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ABSTRACT

Free-form (’sculptured’) surfaces are traditionally
representedas unions of parametricpatches of high implicit
degree. Recently low degree aIgebraic patches have been
introduced for representing free-form surfaces. This paper
describes the use of algebraic patches in a new representation
for b-form surfaces called Constructive SheIl Representation
(CSR). A CSR is a union of truncated tetrahedr% called
trunctets, forming a ‘thick shell’ that contains the free-form
surface. One bounding face of each trttnctet is an algebraic
patch which is a subset of the free-form surface; the other faces
are planar.

CSRS for surfaces that are boundaries of free-form solids
provide a new, complete hybrid Brep/CSG representation
scheme for free-form solids. Properties and applications of this
class of CSRS are the main focus of the paper. CSRS may solve
some important problems in solid modeling, such as providing
means to represent free-form solids in CSG, and hence
extending the domain over which Brep + CSG conversion may
be done. The paper outlines CSR-based solutions to these
problems. Examples computed on an experimental system that
exploits the RayCstating Engine (a highly parallel computer for
CSG-baaed solid modeling) are provided.

1 INTRODUCTION

Free-form surfaces (mathematically, 2-D r-sets [Req80]
embedded in 3-D Euclidean space E3) are usually modeled as a
fiite union of patches represented in the traditional parametric
or the recently developed algebraic forms. This paper
introduces a new representation scheme for free-form surfaces,
ctdled Constructive Shell Representation (CSR), that draws on
recent research on algebraic patches. CSRS of surfaces that
constitute boundaries of solids are found to be very useful for
solid modeling, and this class of CSRS is the main focus here.

1.1 Free-form surface representation

Parametric p~ch technology

Traditionally, each patch in a free-form surface is
represented in the parametric form as a mapping from 2-D
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parameter apace to 3-D apace.The domain is usuallyrectangular
or triangular, resulting in ‘tensor-product’ or ‘triangular’
patchesrespectively.A parametricsurfacemay be implicitized,
i.e. converted to an implicit form, but the resulting afgebra ic
(implicit polynomial) equation F(x,y,z) = O may have a degree
as high as 2mn (or n2) for a tensor product (triangular) patch
with rational functions of degree m, n (degree n) [Sed90]. For
example, a bicubic tensor product patch could yield an
algehaic equation of &gree 18, and a quadratic triangular patch
could yield an equation of &gree 4.

Although parametric patches are powerful for constructing
free-form surfaces, computing on these posea fundamental
problems. For example, note that the intersection of a degree-
m algebraic surface with a degree-n algebraic surface is a ctme
of degree nut [Har77]; hence, the intersection of two bicubic
patches could result in a space curve of degree 324. Similar
problems persist for curve/patch intersection ctdculations.

Algebraic pafch technology

These, and other limitations of parametric patches, led to a
recent line of work that seeka to construct free-form surfaces as
a collection of algebraic patches [Sed85, Dah89, Sed90, LW90,
Gu091, Dah92]. Each patch is &fiied as a low degree implicit
polynomial (typically degree 2 or 3) that is ‘clipped’ by the
walls of a tetdwdron, as shown in Figure 1.1a. Control points
for the patch are prescribed in the boundary of the tetrahedron,
typically by the vertices of the tetrahedron and additional
pointa on the tehahedral edges. A weight is associated with
each control point, and shape control is obtained typically by
changing the weighta. (See Section 2 for details.)
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A new represeti~ion for free-form surf~es

This paper introduces a new representation for free-form
surfaces, called Constructive Shell Representation (CSR). that
exploits the low implicit degrees offered by algebraic patches.
A CSR is a union of truncated tetrahedr~ called trunctets,
forming a ‘thick she~ that contains the boundag of a free-form
surface. One bounding face of each trunctet is an algebraic
patch which is a subset of the free-form surface; the other faces
are planar, as shown in Figure 1. lb. Figure 1.2a shows an
example of a free-form surface, and Figure 1.2b shows an
associated ‘thick shell’ represented by the CSR of the surface.

(a)

(b)

FQ. 1.2: (a)A free-form surfaca with 26 quadratic algebraic patches, and (b) a

‘thickshell’ represented by the CSF?.

1.2 Free-form solid modeling

We shall focus on CSRS associated with free-form surfaces
that constitute boundaries of solids, because they appear to
have several important applications in solid modeling.

Known representation schemes in solid nwdelirrg

Although six families of complete representation schemes
for solidsl have been known since the late ’70s [Req80], only
two -- Constructive Solid Geometry (CSG) and Boundary
representation (Brep) -- are used commonly to represent solids
exactly, i.e. without approximation. CSG represents
complicated solids as a binary tree whose internal nodes are
Boolean operators (union Uk$ intersection nk, and difference
‘k) ‘regtdarized’ in the k-dimensional topology of (Usually)
hal fspace2 primitives contained in the leaves of the tree
[RT78]. The Brep scheme describes a solid as a collection of
faces bounding the solid [Req80].

While solids are often defined and edited in these ‘primary’
(CSG, Brep) schemes, ‘secondary’ representations -- such as
cell decompositions [Req80], spatial enumerations [Req80],

1 Solids are assumed to be k-D r-sels in Ek, k = 2,3.
2 A halfspace is defined by the set of points (p IF(p) < 0),
where F is an algebraic function of low degree (typically 2, 3).

and ray representations [EKLTMMV91] -- are often computed
from the primary schemes to support various applications.

Brep of free-form solids

Free-form solids are usually represented in the Brep
scheme as unions of patches, and traditionally patches have
km represented in the parametric form. Two critical problems
with these Breps that stem from the fundamental limitations of
parametric technology (noted earlier) are:

. patcldpatch intersection, which is required for performing
Boolean operations on solids ~V85], end

. linelpatch intersection, which is used pervasively, e.g. for
rendering graphic images of free-form solids.

Because these calculations are difficult to perform reliably and
swiftly, Brep systems that support parametric patches suffer
from numerical problems. Recent research on algebraic patches
provides alternative Breps of free-form ~olids as unions of
algebraic patches, and the associated low implicit degrees
alleviate the above problems with parametric patches.

CSG of j?ee-form solids

Nearly all of the research on developing representations
for free-form solids has been focused on incorporating
parametric patch technology in Breps; little of this work has
been proven applicable to CSG representations, The
fundamental reason is that halfspaces induced (via
implicitization) from the popularly used parametric patches are
of high degrees, whereas CSG technology is baaed on low
degree algebraic halfspaces. Consequently, ‘separation’ and
other such problems associated with curved halfspaces are hard
to solve in the case of parametric patches [SV91 a, Men92].

The little research that has been done on incorporating
parametric patching technology into CSG has been based
mainly on the following two approaches.

In the hybrid approach, the set of leaf entities of CSG trees
is extended to include free-form solids represented by their
boundaries (using parametric patch technology), e.g.
[Cha87]. The result is a non-homogeneous representation
that fails to exploit fully CSG’S elegant divide-and-conquer
algorithms and often degrades CSG”S robustness [Voe92].
The Inner Se/ Ou/er Set (1S0S) approach constructs only
linear polyhedral approximate ions of the free-form solid
that are either contained in the solid or that contain the
solid -- the ‘inner’ or ‘outer’ sets respectively @Sd89].

Insofar as we know, there has been no work to date on
constructing CSG representations of free-form solids bounded
by algebraic patches. This paper outlines how exact CSG
representations of such solids can be constructed using CSRS.

A new representation for free-form solids

A CSR, that is constsrrcted as a ‘thick shell’ (the union of
trunctets) associated with algebraic patches on the boundary of
the solid, provides a new complete hybrid Brep/CSG
representation of the free-form solid. A subset of the shell of
the free-form solid in Figure 1.3a is shown in Figure 1.3b. The
hollow portion inside the CSR solid is a flat-faced plyhedron,
called the core, as shown in Figure 1.3b.
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Fig 13 (a) A tree-form solid whose tmurrdary ISmcdeled with 32 quadratic

algebraic patches, (b) IISmre and a ~rtion of its CSR.

2 ALGEBRAIC PATCH TECHNOLOGY

Algebraic patch techniques for free-form surfaces describe
patches as finite subsets of degree N algebraic surfaces. Two
streams of work for constructing free-form surfaces with
algebraic patches have emerged.

. Tetrahedral mefhods: Free-form surfaces that interpolate or

approximate points and prescribed surface normals are
constructed as the union of quadratic mrd cubic (N = 2, 3
respectively) algebraic patches conlained inside tetrahedral
[Sed85, Dah89, Sed90. LW90, Gu091, Dah92].

. Non-tetrahedral rrwfhods: Algebraic surf~ces, typically
quartics andquintics (N =4. 5 rcspec[ively), nonrestricted

to lie wiihin tetrahedral. are used to interpolate or

approximate poinls, curves and associated surface normals
[HHfKr, War89, fl192a.b].

The paper draws on the tetrahedral methods. and the basic
concepts of this recent line of research arc summarized below.

2.1 Bernstein-Bezier representation of a patch

Consider a tetrahedron with vertices VNOOO,VONOO,VOONO,
and VOOON.where the V’s are nomcopltinirr points in E3. Let
(s, I,u, v) denote the local barycentric coordinates in the

tetrahedron. By de flnltion, the barycentric coordinates [Far8ff]

of a point q are the values of s. t. u. v such that

(f = SVNO(K)+ l~()~no+ UVOONO+ VV(WS;

s+t+u+\, = I (~.1)

LM dh(s,t, u,v) dc’note a PO]Y[lO1llI:IISCdhr function (subscripl h
dcno[cs baryccnlrlc coordina[cs~. .4 ~~)PIIou/ .sur~mc of the

function comprises all fmiots for which ab(s,t,u.v) is constanl.
The algebraic pa(ch p is “defined as the zero con(ol~r of the
function that is clipped by (he tetrahedron, i.e.

where (s,t, u,v) are the barycentric coordinates of q. The
Berns/ein-Bezier polynomials provide a convenient basis to
control the behavior of the zero contour wilhin the tetrahedron
[Sed85]. Specifically, a degree N algebraic patch can be defined
by first imposing a lattice of (N+l )( N+2)(N+3)/6 control
Points Cijk], such that

i,j,k,l 2 O; i+j+k+l = N. (2.3)

The lattice of control points for a quadric. and cubic algebraic
patch are show in Figure 2.1. This lattice defines the control
net for the patch. and its convex hull is the tetrahedron i[self.
Next, a weight Wijk] is assigned to each control point, and the
algebraic patch is defined using Bernstein -Bezier basis
functions as

x N!
(@,t.u,v) = sitjukvl~

I.J.k.t20
‘iJkt i! j! k! 1!

i+j+k+l = N; s, t. u, v=l-s-t-u >0. (2.4)

Fig,2.1: Laroceof mn!rol pcwm for(a) quadrallc, (b) cubic algebraicpatch

Several properties for controlling the shape of a patch that
arise from the above formulation are explained in [Sedt35]. An

algebraic patch can join smoothly (mesh) with orher algebraic
patches with specified inter-patch continuity and local support
properties; recent approaches for this are summarized below.

2.2 Meshing patches

The Co and C’ continuity conditions of two patches whose
tetrahedral share a common face can be expressed easily in terms
of the control points of the two patches [SS87, Gu091]. This
method cannot be extrapolated in general to create an extended
mesh of C’ continuous algebraic patches. This is because [Mo-
sided and fhree-.fided 11OICSarise during the construction of
extended free-form surfaces, and (low degree) algebraic patches
do not possess sufficient degrees of freedom to fill up such
holes with prescribed continuity,

Consider the three-sided hole problem in Figure 2.2. Three
cubic patches are joined at their corners. with the two
neighboring pa[ches at each corner having the same tangent
plane. It is not posslbie in ~tmcral to fill this three-sided hole
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with a single cubic algebraic patch with Cl continuity. In this
case, the hole-filling patch is split into nine piecewise
components to generate sufficient degrees of freedom for Cl
continuity for all adjacent patches [Sed90]. In fac~ such a split
also yiekis ten additional degrees of freedom, i.e. ten new
control points that may be manipulated to influence the shape
of the mesh of patches.

(a) (b)

Fig. 2.2 (a) A 3-sidd hale, (b) filled vdth a *patch rnacKwsch.

A group of piecewise algebraic patches obtained as a result
of splitting a three-sided patch problem, to generate adequate
degrees of freedom for satisfying continuity conditions, is
called a macro -pakh. Figure 2.2 illustrated a 9-patch cubic
macro-patch.

It is easy to visualize the two-sided hole problem by
imagining a triangulation of a free-form surface. Associate a
construction tetrahedron with each triangle, and fit the surface
segment within each tetrahedron with an algebraic patch or
with a macro-patch. Clearly surface gaps will appear, as shown
in Figure 2.3a. These gaps are filled with additional patches
called blend-patches, e.g. in Figure 2.3b with two blend-
uatches for cnmdratic algebraic patches, that satisfy inter-patch
;ontinuity conditions [Gu091 ] .“

2+ided hole

,a&
(e)

2
blend-patch
mmatruction

e

tetrahedral

\

patch patch

two bltid-patches

● fOlehapecantmi

(b)

Fu. 2.3: Filling inter-patchgaps and Iorang continuitywithblend-patches.

2.3 Free-form surface construction

By applying the patch, macro-patch, and blend-patch
concepts summarized above, a free-form surface can be
constructed in the following three-step fashion, illustrated in
Figure 2.4 for a surface that constitutes the boundary of a solid.

1)

2)

Speci~ a triangular faceted input polyhedron P whose
vertices and (optionrd) associated surface normals are to be
interpolated by the surface (boundaxy of a free-form solid
for the example in Figure 2.4a).
Associate an apex vertex with each triangular face~ hence
a tetrahedron, and fill each tetrahedron with a three-sided
patch or macro-patch that ‘replaces’ each triangular facet of
P (F;gure 2.4b).

3) Fill the resulting two-sided holes with blend-patches
(Figure 2.4b).

The resulting free-form surface approximates the shape of
polyhedron P, i.e. a ‘smoothing’ of P is obtained. The methods
&veloped thus far for constructing extended meshes of patches
have used quadratic @hh89, LW90, Gu091, Dah92] and cubic
[Sed90, Gu091] algebraic patches with apppriate handles for
shape control; see [Men92] for a comparative survey of these
methods. For example, Figure 2.5 provides an example of
shape cxmtrol exercised on a spherical surface constructed as a
mesh of 32 quadratic patches using Guo’s methods [Gu091]. The
experimental implementation described in Section 6, and all
photographs of free-fomr surfaces and solids in this paper, use
CSRS derived from quadratic patches constructed by Guo’s
second order technique.

2-t4dad hote
fitkd with 3-sided

%ided btand-patchea patch or

&“w’”

(a) (b)

Fg. 2.4: &heme fw constrwting a free-formsurface: (a) input polyhedronP,

and (b) tewahadraleonsrnictsforrwolaces of P.

An Algebraic Patch Representation (APR) of a free-form
surface S constructed using the steps outlined above can be
expressed as the set of n algebraic patches { FI ), without
distinguishing whether pi is a patch or a component of a macro-
or blend-patch. Each R is specified completely by the degree N
of the patch, the vertices Vl, V2, V3, V4 of its construction
tetrahedron, and the set {wj} of (N+l)(N+2)(N+3)/6 weights
associated with the control points (eq. 2.4), i.e.

ApR(~) = {(N. V1. V2, V3.V4. {wj))il i = 1. n). (2.5)

The following properties of a vrdid APR (per eq. 2.5) of a
free-form surface ~ in Ek, k = 2,3, follow directly from the
construction rules.

2.1

2.2

2.3

2.4
2.5

S = ~ pi,and 5 G ~ Ti, where ‘Tiisthe construction
tetrahedron associated with patch pi.
n = G@, i.e. the number of patches is linear in the
number ~ of triangular facets of P.
pi G Ti. i.e. every patch is Contined in its te~~on, a
convex-hull property.

pink-l pj=@*viJ*i *j* all patches are quasi-disjoint.
Tetrahedral are often quasi-disjoin~ i.e. Ti nk Tj = ~. V ij,
i # j. A given set of algebraic patches that satisfies this
condition will be called a normal construction: for
example, the surfaces in Figure 2.6. Sometimes however,
tetrahedralmay overlap, as can be seen from the example
in Figure 2.7. ‘Ilk condition, i.e. Ti nk Tj * 0, for some i
#j, shall be called an abnormal construction.
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(a)

(b)

Fig 2,5. Shape controlon a 32-patctI mesh of quadrat!calgebraicpatches: (e)
sphere, (b) rweakadsphere

2.4 Brep of a free-form solid

If the surface constructed above is the boundary (~A) of a

free-form solid A, then [he collection of algebraic patches

APR(~A) comprises a boundary representation of the solid, i.e.
Brep(A). Weights assigned to control points shall be assumed
to be in agreement with the material side of the solid, i.e. the
material lies where the associated weights are negative. Thus,
tetrahedral vertices V, with negative weight wi,

‘h(Pll. P2i, KJ,. M,) = w,, W1<0 (2,6)

give [he sense of the inside of the free-form solid. ((PI], V2,,Y31,
p41) in eq. 2.6 are the baryccmtric coordinates of vertex Vi. )

Figure ~,fja shows a planar cross section and the

construction tetrahedral (now triangles) of a 3-D free-form solid
constructed using Guo”s technique for quadric patches. Notice
that vertices of P (those tha[ lie in the section plane, marked ‘*’)
arc interpolated by the boundary of the solid, and that pairs of
blend-patches are used [o fill the two-sided holes. A 2-D free-
form solid that interpola[cs the vcr[ices of P (a polygon in 2-D)
is shown in Figure ?.6b. This figure M cirsicr to follow than the
cross-section in Figure 2.6a because blend-patch constructs arc
absent. For the sake of clarity, we shall usc illustrations of 2-D
solids henceforth, although all arguments hold for 3-D free-
form solids constructed per Section 2,3. Thus, Figure 2.7
shows an abnormal construction of a 2-D free-form solid.

b ml

w

&

P

(a) (b)

Fig. 2,6: NormalarnstrrAx@s: (a) A planar cras&eactbn of a 3-D free-form

sdld, (b) a 2-D frae-fcfm solid.

Overlapping
tetrahedron

Fig,2.7: Anabnormal mnsrrucdon in 2-D

3 CONSTRUCTIVE SHELL REPRESENTATION

3.1 Trunctets

lrrduclion of a patch haljspace

Consider a single non-empty patch p in its tetrahcdrrm T.
A patch is associated with an extended surface ah(s,t. u.v) = O,
where ab(s, t,u. v) is a low degree (typically 2,3) polynomial
expressed in the barycentric coordinates of its tetrahedron T
(eq. 2.2). The patch representation in barycentric coordinates
can be transformed into cartcsian coordinates through a
suitable linear transformation L [Far88, Men92] such that

a(x.y,z) = ~(ab(s,t,u,v)), (3,1)

where a(x,y,z) is a polynomial of equal degree as ab(s,t,u. v ).

An algebraic pafch halfspace a(x,y,z) <0 is induced by
setting the sign of a(x,y,z) such that the value of a(x. y,z)
evaluated at a tetrahedral vertex Vi is equal to the associated
weight wi (eq. 2.6), i.e. a(Vi) = Wi; i = 1,4. For example, the
algebraic patch halfspaces for the quadratic patches in Figure
3.1 a,c are respectively an ellipsoid and a hyperboloid of two
sheets shown in 3.lb,d, The regularized complement of an
algebraic patch halfspace, denoted ca, is simply a(x,y, z.) 20.

Decomposition OJa letruhedron

Each construction tetrahedron T in Ek, k = 2.3, can he
defined as the regularized intersection of k+l linear half\ paces
Iti whose boundaries contain the triangular faces ~, of the
tetrahedron (~)~i> ~1), i.e.

T = ~ h,, I= l,k+l. (3.2)

An algebraic patch halfspacc decomposes the tetrahedron II1!()
two regions T n~ a and T nk C(I, as shown in Figures 1.1 and
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(a)

(b)

3.2. Each region is called a lrunclcl (T), since il II1:IYbe Vkwd
as a tetrahedron that is truncated (or capped) by the patch, such
as [hose in Figure 3. la,c; mathematically,

z=g~(~ Ifi). i=l,k+l, ge{a, ca). (3.3)

An inner frunclet % is defined as the intersection of the
construction tetrahedron and the algebraic patch half space
(Figure 3.2), i.e.

%=u~T,

and an outer trundet “t is defined as

%=ca+T.

(3.4)

(3.5)

FQ.3.2: Inner and outer rrunctete.

Every patch is associated with an inner and outer trunctet,
as shown in Figure 3.23. The distinction between inner and
outer trunctets could encapsulate the onentability of a free-form
surface. If the free-form surface is r3A for a solid A, inner
trunctets are those regions in T that have the same material
‘sense’ as the free-form solid. Furthermore, the inner and outer
trunctets associated with a single patch are quasi-disjoint, and
their union is the construction tetrahedron itself [Men92].

3.2 Shells

A free-form surface 6 can be associated with a thick shell
S that is the union of tnrnctets. one associated with each of the
n patches, i.e.

(c)

S = ~k ~i, i=l,n, (3.6)

and consequently, an inner shell (lS) and an outer shell (OS) can
be defined respectively as

Is = “ 1~,.i=l,n, andik (3.7)

0s = “ O~,+i=ln.ik (3.8)

Fig.

(b)

as

3.1:

ass

sod

(a)
;ocia
atd

(d)

A quadratic algebraic pafch. its trunctet, along withcontroi
Itedhelfspece (elltpsad), (c) tweaked palch and trunclet,e
Ihalfspace (hyperboloidof 2-sheets; rhe tetrahedralapex I

here ISbehind the top sheet).

points,
md(d)
vertex

For example, [he shaded region in Figure 3.3a shows a
shell composed as the union of trunctets with inner or outer
counterparts chosen at random for every patch. The inner shell
and outer shells are shaded in Figures 3.3b and 3.3c
respectively. Figure 3.4 provides 3-D examples of inner shells
-- 3.4a shows the inner shell for a normal construction, and
3.4b for an abnormal construction.

3 Rare cases with peculiar assignment of weights to control

points may cause the algebraic patch halfspace to result in

multiple sheets within T. In such cases, the definitions of inner
and outer trunctets can be modified through the introduction of
additional ‘separating’ halfspaces; see Section 5.3 & [Men92].
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(.) (b) (c)

Fig.3.3: (a) A shell and mre, (b) inner shalland wre, (c) wter shelland core.

(a)

(b)

Flg 34’ AnInnershell for a surface w![h204 quadraticalgebraicpatches: (a)
normal construction, (b) abnormal instruction.

3.3 Definition of CSR

CSR of a free-form surface

A Constructive Shell Reprcsenta[ion (CSR) of a free-form
surf:ice ~ constructed with algebraic patches (eq. 2.5), is a CSG
representation of a shell S associated with s, i.e.

CSR(5) = CSG(S) = ~k CSG(q), i = I,n. (3.9)

where S could be lS, ‘)S. or any shell with randomly chosen
inner or outer trunctets. Thus a CSR is a binary tree with union
operators for nodes, and tronctet-sobtrcws for leaves. Each
trunciet-suhtrec in turn has an intersection operator at its mot.
slncc trunctets are defined as the intersection of k+2 halfspaces
(cqs. 3.2-3.5). F]gure 1,’2 provides a 3-D example,

10 an similar manner, a CSR of a solid A (where 6’A is
constructed as the union of algebraic patches), is the CSG

h ’11 :issocia(eci with ~A (recall the 3-Drcpresenla [ion of :i s c
eXiUllplL’in Figure I .3). defined as

CSR(A) = CSG(S) = ~k CSG(r,) , i = l,n. (3.10)

4 PROPERTIES

We shall focus on CSRS of free-form solids since they may
be very useful in solid modeling. This section discusses the
properties of CSRS of solids, and the next section discusses the
applications of CSRS for solving some important problems in
solid modeling.

4.1 Cores of a solid

A shell S of a free-form solid A is associated naturrdly with
a core C, which is the region of the solid not contained in its
shell, i.e.

Inner (or outer) cores are associated with inner (or outer) shells;
thus, aC = A ~ aS, a E {I, O). Two-dimensional examples of
cores may be found in Figure 3.3, and a three-dimensional
example of the inner core is shown in Figure 1.3.

4.2 Properties of trunctets, shells and cores

This section lists some simple properties of trunc!ets,
shells, and cores that follow from the construction of a valid
Brep(A); see [Men92] for more examples.

Basic properties (Figures 2.6, 2.7, 3.3)

4,1 In general, truncte[s/shelIs/cores are not unique for a
given Brep(A). But, inner/outer trunctets/shells/cores
are unique for a given Brep(A).

4.2 All trunctets, shells and cores are solids (r-sets).
4.3 Since every patch is associated with a trunctet (inner or

outer), it follows that r?A c S, and 2A L ‘S, a e {I, 0].
4.4 A patch p,. can also be expressed as p, = dgi n ~,, where

Ki is the inner or outer trunctet associated with the patch
and gi ● (ai, Cal}. (See also Figures 1.1 and 3.2.)

4.5 The outer core ‘C is not a linear polyhedron, as shown
in Figure 3.3c.

$.6 The inner core lC is always a linear polyhedron, for
example, see Figure 3.3b.

4,7 Os ~ A, i,e the outer shell is not contained in A: ~~e

Figure 3.3c.

Normal con.slraclims (Figures 2.6. 3.3)

4’.8 The boundary of a solid M contained in the boundary of
its shell, i.e. dA G r%.

4.9 All trunctets we quasi-disjoint, i.e. ~1nk ~j = $, V i #J.
4.fO The inner shell is contained in the solid, i.e. 1S c A.
4.1) The outer shell is contained in lhe regulnrizcd

complement (c) of the solid, i.e. 0S G cA.

Ahnorrnal construction.s (Figure 2.7)

Negations of properties for normal constructions hold

4.12 The solid’s boundary is not always contained in the
boundary of iLs shell, le. ~A Q i%.

4.13 Not all trunctets are quasi-disjoint. i.e. Ii nk T} # O, for
some i.j.

#.14 The inner shell need not be contained in A, i.e. ‘S ~ A.
4.1.5 The outer shell need not be contained in the regulwi?ccl

complement of A, i.e. 0S Q cA.
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4.3 Properties of CSRS

Representational completeness

We first establish that CSRS can represent solids
unambiguously, providing thereby a new complete
representation scheme for free-form solids. Consider a shell S
represented by CSR(A). A CSG representation of every tnmctet
~i of the shell S can be obtained trivially from CSR(A). Further,
bi (which is ai IX cai) CSI) IX formal from CSG(~i), because it is
typically a non-linear hrdfspace4. Using property 4.4, R = dbi
n &i, and therefore t3A is obtained ss the union all the pi’s
(property 2.1). Now A can be inferred unambiguously from t3A
by using the principle of ‘boundary determinism’, which states
that art r-set is defined unambiguously by its boundary [Req77].
Hence a CSR is a complete representation of a free-form solid.

Property 4.16 CSR(A) is a complete representation of solid A.

A few observations based on the representational
completeness of CSRS follow.

. The proof of property 4.16 provides an algorithm for
computing Brep(A) from CSR(A) using ‘boundary
evaluation’ (CSG + Brep) operations [RV85] on CSG(@.

. Completeness holds even though t3AjQ ~j for abnormal
constructions, i.e. the boundary of the solid cannot be
retrieved from the boundary of its shell (property 4.12).

. Completeness holds even if a patch halfspace ai results in
multiple sheets within its construction tetrahedron Ti.
provided CSG(~i) represents the desired trunctet (using
‘separating’ hslfspaces, as noted in footnote 3).

Represented poim sets

It follows from eq. 3.10 that the point set represented by a
CSR of a single free-form solid Aj is its shell S, i.e. [CSR(A)]
= Sj 5. However, the point set represented ~y a CSR O? a
Boolean composition of free-form solids, denoted ~(A1, .. ..
Am), does not necessarily correspond to some ‘thick shell’ SA
of the composed solid A. Note that this does not pose any
problems in light of the completeness of CSRS.

Property 4.17 If A = ll(A1 ,..., AJ, m >1, then [CSR(Aj)] e Sj.

but [CSR(A)] # SA.

For example, Figure 4.1 shows a Boolean intersection of CSRS
of two free-form solids. The point sets [CSR(A1)], [CSR(A2)],
[CSR(A)], and SA are shaded. Notice how [CSR(Aj)] , j = 1,2,
correspond to the inner shells of the two solids, but [CSR(A)]
does not constitute some shell (e.g. SA) of A.

Not surprisingly, a ‘thick shell’ SA of a Boolean
composition of free-form solids does not in general retain a
trunctet like character. Thk is because a Boolean composition
of free-form solids could result in patches with non-planar
edges -- edges that do not lie in planar faces of tetrahedral.This
observation could be of significance if one seeks to model free-
form surfaces with non-planar edges using algebraic patches
that are associated intrinsically with planar edges [Men92].

4 In rare cases where planar patches may be used, patch
hrdfsp-s may be marked with a distinguishing ‘tag’.
5 We use the notation Xrep(A) to denote a representation of
solid A in scheme Xrep, and [Xrep(A)] to denote the represented
point set. For example, Brep(A) is a boundary representation of
A and [Brep(A)] = ~~ similarly [CSG(A)] = A.

[C=+ )1 ‘k lm2)l ■

_ [CSRtA,)l ICSIUA,)1 .
~}sA

(d (b)

Fq. 4.1: (a)CSRSof twotraefann S&S. (b)BoolaMinmraaction,
r~aaantad pointsats andsofna‘Shdroftie cornpoaad.solii.

Non-uniqueness

From property 4.1 it follows that there is no restriction on
the kind of shell that a (XR representa. It may represent a shell
with randomly chosen inner and outer trunctets as shown in
Figure 3.3L or an inner or outer shell @@res 3.3b,c).

Property 4.J 8 The CSRS of a free-form solid may represent
non-unique shells.

Non-uniqueness of CSRS does not pose problems as long
as the character of the trunctets (inner, outer, or random) in the
represented shell is known. A system that constructs CSRS
from algebraic patches would keep track of this information,
and the choice of trurrctets would be governed typically by the
application at hand. For example, a CSR representing all inner
trunctets is used to produce the displays in Figures 3.4 and 6.2,
while suitably chosen CSR-subsets are used for computing
exact CSG representations of free-form solids in Section 5.2.

HybridBreptCSGcharacter

A CSR is a hybrid Brep/CSG representation since
characteristics of both Brep and CSG schemes are prevalent.
Like CSG, it is a binary tree with primitive halfspaces for
leaves and regularized Boolean operators for nodes. However, a
CSR may also be thought of as representing a ‘thick boundmy’
of the solid exposing a Brep like character. This was exploited
for proving the representational completeness (property 4.1 6).

This hybrid Brep/CSG character allows algorithmic
conveniences of both schemes to be exploited - specifically
the execution of boundary traversal algorithms (employed
pervasively on Breps [Mi189]) using the divide and conquer
paradigm (applied commonly on CSG [Req80]). A new
line/solid classification algorithm for computing ray-reps
(summarized in Section 5.3) exploits this hybrid character.

5 APPLICATIONS IN SOLID MODELING

5.1 Solid modeling systems

From the mid- 1970s until the later 1980s, two generic
architectures of solid modeling systems predominatwk systems
which based all applications on Breps, and systems which
maintained two or more consistent representations, usually
CSG and Brep [Req80, Mi189, Voe92]. Dual representation
<CSG, Brep systems were &emed promising in 1980 [Req80],
but CSG and <CSG, Brep> systems were abandoned
commercially for the following two main reasons [Voe92].
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CSG technology could accommodate prismatic solids, but
not extended domairrsb of free-form solids.
Even for the restricted domain of prismatic solids, system
limitations arose because CSG + Brep conversion methcds
were available, but Brep + CSG conversion algorithms were
not developed until recently [SV91%b,c].

CSRS may be useful to extend the domain of CSG to
represent free-form solids exactly, thereby providing Brep +
CSG conversion methods for free-form solids. Thus CSRS could
create opportunities to resurrect dual representation <CSG,
Brep> systems. An outline of the CSR-based solution to CSG
domain extension is presented below, followed by brief
discussions on other solid modeling applications of CSRS.
Detailed mathematical treatments will be presented in
forthcoming papers; see also [Men92].

5.2 Exact CSG representations

Normal consm.mtions

Using a shelllcore approach, CSG(A) cart be constructed as
the union of the inner shell and the inner core associated with a
free-form solid A, as for example in Figures 1.3 and 5.la, i.e.

CSG(A) = CSG(%) ~ CSG(~

= CSR(A) ~ CY@C). (5.1)

CSG(IS) is As CSR, which is a Boolean composition of low
degree algebraic halfspaces (eq. 3.10). A well known result in
Brep + CSG conversion [SV91a] states that a CSG
representation of a linear polyhedron can be computed easily
from its Brep. Tltis result can be applied directly to CSG(]C),
since the inner core is a linear polyhedron (property 4.6).

(a) (b)

(c)

Q

[

A

(d)

Fg. 5.I: ComputingCSG rapresantations of a free-formsolid:(a)shalkrxe
mefhcdfor a normalOxisbuctbn, (b) consfrucfivemethd fora normal

mnsrructkm, (c) constructivemethod for an abnormalconstruction,and (d)
segment mettmd foran abnormalconstrucdon.

6 The domain of a representation scheme is the set of entities
representable in the scheme, end thus the domain characterizes
the ‘descriptive power’ of the scheme [Req80].

Recall (from Section 2.3) that ~A is constructed by
(loosely) replacing every triangular facet of an input
polyhedron P with a patch. A constructive approach for.-
computing CSG(A) that mimics this construction procedure is
summarized below.

Observe that every patch induces a trurtctet that behaves
either as a ‘protrusion”relative to P (e.g. rl in Figure 5.lb) or as
a ‘depression’ relative to P (e.g. ~2 in Flg~ 5. lb). Let ~ denote
the union of the protrusion trunctets and let Q &note the union
of all the depression trunctets. CSG(A) can be obtained as the
union of the input polyhedron (P) and the protrusions (~, with
the depressions (Q.) difference from this union, i.e.

CSG(A) = ( CSG(P) q CSG@ ) ~ CSG(Q). (5.2)

or as the difference of the depressions (Q) from the input
polyhedron (P), with the protrusions (~) unioned to this
difference, i.e.

CSG(A) = ( CSG(P) ~ CSG(Q) ) q CSG@. (5.3)

CSG(~) and CSG(Q) are CSR-subsets that are easy to obtain
from specific tmnctets. As with CSG(lC) in the shell/core
method, CSG(P) can be computed from Brep(P) since P is a
linear polyhedron.

Abnormal constructions

Is is easy to see that the above simple methods do not
apply in general to abnormal constructions. Specifically (from
property 4.14) the shellkore method cannot be applied directly
to abnormal constructions (e.g. Figure 5.1 c,d). However, [he
constructive approach can be applied to those abnormal
constructions where protrusions do not overlap depressions,
i.e. Q = ~ ~k ~ = $ (e.g. Figure 5.lc, but not 5.ld). Special
treatment is needed for those constructions where Q # @, and
summarized below is one possible approach: see Figure 5. ld.

We extend the constructive approach described above to
cover all classes of abnormal constructions by observing that
eqs. 5.2 and 5.3 cart be modified respectively as

CSG(A) = ((CSG(P) ~ CSG@) ~ CSG(Q)) ~ CSG(4)
(5.4)

and

CSG(A) = ((CSG(P) ~ CSG(Q)) ~ CSG@) ~ CSG(&),
(5.5)

where Al (Ae) denotes the ‘lost’ (’excess’) region due to
protrusiort/depression trunctet overlaps. The lost (excess)
region is contained in the overlap Q. Using techniques similar
to those employed in Shapiro and Vossler’s Brep + CSG
conversion (~r ~imply BCSG)
can be obtained as

CSG(AJ = ~k CSG(q) ,

where ~i is a segmenr that

algorithm [SV91 a,bl, CSG(Al)

(5.6)

is represented as a suitable
intersection of those truncteta (or their complements) that
belong to ~ or Q such that U, claasitles as ‘in’ Q, as well as ‘in’
A7. Similarly, CSG(&) is comprised of segments that are ‘in’ Q

7 We use the jargon ‘in’, ‘on’, and ‘out’ as developed in the
context of set membership classification [Ti180].
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but ‘out’ A. Segment classification can be obtained by
classifying a ‘characteristic’ point in its interior with respect to
CSG(Q), and themwith respect to Brep(A)s.

From experience, we observe that in practice abnormal
constructions are unlikely to occur (e.g. using methods in
[Gu091]). More importantly, even for abnormal constructions,
a single test

(2(=E’OJDLO (5.7)

determines whether the simple CSG representations in eqs.
(5.2-5.3) can be employed or not. Furthermore, the relations

provi& expedient approximate CSG representations of the
free-form solid that rmuld be potentially useful in some solid
modeling applications.

5.3 Other application

Extending BCSG technology

Contemporary BCSG technology provides conversions
for prismatic solids bounded by ‘natural’ (planar, cylindrical,
spherical, conical) quadric surfaces, and some theoretical
results are available for more general algebraic surfaces
[SV91C]. The above methods for computing CSG
representations extend the BCSG conversion to cover free-form
solids as well, provided solid boundaries are represented as
collections of algebraic patches. Thres main reasons for the
effectiveness of CSRS in BCSG are summarized in the
following paragraphs.

Algebraic patches induce low degree (typically 2, 3)
halfspaces, as opposed to, for example, a degree 18 halfspau
associated with a bicubic parametric patch.

The acceptably hard problem of ‘separation’ encountered
for curved surfaces in the BCSG algorithm [SV91a] is
simplified, mainly because patches are bounded by planar
edgesg. Specifically, under certain ‘monotonicity’ conditions
(e.g. [Sed85, Gu091]) or with the use of ‘nonsplitting
macropatches’ (NMP) [Gu092], multiple sheets of the zero
contour t?b(s,gu,v) can be avoided entirely, thereby obviating
the separation problem; we call such constructions seif-
sepururing [Men92]. However, if multiple sheets do arise (e.g.
since monotonicity conditions are not globally satisfied), the
separation problem is localized to the construction tetmddron
for each patch -- a focal separdwn problem. Using results Ihm
[SV91C], the existence of linear separating halfspaces to solve
the local separation problem is shown in [Men92].

In principle, having solved the separation problem, the
BCSG algorithm in [SV9 la] that ‘extends’ participating

s An exponential enumeration and examination of segments
can be obviated by resorting to geometrical calculations such
as those employed in BCSG [SV91 &b], or using an iterative
ray-rep baaed method developed in [Men92].
9 Separation simpl~les considerably because of planar edges in
algebraic patches; separation problems that arise from non-
planar edges are not currently addressed here.

halfspaces, decomposes space into cells, and determines
classification of cells, could be employed directly to compute
CSG(A). However, the CSR-based CSG constructions described
above (Section 5.2) do not extend all halfspaces; instead
decompositions are considered within known finite exfents.
Ensuing CSG construction techniques simplify considerably,
especially for normal constructions (eqs. 5.1-5.3).

Computingray-reps

Free-form solids bounded by algebraic patches are
constructed in the Brep scheme, and the methods in Section 5.2
provide CSG rqresentations of the solids. Hence a ray-rep of
the free-form solid can be computed using well known
line/solid classification algorithms on Brep or CSG
representations of the solid [Ti180, RV85]. Furthermore, given
a CSG representation of a free-forrn solid a ray-rep can also be
computed via massively parallel processing on the RayCasting
Engine (RCE) -- a new highly parallel computer for computing
ray-reps from CSG representations @iXLTMMV91].

CSRS ~vide new methods for computing ray-reps of free-
form solids through algorithms that exploit their hybrid
BrepKXG character. In essence, the algorithm employs the
CSG-like divide and conquer paradigm for line/solid
classification with respect to the CSR, but interprets the CSR -
based classification results in a Brep fashion to obtain in-solid
segments; the main idea is summarized below.

Consider the classiilcation of line 12 with respect to the
shaded CSR (obtained using divide and conquer) in Figure 5.2;
tetrahedral intercepts are marked ‘x’, and patch intercepts ‘*’. It
is easy to see that 12 ‘in’ A can be induced by simply ignoring
the tetrahedral intercepts on 12, and interpreting patch
intercepts as though they were obtained during line/Brep
classificationl”. This method can be extended to abnormal
constructions as well [Men92]. From a practical standpoint,
since the new algorithm retains CSG’S divide and cmnquer
character, it is amenable to parallelization, e.g. by mapping it
on the RCE [Men92].

Fq. 5.2 Computingaray-repofA fromCSR(A).

6 ~ EXPERIMENTAL SYSTEM

Figure 6.1 providea a high level overview of them
experimental system that is built in the environment of a
2304-processor RCE11 residing in an Adage-3fXX) frame buffer

10 Lines that pass through interpolated points of P (e.g. 11, 13)
require special treatmen~ since they need to be distinguished
for singularity [Men92].
11 The RCE is being built under collaborative research between
ComeU and Duke Universities @K.LTMMV91].
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backplane, connected to a DECSystcm 5400 host. A free-form
solid is constructed in the Brep scheme using techniques
developed in [Gu091 ]. A CSR is constructed from this Brep
(shown as conversion BCSR) using the methods developed in
Section 3. Now one of three prssible routes may be taken.

14-Brep
(aIgebraic
Wtched

L , $
T

F@.6.1: H@hleveloverviewof the O-experimental system.

1) A CSR may be processed directly on the current RCE
(marked RCE/1) to compute a ray-rep of a shell.

2) A CSR may be used to compute a CSG representation of Lhe
solid through the BCSG-~ conversion (BCSG for free-form
solids), and the CSG representation may be processedon
RCE/1 to compute a ray-repof the free-form solid.

3) A CSR may be processed on the modified RCE (marked
RCE/2 and currently under design) to compute a ray-rep of
(1) a shell, or (2) the free-form solid directly from the CSR
(by employing the new hybrid Brep/CSG algorithm for
computing a ray-rep from the CSR).

Fig. 6.2: Ray traced vase modeled with336 quadraticalgebraicpa!ches.

Ray-reps computed above are used in various solid
modeling applications. such as mass property calculation,
sweeping, Minkowski operations, interference detection, ray
tracing (Figure 6.2), and NC machining simulation/verification
IMMZ92, MR92]. Here arc two examples to give an idea of the
system performance; grids of 300x300 rays were used here.

.

.

The vase example in Figure 6.2. which is modeled with 336
quadratic algebraic patches, contains 1,680 halfspaccs in its
CSR; it took 11 seconds to compute a ray-rep of the shell,
and subsequent ray tracing took 53 seconds.
The example in Figure 3.4 contains 2fM quadratic algebraic
patches that interpolate 30 points obtained from a crushed
soda can sampled by a CMM data-acquisition system. The
CSR contains 1.020 halfspaces and it took 8 seconds to
compute ita ray-rep and produce a shaded image.

See [Men92] for system details, and more modeling
examples and statistics.

7 CONCLUSIONS AND FUTURE DIRECTIONS

Problems with traditional parametric patching methods for
free-form modeling led to recent developments in algebraic
patching technology, wherein sculptured surfaces are
constructed by piecing together subs~ts of low degree
(typically 2, 3) implicit Polynomial surfaces contained inside
tetrahedral. The paper exploited this recent line of work on
algebraic patches and introduced a new representation scheme --
Constructive Shell Representation (CSR) -- that treats free-
form surfaces and solids in terms of “thick shells’.

We believe that algebraic-patchirrg/CSR technology has
tremendous potential for surface and solid modeling. The
technology is relatively new, and few areas of emphasis for
future work are summarized below.

.

.

.

.

.

Construction of Surfaces: Planar edges in tetrahedral
constructions are a Iimilation, but they are also the key
reason for simplifying the separation problem in BCSG
conversion. Open issues include: 1) the accommodation of
non-planar edges such that simplicity of separation is
retained, and 2) the automatic conversion of an abnormal
construction to a normal construction (since normal
constructions provide simple solutions, e.g. for CSG and
ray-rep computations).

Exfension of CSR methods: Shell/core notions may bc
extended to free-form surfaces that use patches with planar-
edges defined within parallelepipeds [PK89], and similurly
for patches with non-planar edges associated with other
control nets [B192a,b]. CSR notions may also be extended to
prismatic solids, e.g. wherein Breps of solids may be
constructed such that they are amenab[e to CSG conversion.
Open issues surround the determination of conditions under
which self/focal-separation properties hold for such CSR
extensions.

Applications in solid modeling: Apart from those discussed
here, we believe that there are other opportunities for
exploiting the computationally tractable character of CSRS,
e.g. for generating finite element meshes, or for solving
boundary value problems, or for computing NC tool paths in
sculptured surface machining,

Applications in surface modeling: There are scveml opel]
problems regarding the use of CSRS in surface modeling.
such as supporting non-homogeneous solids, and solids
containing ‘mixtures’ of prismatic and sculptured geometry;
see [Men92] for examples.

Bilateral parametric ++ algebraic patch conversion: It is
desirable to convert between parametric and algebraic fmtch
representations, without loss of ‘design properties’ (e.g.
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local continuity, curvature, etc.). While parametric
representations of quadratic and cubic algebraic patches can
often be computed using known techniques, the conversion
from parametric to algebraic patch representations is largely
an open problem12.
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