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Introduction

The study of graphs in most book s
implies that graphs can be investigate d
and

	

analyzed

	

by

	

simple

	

analytic
techniques . When students

	

begin

	

to
explore

	

even

	

moderately

	

complicated
problems

	

that arise

	

in

	

real-worl d
applications,

	

such as the

	

traveling

salesman,

	

transportation

	

system,

	

and
network problems, they soon realize this
is not true . Very often, useful
information about a graph is concealed an d
can be found visually only after th e
vertices are rearranged . My main point i n
this paper is that computer graphics ,
combined with a simple heuristi c
algorithm, can provide a powerful new too l
for exploring graphs . This new tool i s
easy to use, and also gives insight no t
readily attainable by traditional analyti c
techniques . Furthermore, this tool can
provide geometric views which motivat e
analytic arguments .

A Heuristic Algorithm

A graph can be represented as a n
adjacency matrix . An adjacency matri x
gives the relations of all the vertice s
and edges of a graph . However, wit h
various ways of labeling vertices, ther e
are many different appearances o f
isomorphic graphs corresponding to a n
adjacency matrix . The important thing i s
how to select the one with the fewes t
unwanted intersections and most logical
simplification .

Here, we will introduce a heuristi c
algorithm for rearranging the vertices i n

a graph . The computation is performed by
an iterative search which starts with a
poor layout of a graph and progressivel y
improves it by reducing its cost function .

This cost function measures the extent to
which the current layout of the grap h
varies from the desired result . Eac h
possible layout has an associated cost ,
computed by its cost function . The

SIGCSE

	

Vol . 25 No . 4 Dec . 199 3BULLETIN

employed heuristic for rearranging the
vertices is chosen so that this cost keep s
being reduced . Once the cost reaches it s
minimal, the layout of the graph is the
desired one .

The cost function is defined a s

E_ l dq -d . Here d, is the length of th e

edge between vertices i and j, and r is a
constant . It is obvious that E is minima l
if, and only if all edges are of the equa l
length r .

The algorithm begins with randoml y
assigning vertices inside a square o f
width r, then gradually readjusting the
position of each vertex to reduce the cos t
determined by the function E . This
algorithm treats adjacent and non-adjacen t
vertices separately . For adjacent
vertices, if their distance is less than
r, the algorithm pushes them away t o
increase their distance . If their
distance is greater than r, this algorith m
pulls them toward each other to reduce
their distance . After a few iterations ,
the vertices will come to the vicinity o f
their final positions . In the process, i f
a vertex has been pushed or pulled too
drastically, it may oscillate around its
final position and never settle . To avoid
this, the algorithm slowly reduces the
displacement along each iteration . To be
more specific, for the next iteration, i f
adjacent vertices i and j are too close ,

i .e . d,<r, let them both be moved away b y

a displacement of a(c/,; -r) 2 . If they are

too far away, i .e . d,, >r, let them both be

moved closer by a displacement o f

a(ci -r)- .

	

For non-adjacent vertices,

	

the

algorithm separates them as far as
possible . In each iteration of thi s
algorithm, let the vertices push eac h

others away by a displacement of Qd .
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Figure 1

	

(a)

	

(b)

Experience has shown that the value s

of a=0 .25 and /3=0 .1 favorite mos t
situations, and give very satisfactory
results .

It is conceivable that a vertex wil l
be pulled and pushed simultaneously b y
several forces from all vertices . The ne t
result should be the combination of al l
the applicable forces . In order to reflec t
this fact, this algorithm requires tha t
all the coordinate adjustments be compute d
first, then the accumulated adjustments b e
applied to the vertices .

Application s

Although the idea of this heuristi c
algorithm is very simple, a number o f
applications may utilize it . Since every
model has relationships between items that
lend

	

themselves

	

to

	

a

	

graphical

(e )

representation,

	

this

	

algorithm

	

would
apply . For instance, this algorithm wil l
provide a clearer and more desirabl e
layout by getting rid of unwante d
intersections in a graph . In Figure 1, we
used a series of animation to depict the
sequence of unfolding a graph . Starting
with a few undesired intersections, thi s
graph gets transformed into a graph which
is much easier to handle . Once the
transformation is completed, we can easil y
answer questions such as whether thi s
graph is connected or which is the
shortest path from one particular node to
another .

Another application is to determine
graph isomorphism . We can investigate th e
layouts of two transportation system s
using this algorithm, which helps in
detecting if they are actually isomorphi c
transportation systems . (See Figure 2 .) I t

(b) (c )(c) (d )(a )

Figure 2

	

(a)

	

(b)

	

(c)

	

(d)

	

(e)
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Figure 3
(a)

	

(b) (c )

may not be easy to find a one-on-on e
function between the two graphs on th e
left, especially when the existence o f
such A function is still unknown . Thes e
two graphs seem unlikely to be related .
However, after being unfolded by thi s
algorithm, it is clear that they ar e
isomorphic .

In a graph that represents a compute r
or communication network, the vertices
denote the communication entitie s
(computers, telephones, etc .) and the
edges denote the communication mediu m
(coaxial cables, telephone lines, etc .) .
Such a graph should be a connected graph ,
so that there is a path between every pair
of nodes . However, even in a graph
sufficiently rich in edges, removing a
single node may cause the graph to become
disconnected . Such a node is referred to
as an articulation point . We can apply
this algorithm to such a network for on e
node being removed (as the circled node i n
Figure 3) .

	

The result of connectivit y
shows if that particular node is an

articulation point . In Figure 3, it is no t
initially clear which node is an
articulation point ; but application o f
this algorithm results in a disconnecte d
transformation,

	

and

	

identifies

	

a n
articulation point .

Conclusion

This algorithm is easy to implemen t
on a computer . The details depend on the
programming language chosen . I used Turbo
Pascal because of its capability i n
supporting graphical presentations . The
results can be presented as compute r
animation which is not only interesting
but also concise .

If

	

this

	

heuristic

	

algorithm

	

i s
assigned as a programming project ,
students should be encouraged to fin d
other plausible applications of thi s
program . They often find more fundamenta l
issues about graph this way, which they
had never before appreciated .
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