Check for
Updates

Using A Heuristic Algorithm
to
Help Analyze Graph Problems

LieJune Shiau

Department of Mathematics and Computer

Science
University of Houston -~ Clear Lake
Houston, TX 77058

Introduction

in most books
investigated
analytic
begin to
complicated
real-world

The study of graphs
implies that graphs can be
and analyzed by simple
techniques. When students
explore aven moderately
problems that arise in
applications, such as the traveling
salesman, transportation system, and
network problems, they soon realize this
is not true. Very often, useful
information about a graph is concealed and
can be found visually only after the
vertices are rearranged. My main point in
this paper is that computer graphics,
combined with a simple heuristic
algorithm, can provide a powerful new tool
for exploring graphs. This new tool is
easy to use, and also gives insight not
readily attainable by traditional analytic
techniques. Furthermore, this tool can
provide geometric views which motivate
analytic arguments.

A Heuristic Algorithm

A graph can be represented as an
adjacency matrix. An adjacency matrix
gives the relations of all the vertices
and edges of a graph. However, with
various ways of labeling vertices, there
are many different appearances of
isomorphic graphs corresponding to an

The important thing is
fewest
logical

adjacency matrix.
how to select the one with the
unwanted intersections and most
simplification.

Here, we will introduce a heuristic
algorithm for rearranging the vertices in
a graph. The computation is performed by
an iterative search which starts with a
poor layout of a graph and progressively
improves it by reducing its cost function.
This cost function measures the extent to

which the current layout of the graph
varies from the desired result. Each
possible layout has an associated cost,
computed by its cost function. The
SIGCSE

Vol, 25 No. 4 Dec. 1993

BULLETIN

18

employed heuristic for rearranging the
vertices 1is chosen so that this cost keeps
being reduced. Once the cost reaches its
minimal, the layout of the graph is the
desired one.

The

Ezzzwu—d. Here J, is the length of the

edge between vertices i and 7j,
constant. It is obvious that E is minimal
if, and only if all edges are of the equal
length r.

cost function 1is defined as

and r is a

The algorithm begins with randomly
assigning vertices inside a square of
width r, then gradually readjusting the
position of each vertex to reduce the cost
determined by the function E. This
algorithm treats adjacent and non-adjacent

vertices separately. For adjacent
vertices, if their distance is less than
r, the algorithm pushes them away to
increase their distance. If their

distance is greater than r, this algorithm
pulls them toward each other to reduce
their distance. After a few iterations,
the vertices will come to the vicinity of
their final positions. In the process, if
a vertex has been pushed or pulled too
drastically, it may oscillate around its
final position and never settle. To avoid
this, the algorithm slowly reduces the
displacement along each iteration. To be
more specific, for the next iteration, if
adjacent vertices i and j are too close,
d. <r,

i.e. d,

let them both be moved away by

a displacement of cud”—rf. If they are

too far away, i.e. J,>r, let them both be
moved closer by a displacement of

cﬂdu—rf. For non-adjacent vertices, the

algorithm separates them as far as
possible. In each iteration of this
algorithm, let the vertices push each

others away by a displacement of Ad, .

http://crossmark.crossref.org/dialog/?doi=10.1145%2F164205.164217&domain=pdf&date_stamp=1993-12-01

Figure 1 (a) (b)

Experience has shown that the values

of a=0.25 and p=0.1
situations, and give very
results.

favorite most
satisfactory

It is conceivable that a vertex will
be pulied and pushed simultaneously by
several forces from all vertices. The net
result should be the cowmbination of all
the applicable forces. In order to reflect
this fact, this algorithm requires that
all the coordinate adjustments be computed
first, then the accumulated adjustments be
applied to the vertices.

Applications

Although the idea of this heuristic
algorithm is very simple, a number of
applications may utilize it. Since every
model has relationships between items that
lend themselves to a graphical

(1) (b)

>

/N
N
/

_ (a) (b)
Figure 2

SIGCSE

BULLETIN Vol. 25 No. 4 Dec. 1993

< X ©

(d) (e)

(c)

representation, this algorithnm would
apply. For instance, this algorithm will
provide a clearer and more desirable
layout by getting rid of unwanted

intersections in a graph. In Figure 1, we
used a series of animation to depict the
sequence of unfolding a graph. Starting
with a few undesired intersections, this
graph gets transformed into a graph which
is much easier to handle. Once the
transformation is completed, we can easily
answer questions such as whether this
graph is connected or which is the
shortest path from one particular node to
another.

to determine
We can investigate the
layouts of two transportation systems
using this algorithm, which helps in
detecting if they are actually isomorphic
transportation systems. (See Figure 2.) It

Another application is
graph isomorphism.

|\ G OEdD

(c) (& (e)

OO

(c) (d) (e)

19

Figure 3 @ b
may not be easy to find a one-on-one
function between the two graphs on the
left, especially when the existence of
such A function is still unknown. These

two graphs seem unlikely to be related.

However, after being unfolded by this
algorithm, it 1is clear that they are
isomorphic.

In a graph that represents a computer
or communication network, the vertices
denote the communication entities
(computers, telephones, etc.) and the
edges denote the communication medium
(coaxial cables, telephone lines, etc.).
Such a graph should be a connected graph,
so that there is a path between every pair
of nodes. However, even in a graph
sufficiently rich in edges, removing a
single node may cause the graph to become
disconnected. Such a node is referred to
as an articulation point. We can apply
this algorithm to such a network for one
node being removed (as the circled node in
Figure 3). The result of connectivity
shows 1if that particular node 1is an

G T
777

(©) (d) (e)

articulation point. In Figure 3, it is not

initially clear which node is an
articulation point; but application of
this algorithm results in a disconnected
transformation, and identifies an
articulation point.
Conclusion

This algorithm is easy to implement

on a computer. The details depend on the
programming language chosen. I used Turbo

Pascal because of its capability in
supporting graphical presentations. The
results can be presented as computer

animation which
but also concise.

is not only interesting

If
assigned
students should be
other plausible

this heuristic
as a

is
project,

algorithm
programming

encouraged to find
applications of this
program. They often find more fundamental
issues about graph this way, which they
had never before appreciated.

******-k*********************DISCRETE MATHEMATICS II Continued From Page 17**********************

2. Brookshear, J. Glenn, Theory of Computation:|Fo;ma1 _
Languages, Automata, and Complexity, The Benjamin/Cummings
Publishing Company, Inc., New York, 1989

3. Gries, David, "Teaching Calculation and Discrimination: A
More Effective Curriculum", Communications of the ACM,
volume 43, number 3, March 1991, pages 44-535

4. Gries, Dbavid, The Science of Programming, Springer-Verlag,
New York, 1981

5. Rosen, Kenneth H., Discrete Mathematics and its
Applications, The Random House, New York, 1988

6. Wainwrite, Roger, "Introducing Functional Programming in
Discrete Mathematics", SIGSCE Bulletin, volume 24, number
1, March 1992, pages 147-152

SIGCSE

Vol. 25 No. 4 Dec. 1993

BULLETIN

20

