
game a little more interesting and fun, small prizes are
awarded to all students with the prizes distributed on a
highest scoring team choses prizes first distribution
scheme.

3.2 DIVIDE-AND-CONQUER

The basic strategy for Divide-And-Conquer is given a
function with n inputs, divide the input into £ distnct set,
1<k<n, creating k£ subproblems. Continue to divide until
the subproblems can be casily solved. Then determine a
method to combine the subsolutions into the solution of
the whole.

A tool that works extremely well for teaching sorting
and searching techniques involves using a set of variable
length pieces of wood. 1 use nine pieces of wood, each a
different length from one inch to nine inches, and cach
labeled with its’ corresponding length[See Figure 1]. I
mix up the pieces of wood and the students apply the
MERGESORT or QUICKSORT algorithms to the blocks
by moving the blocks accordingly to each algorithm.

L
a0

. -y
@ 7 9

Figure 1. Sorting Blocks

1. Jeopardy is a registered trademark of the Milton Bradley Company.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F164205.164211&domain=pdf&date_stamp=1993-12-01

3.3 GREEDY METHOD

The basic strategy for the GREEDY METHOD is to take a
problem and find a solution, normally a subset of the input,
that satisfies some predefined constraints. A solution that
satisfies the constraints is called a feasible solution. A
feasible solution that maximizes or minimizes a given
objective function is called an optimal solution.

One way to the students’ mind is through his/her
stomach and I take full advantage of this for the group of
Greedy Method algorithms. [place one pound of
M&M’s®? Brand Chocolate Candies in a bowl, Have one
small paper cup per student. Select one student to
distribute the M&M’s from the bowl using the paper cups.
The directions for distribution are: ‘“Make one pass
through the class. Each student must have a cup filled with
some amount of M&M’s and no M&M's can remain in the
bowl when you complete the one pass through the class.”
Students see a form of the Greedy Method in practice
immediately if the student distributing the M&M'’s likes
M&M’s and fills his/her cup to the brim and then attempts
to equally distribute the remaining M&M's. After the
M&M ‘s are distributed, I give the student that distributed
the M&M's a moment to describe their distribution
algorithm in terms of the constraints and objective function
and whether they produced a feasible or optimal solution.

Before the students eat their M&M’s I use the M&M’'s
as an introduction to an example of the Knapsack problem.
Each student separates his/her M&M’s by color and
assigns a numerical value to each color. Each student then
chooses a value for their knapsack(their small paper cup)
such that all the M&M’s with their associated numerical
values cannot be used. I ask the students to fill their
knapsacks. Upon completion I discuss with them what
‘‘algorithm’’ they used by having them define their
constraints and objective function. After all that work the
student then can enjoy their M&M’s.

I also teach the knapsack problem by using a real life
venue. As a homework assignment, each student must
bring to class a paper bag from a fast food restaurant.
Students have no idea what this is all about until I show
them a form of the knapsack problem by looking at the
bottom of the bag. Nearly all fast food restaurants now
have at least item counts or illustrated packing pictures for
every bag[See Figure 2].

To illustrate PRIM’S and KRUSKAL'S minimum
spanning tree algorithms I use a Tinkertoy> Building Set
where the connector spools are nodes of the tree and the
rods are the weighted branches of the trees. I step through

2. M&M'sis a registered trademark of Mars Inc.
3. Tinker Toy is a registered trademark of Playskool Inc.

SIGCSE

BULLETIN Vol 25

No. 4 Dec. 1993

10

the algorithm and use the Tinkertoys to construct the
minimum spanning tree using each technique. Not only
does the student understand each algorithm but, it easily
illustrates the differences between each algorithm. I find
students coming up on a class break to run through the
algorithms and construct the minimum Spanning trees
themselves using the Tinkertoys.

— efe
= | |\J]| 00

ITEM COUNT: 2-4
Figure 2. Bottom of Fast Food Bag

3.4 BACKTRACKING

Backtracking is one of the most fundamental algorithm
design techniques for problem searching for a optimal
solution or a set of solutions which satisfy some
constraints. The solution is expressed as a n-tuple
(x1,X2,...,x,) where x; is some value from a finite set
of possible values. A state space tree can be created where
a value is chosen for one element of the tuple at each level
of the tree.

I use an illustration of the entire state space tree for the
4-queens problem to show how backtracking finds a
solution by traversing the state space tree discarding
subtrees and moving toward a solution. Although this
picture can become large and cumbersome its use is well
justified because it allows the students to easily see the size
of the state space tree for a given problem and how much
of the state space tree is not traversed using backtracking.

1 have also created for the 4-Queens problem a large
felt chess board with accompanying four felt queen
crowns. In real-time as I hand compute the 4-Queens
problem the students learn what the program does by
seeing how the board appears after each value of the tuple
is selected[See Figure 3]. The added value of using the 4-
Queens Board is that students can see how a certain board
configuration relates to the state space tree.

N/

2

Y

Y

Figure 3. 4-Queens Board

3.5 BRANCH-AND-BOUND Branch-And-Bound is to have students write a maze

Branch-And-Bound refers to the state space traversal
technique which all children of the E-node” are generated
before any other live nodes® can become the E-node.

traversal program for the Amazing Micro-Mouse
Contest[See Figure 6].% The Objective is to reach “‘home’”,
usually located in the center of the board, in the least
number of moves. One Mouse move is restricted o

A real life game that makes an interesting moving forward one square in the direction the mouse is
programming problem for Branch-And-Bound and that facing or turning in place left or right 90 degrees.

students can easily access and enjoy playing is the 15-
Puzzle Game(Sce Figure 4].6

9 10 11 12
13 14 15 | |jopen

Figure 4. 15-Puzzle Game

A more challenging game to play and to program a

A

‘ home

1 | 1
Figure 6. Amazing Micro-Mouse Maze

C o . T™ . 7
Branch-And-Boupd Solution is Top Splp [See Figure 5.]. 4. OBSERVATIONS
Here the student is to arrange the balls in order by moving
the balls forward or backward and changing the order of There are three distinct observations I have made when
the four balls in the “‘round house’’. using these teaching tools.

1. Students comprehend the algorithms faster by

Figure 5. Top Spin Game

Another challenging programming assignment for

4. A E-node or Expanding-node is a live node whose children are
currently being generated.

playing with the teaching tool. With the hands-on
approach the student can figure out what an
algorithim is doing by physically manipulating the
teaching tool. Many students will spend non-class
time working with the teaching aid. Some students
have even invented their own teaching aids.

Students remember the algorithms. Two years after
the course, students can still tell me how a particular
algorithm works. The students credit the use of the
teaching tools to help them visualize an algorithm’s
behavior.

Students are excited to come to class to see what’s in
store. Students have told me they are eager 0 do the
preclass reading assignment so they can clarify their
understanding of the algorithms when the teaching
tool is introduced. When these tools are employed
in class it is obvious that most students have indeed
read the assigned material prior to attending class.

5. A live node is a node whose children have not all been generated.

6. The 15-Puzzle Game was invented in 1878 by Sam Loyd. 8. The Amazing Micro-Mouse Contest originally created by Donald

7. Top Spin is a trademark of Binary Arts Corporation.

EE&SEE,IN Vol. 25 No. 4 Dec. 1993 11

Christiansen in May 1977.

5. CONCLUSION

This paper has described various teaching tools for an
Analysis of Algorithms course. The teaching tools aid the
students in learning, understanding, and remembering the
algorithms. Secondary benefits derived from using these
teaching tools is an increased level of interest by the
student and an eagerness to prepare for classes that are
educational as well as fun. These teaching tools can also
be created at minimal c¢xpense to the instructor or
institution.

6. REFERENCES

Baase, Sara. Computer Algorithms Introduction to Design
and Analysis. Reading, MA: Addison-Wesley
Publishing Company, 2nd edition, 1988.

Cormen, Thomas H. and Leiserson, Charles E. and Rivest,
Ronald L. Introduction to Algorithms.
Cambridge, MA: MIT Press, 1992.

ACM/IEEE-CS Joint Curriculum Task Force. Computing
Curricula 1991. New York, NY: ACM Press,
1991.

Manber, Udi. INTRODUCTION TO ALGORITHMS A
creative Approach. Reading, MA: Addison-
Wesley Publishing Company, 1989,

Moret, B.M.E. and Shapiro, H.D. Algorithins from P to NP
Volume 1 Design & Efficiency. Redwood, CA:
The Benjamin/Cununings Publishing Company,
Inc., 1991,

Silberman, Mel assisted by Auerbach, Carol. ACTIVE
TRAINING - A Handbook of Technigues,
Designs, Case Examples, and Tips. Lexington,
KY: Lexington Books, 1990,

Smith, Jeffrey D. Design and Analysis of Algorithms.
Boston, MA: PWS-KENT Publishing Company,
1989,

*k***************************OBJECT_ORIENTED Continued From Page 8***********¥¥’6*¥¥¥¥¥-¥¥¥¥¥¥¥¥-¥¥#«¥=

matrix::matrix(int height, int width)

¢ mbody = new vector [(height];
for (int 1i=0; i<height; i++)
mbody[i]= * new vector(width);
(1=0; i<height; i++)
mbody(1][1]=1.0;
m=height;
n=width;

}

matrix:: matrix()

for

{
delete [] mbody;
}

matrix& matrix::operator+(matrix& b)
{
matrix *temp= new matrix(m,n);
for (int 1=0; i<m; i++)) .
temp->mbody[i]=mbody([i]+b[i];
return *temp;

}

matrix& matrix::operator*(matrix& b)

{
matrix *temp= new matrix(m,b.n);
for (int i=0; i<m; i++)
for (int j=0; j<b.n; j++)
temp->mbody([1][j]=mbody(i])*b.tr(j);
return *temp;

}

SIGCSE

BULLETIN Vo

25 No. 4 Dec. 1993

12

matrix& matrix::operator=(matrix& b)

mbody=new vector [b.m];
m=b.m; n=b.n;
for (int 1=0; i<m; i++) mbody(i}=b[i]};

return *this;

h

vector & matrix::operator[]}(int i)

{
return(mbody(i]);

}
vector matrix::tr(int i)
{

vector temp(m);

for (int j=0; j<m; j++)

temp(jl=mbody(]j]1[i];
return temp;

}

int matrix::sizeN()
int matrix::sizeM()

{ return n; }
{ return m; }

matrix& matrix::t()
{
matrix *temp= new matrix(n,m);
for (int i=0; i<n; i++)
temp->mbody([i]=this->tr(i);
return *temp; :

end of file matrix.cc

