
THE INTEGER SQUARE ROOT OF N VIA A BINARY SEARC H

by

T . F . Higginbotham, Ph .D .

Southeastern Louisiana Universit y

ABSTRACT

An algorithm is presented which may be used to find the integer squar e
root of N . The method is intended for use on a binary computer, wher e
only addition, subtraction, multiplication, or division by 2 i s
required . The problem arose when the author was working on factorin g
large numbers, where the machine, the Honeywell DPS 8, had doubl e
precision integer addition and subtraction, and the simulation o f
multiplication was easy . The actual factoring of the large number was t o
be Fermat's Method, requiring only addition and subtraction, but th e
integer square root is required in order to test for termination . The
algorithm is implemented in FORTRAN for ease of reading .

Students enjoy the unconventional approach to solving this problem . I t
isn't long before some of them think of other unusual solutions .

INTRODUCTION

Some students enjoy novel applications of a particular method to a
common problem . In this case, we will find the integer square root o f
a number N without using anything but addition, subtraction, an d
multiplication, and division by 2, using a binary search .
The integer square root of a number is taken to be the integer part o f
the square root . For example, the integer square root of 5 is 2, of 10 ,
3, and of 105, 10 .

This problem arose in connection the use of Fermat's Method of Factoring
[1], in which only addition and subtraction are required . The machin e
on which the work was being carried out was a Honeywell DPS 8, a 36-bi t
machine with an accumulator ° quotient register architecture, wit h
double precision integer addition and subtraction, but not doubl e
precision integer multiplication or division . Double precisio n
multiplication is easy to simulate on this system, but double precisio n
division is somewhat more difficult .

To restate the problem ; find the square root of a number N without th e
use of division, other than by 2, which may be accomplished by shiftin g
right one bit .

SIGCSE

	

Vol . 25 No . 4 Dec . 199 3
BULLETIN 41

http://crossmark.crossref.org/dialog/?doi=10.1145%2F164205.164229&domain=pdf&date_stamp=1993-12-01

ALGORITHM DEVELOPMENT .

The binary search [2] is usually thought of as an efficient method o f
locating a record based on the use of record numbers and a key .

But suppose the object of interest is the square root of N? The onl y
difference then is the termination of the algorithm, in this cas e
locating the integer root rather than a particular record .

ALGORITHM I .

This algorithm can be used to find the integer square root of N, usin g
only integer addition, subtraction, and division by 2 .

1 . Set the lower limit to 1
2 . Set the upper limit to N .
3 . Repeatedly

(a) calculate the middle value a s
(upper limit + lower limit) / 2

(b) if (lower limit) squared > N ,
then adjust the lower limit to one greater tha n
the middle ,
else adjust the upper limit to one less than th e
middle .

4 . Set the square root accordingly .

This algorithm is easy to follow, and is easy to implement on a
computer, either in assembly language or a higher level language . But
there is a problem -- do you see it? Note that when N/2 is squared, i t
is a very large number as compared to the actual square root of N . I n
fact, with only moderate bad luck, the result will cause an overflow .
For example, on a 36-bit machine where the zeroth bit is taken to be the
sign bit (the usual case), division by 2 of a 24-bit number will resul t
in a 23-bit number (shift one bit to the right), which, when squared ,
can result in a 46-bit number, which will cause an overflow! . The
implication is that the largest number which can be squared on a 36-bi t
machine is only 17 bits, which is 131071 -- any reasonable factor tabl e
is larger than this !

So using N itself in isn't a good approach . We might approach thi s
problem with the aid of logarithms, using base 2 because we do not hav e
a logarithm table -- if we had such a table, the problem would b e
straight - forward . Calculating the integer part of the logarithm bas e
2 isn't too hard -- all that is needed is powers of 2 . And when we ge t
this logarithm, we can find a reasonable upper bound just by division by
2 . So, our second algorithm could be the following ;

ALGORITHM I I

The only difference between this algorithm and Algorithm I is the method
of finding the limits for the binary search . Let N be the number fo r

SIGCSE

	

Vol . 25 No . 4 Dec . 199 3BULLETIN 42

which the integer root is desired, KP2 be powers of 2, KP2N be th e
approximate log2 of N, KL be the lower bound, KU be the upper bound, K
be the estimated root, Kl be the integer square root, and K2 be th e
integer square root plus 1 .

1. Input N
2. Output N
3. set KP2

	

=

	

1
KP2N =

	

0
4. Repeat, while KP2 is less than or equal to N

set KP2 =

	

2 * KP2
set KP2N = KP2N

	

+

	

1
5. set KL

	

=

	

2((KP2N

	

1) / 2)
set KU

	

2((KP2N + 1) / 2)

6 . Repeat, while KL is less than K U
K

	

=

	

(KU + KL) / 2
If K 2 is greater than N, set KU = K
If K 2 is less than N,

	

set KL = K + 1
If K 2 is equal to N,

	

set KL = LU
7. If K2 is less than N, then

set K1

	

= K
set K2

	

=

	

K + 1
8. If K2 is greater than N, the n

set Kl

	

=

	

K - 1
set K2

	

= K
9. If K 2 is equal to N, the n

set K1

	

= K
set K2

	

= K
10. Output, K1, K1 2 , N, K2, K2 2

Algorithm II is easy to implement, as can be seen from Figure I .

The worst possible case for a binary search is log 2 N, and the averag e
case is approximated as log 2 (N + 1) ® 1 ,
N > 50 .

5o, to examine the search length required to find the integer square ,
we must look at the difference betwee n

KL = 2 ((K2PN - 1) / 2) <= N, an d
KU e 2((K2PN + 1) / 2) >= N .

That difference is maximum when K2PN is odd ; it bein 2 ((K2PN - 1) / 2) .
For example if N were 120, K2PN would be 7, KL = 2 ((' - 1) / 2) = 3, KU

2((' + 1) /~ 2) = 4, and the difference between KU and KL, 2 ((7 - 1) / 2)
8 .

Assuming the search length to be 2 ((K2PN - 1) / 2), we have the maximum
search to b e

log2(2((K2PN - 1) / 2)) ,

which i s

(K2PN -° 1) / 2 .

SIG C E

	

Vol . 25 No . 9 Dec . 199 3BULLETIN 43

Figure I

C
C INTEGER SQUARE ROOT VIA A BINARY SEARC H
C

C

10 CONTINUE
INPUT N
OUTPUT N

KP2

	

= 1
KP2N

	

= 0
C

05

REPEAT

	

05, WHILE (KP2
KP2

	

=

	

2 * KP 2
KP2N =

	

KP2N

	

+
CONTINUE

.LE .

	

N)

1

C
KL

	

= 2 ** ((KP2N

	

1)

	

/ 2)
KU

	

= 2 ** ((KP2N +

	

1)

	

/ 2)
C

20

REPEAT 20, WHILE

	

(KL .LT .

	

KU)
OUTPUT,

	

KP2N,

	

KL,

	

KU,

	

K,

	

'

	

.o®_ _

K

	

=

	

(KU + KL)

	

/ 2
IF

	

(K **

	

2

	

.GT .

	

N)

	

KU

	

=
IF

	

(K

	

**

	

2

	

.LT .

	

N)

	

KL

	

=
IF

	

(K

	

**

	

2

	

.EQ .

	

N)

	

KL

	

=
OUTPUT,

	

KL,

	

KU,

	

K,

	

(K °

	

1)
OUTPUT,

	

'

	

'
CONTINUE

'

K
K
KU

**

+

2,

1

N, K ** 2

C
IF (K ** 2 .LT . N) THEN

K1 = K
K2 = K + 1

C
EN D

IF

I F

(K ** 2 .GT . N) THEN
K1 = K 1
K2 = K

C
END

IF

I F

(K ** 2 .EQ . N) THEN
K1 K
K2 K

END I F
C

OUTPUT, K1, K1 ** 2, N, K2, K2 ** 2
OUTPUT, ' '

GO TO 1 0
STOP
EN D

SIGCSE

	

Vol . 25 No . 4 Dec . 199 3BULLETIN

C

4 4

The average search length would b e

log2(2((K2PN - 1) / 2) }- 1) ° 1

which i s

(K2PN _ 1) / 2 -i- 1)

	

1 - (K2PN - 1) / 2 .

Then the average and maximum search length are the same, which is a
little surprising . In any event, the search for the integer square roo t
of the largest number (17179869183) on a 36-bit machine, of which 3 4
bits (no overflows allowed), are used, requires only fifteen iterations .
A trace of this may be found in Figure II .

---------------- ------ ------ -------- ---------- -

Figure I I

Iteration Lower Limit Upper Limit Differenc e

1 65536 131072 6553 6
2 98305 131072 3276 7
3 114689 131072 1638 3
4 126977 131072 409 5
5 129025 131072 204 7
6 130049 131072 102 3
7 130561 131072 51 1
8 130817 131072 25 5
9 130945 131072 12 7

10 131009 131072 6 3
11 131041 131072 3 1
12 131057 131072 1 5
13 131065 131072 7
14 131069 131072 3
15 131071 131072 1

1310712

	

= 1717960704 1
N

	

= 1717986918 3
131072 2

	

= 1717986918 4
VN

	

= 131071 .99999 6
Trunc (f N)

	

= 131071

DISCUSSION AND CONCLUSION

The method presented above can be used to find the integer square root
of a number, using only addition, subtraction, and multiplication .
Execution time isn't particularly important, although the actua l
execution time required was gratifying it is only carried out onc e
per run, and will require only a fraction of a second compared to th e
time required for factoring the number .

Certainly, it would not take much effort to extend this method to cube ,
and higher roots .

***************************Integer Square Root References Continued On page 49*****************~***

SIGCSE

	

Vol . 25 No . 4 Dec . 199 3BULLETIN 4 5

APPENDIX B: SAMPLE TOPICS FOR DEBATE '"

1.

	

That there should be certification of computer professionals .

2.

	

That computing should be taught in schools .

3.

	

That playing computer games is purely a recreational activity .

4.

	

That information technology is responsible for unemployment .

5.

	

That information technology deskills the work force .

6.

	

That the Australian legal system has kept up with advances in informatio n
technology .

7.

	

That software prices are too high in Australia .

8.

	

That the Australian government supports the hardware/software industry .

9.

	

That information technology has improved our quality of life .

10.

	

That the provision of telephone caller identification will be beneficial .

11.

	

That computers provide an improved quality of life for the disabled .

12.

	

That the Australia card has been introduced by the back door via the tax file
number .

13.

	

That information technology has created employment opportunities .

*. Topical in Australia in 1992 .
The students were divided into three tutorial groups of about fourteen members ,

so each of the topics could be used more than once .

*************************Integer Square Root References Continued From Page 45*********************

I have found my students enjoy unconventional approaches t o
conventional problems . Neither they or I have ever seen a square roo t
extracted using a binary search . And shouldn't education, or at least
part of it, be fun?

Reference s

1. Hans

	

Riesel,

	

Prine Numbers and Computer Methods

	

for
Factorization, Birkhauser, Boston, 1985, pg . 153-156 .

2. R . G . Dromey, How to Solve it by computer, Prentice---Hall ,
Englewood Cliffs, New Jersey, 1982, pp . 227 -- 237 .

SIGCSE
Vol . 25 No . 4 Dec . 199 3BULLETIN

49

