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ABSTRACT

Free-form ('sculptured’) surfaces are traditionally
represented as unions of parametric patches of high implicit
degree. Recently low degree algebraic patches have been
introduced for representing free-form surfaces. This paper
describes the use of algebraic patches in a new representation
for free-form surfaces called Constructive Shell Representation
(CSR). A CSR is a union of truncated tetrahedra, called
trunctets, forming a ‘'thick shell’ that contains the free-form
surface. One bounding face of each trunctet is an algebraic
patch which is a subset of the free-form surface; the other faces
are planar.

CSRs for surfaces that are boundaries of free-form solids
provide a new, complete hybrid Brep/CSG representation
scheme for free-form solids. Properties and applications of this
class of CSRs are the main focus of the paper. CSRs may solve
some important problems in solid modeling, such as providing
means to represent free-form solids in CSG, and hence
extending the domain over which Brep —» CSG conversion may
be done. The paper outlines CSR-based solutions to these
problems. Examples computed on an experimental system that
exploits the RayCasting Engine (a highly parallel computer for
CSG-based solid modeling) are provided.

1 INTRODUCTION

Free-form surfaces (mathematically, 2-D r-sets [Req80]
embedded in 3-D Euclidean space E3) are usually modeled as a
finite union of patches represented in the traditional parametric
or the recently developed algebraic forms. This paper
introduces a new representation scheme for free-form surfaces,
called Constructive Shell Representation (CSR), that draws on
recent research on algebraic patches. CSRs of surfaces that
constitute boundaries of solids are found to be very useful for
solid modeling, and this class of CSRs is the main focus here.

1.1 Free-form surface representation

Parametric patch technology

Traditionally, each patch in a free-form surface is
represented in the parametric form as a mapping from 2-D
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parameter space to 3-D space. The domain is usually rectangular
or triangular, resulting in ‘tensor-product’ or ‘triangular’
patches respectively. A parametric surface may be implicitized,
i.e. converted to an implicit form, but the resulting algebraic
(implicit polynomial) equation F(x,y,z) = O may have a degree
as high as 2mn (or n?) for a tensor product (triangular) patch
with rational functions of degree m, n (degree n) [Sed90]. For
example, a bicubic tensor product patch could yield an
algebraic equation of degree 18, and a quadratic triangular patch
could yield an equation of degree 4.

Although parametric patches are powerful for constructing
free-form surfaces, computing on these poses fundamental
problems. For example, note that the intersection of a degree-
m algebraic surface with a degree-n algebraic surface is a curve
of degree mn [Har77); hence, the intersection of two bicubic
patches could result in a space curve of degree 324. Similar
problems persist for curve/patch intersection calculations.

Algebraic patch technology

These, and other limitations of parametric patches, led to a
recent line of work that seeks to construct free-form surfaces as
a collection of algebraic patches [Sed8S, Dah89, Sed90, LW90,
Guo91, Dah92]. Each patch is defined as a low degree implicit
polynomial (typically degree 2 or 3) that is 'clipped’ by the
walls of a tetrahedron, as shown in Figure 1.1a. Control points
for the patch are prescribed in the boundary of the tetrahedron,
typically by the vertices of the tetrahedron and additional
points on the tetrahedral edges. A weight is associated with
each control point, and shape control is obtained typically by
changing the weights. (See Section 2 for details.)
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Fig. 1.1: (a) An algebraic patch, and (b) associated trunctet solids.
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A new representation for free-form surfaces

This paper introduces a new representation for free-form
surfaces, called Constructive Shell Representation (CSR), that
exploits the low implicit degrees offered by algebraic patches.
A CSR is a union of truncated tetrahedra, called trunctets,
forming a ‘thick shell' that contains the boundary of a free-form
surface. One bounding face of each trunctet is an algebraic
patch which is a subset of the free-form surface; the other faces
are planar, as shown in Figure 1.1b. Figure 1.2a shows an
example of a free-form surface, and Figure 1.2b shows an
associated 'thick shell' represented by the CSR of the surface.

(b)
Fig. 1.2: (a) A free-form surface with 26 quadratic algebraic patches, and (b} a
‘thick shell' represented by the CSR.

1.2 Free-form solid modeling

We shall focus on CSRs associated with free-form surfaces
that constitute boundaries of solids, because they appear to
have several important applications in solid modeling.

Known representation schemes in solid modeling

Although six families of complete representation schemes
for solids! have been known since the late '70s [Req80], only
two -- Constructive Solid Geometry (CSG) and Boundary
representation (Brep) -- are used commonly to represent solids
exactly, i.e. without approximation. CSG represents
complicated solids as a binary tree whose internal nodes are
Boolean operators (union vy, intersection Ny, and difference
—1) regularized’ in the k-dimensional topology of (usually)
halfspace? primitives contained in the leaves of the tree
[RT78). The Brep scheme describes a solid as a collection of
faces bounding the solid [Req80].

While solids are often defined and edited in these 'primary’
(CSG, Brep) schemes, 'secondary’ representations -- such as
cell decompositions [Req80], spatial enumerations [Req80],

! Solids are assumed to be k-D r-sets in E*, k = 2,3,
2 A halfspace is defined by the set of points {p | F(p) < 0},
where F is an algebraic function of low degree (typically 2, 3).
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and ray representations [EKLTMMV91] -- are often computed
from the primary schemes to support various applications.

Brep of free-form solids

Free-form solids are usually represented in the Brep
scheme as unions of patches, and traditionally patches have
been represented in the parametric form. Two critical problems
with these Breps that stem from the fundamental limitations of
parametric technology (noted earlier) are:

«  patch/patch intersection, which is required for performing
Boolean operations on solids [RV85), and

»  line/patch intersection, which is used pervasively, e.g. for
rendering graphic images of free-form solids.

Because these calculations are difficult to perform reliably and
swiftly, Brep systems that support parametric patches suffer
from numerical problems. Recent research on algebraic patches
provides alternative Breps of free-form solids as unions of
algebraic patches, and the associated low implicit degrees
alleviate the above problems with parametric patches.

CSG of free-form solids

Nearly all of the research on developing representations
for free-form solids has been focused on incorporating
parametric patch technology in Breps; little of this work has
been proven applicable to CSG representations. The
fundamental reason is that halfspaces induced (via
implicitization) from the popularly used parametric patches are
of high degrees, whereas CSG technology is based on low
degree algebraic halfspaces. Consequently, 'separation’ and
other such problems associated with curved halfspaces are hard
to solve in the case of parametric patches {SV91a, Men92].

The little research that has been done on incorporating
parametric patching technology into CSG has been based
mainly on the following two approaches.

In the hybrid approach, the set of leaf entities of CSG trees
is extended to include free-form solids represented by their
boundaries (using parametric patch technology), e.g.
[Cha87]. The result is a non-homogeneous representation
that fails to exploit fully CSG's elegant divide-and-conquer
algorithms and often degrades CSG's robustness [Voe92].
The Inner Set Outer Set (ISOS) approach constructs only
linear polyhedral approximations of the free-form solid
that are either contained in the solid or that contain the
solid -- the ‘inner’ or 'outer’ sets respectively [DSd89].

Insofar .as we know, there has been no work to date on
constructing CSG representations of free-form solids bounded
by algebraic patches. This paper outlines how exact CSG
representations of such solids can be constructed using CSRs.

A new representation for free-form solids

A CSR, that is constructed as a 'thick shell' (the union of
trunctets) associated with algebraic patches on the boundary of
the solid, provides a new complete hybrid Brep/CSG
representation of the free-form solid. A subset of the shell of
the free-form solid in Figure 1.3a is shown in Figure 1.3b. The
hollow portion inside the CSR solid is a flat-faced polyhedron,
called the core, as shown in Figure 1.3b.



(b)
Fig. 1.3:(a) A free-form solid whose boundary is modeled with 32 quadratic
algebraic patches, (b) its core and a portion of its CSR.

2 ALGEBRAIC PATCH TECHNOLOGY

Algebraic patch techniques for free-form surfaces describe
patches as finite subsets of degree N algebraic surfaces. Two
streams of work for constructing free-form surfaces with
algebraic patches have emerged.

+  Tetrahedral methods. Free-form surfaces that interpolate or
approximate points and prescribed surface normals are
constructed as the union of quadratic and cubic (N = 2, 3
respectively) algebraic patches contained inside tetrahedra
[Sed85, Dah89, Sed%0. LW90, Guo91, Dah92].

»  Non-tetrahedral methods: Algebraic surfaces, typically
quartics and quintics (N = 4, 5 respectively), not restricted
to lie within tetrahedra, are used to interpolate or
approximate points, curves and associated surface normals
[HH86, War89. BI92a.b].

The paper draws on the tetrahedral methods. and the basic
concepts of this recent line of research are summarized below.
2.1 Bernstein-Bezier representation of a patch
Consider a tetrahedron with vertices Vnopo. Vonoo. Yoono.
and VgaoN. where the V's are non-coplanar points in E°. Let
(s,t.u,v) denote the local barycentric coordinates in the
tetrahedron. By definition, the barycentric coordinates [Far88]
of a pont q are the values of s, t, u. v such that

q = sVNoo + Vanoa + uVoone + vVoooxs

Q.1

s+t+utv = 1.

Let ap(s.tu,v) denote a polynomial scalar function (subscript 4,
denotes barycentric coordinates). A contour surface of the
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function comprises all points for which ay(s,t.uv) is constant.
The algebraic patch p is defined as the zero contour of the
function that is clipped by the tetrahedron, i.c.
p = {qlq € ay(s.t,uv) =0; stuv 20}, (2.2)
where (s,t,u,v) are the barycentric coordinates of q. The
Bernstein-Bezier polynomials provide a convenient basis to
control the behavior of the zero contour within the tetrahedron
[Sed85). Specifically, a degree N algebraic patch can be defined
by first imposing a lattice of (N+1)(N+2)(N+3)/6 control
poinls cijk]' such that
i k

L k

1
Cijia = 1§ YNooo + 'Iﬁ Vonoo +13y Yoono + 37 Vooon:

1.k 20; 1+j+k+l = N. (2.3)
The lattice of control points for a quadric and cubic algebraic
patch are shown in Figure 2.1. This lattice defines the control
net for the patch, and its convex hull is the tetrahedron itself.
Next, a weight wyy is assigned to each control point, and the
algebraic patch 1s defined using Bernstein-Bezier basis
functions as

> N

L ikl
o BT ETE TR TR A

ap(s,tu,v) =

ijkl20
i+j+k+l = N; s, t, u, v=Il-s-t-u 20.

2.9)

0
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(a)
Fig. 2.1: Lattice of control points for (a) quadratic, (b) cubic algebraic patch.

Several properties for controlling the shape of a patch that
arise from the above formulation are explained in [Sed85]. An
algebraic patch can join smoothly (mesh) with other algebraic
patches with specified inter-patch continuity and local support
properties; recent approaches for this are summanized below.

2.2 Meshing patches

The C%and C! continuity conditions of two patches whose
tetrahedra share a common face can be expressed easily in terms
of the control points of the two patches [SS87, Guo91]. This
method cannot be extrapolated in general to create an extended
mesh of C! continuous algebraic patches. This is because two-
sided and three-sided holes arise during the construction of
extended free-form surfaces, and (low degree) algebraic patches
do not possess sufficient degrees of freedom to fill up such
holes with prescribed continuity.

Consider the three-sided hole problem in Figure 2.2. Three
cubic patches are joined at their corners, with the two
neighboring patches at each corner having the same tangent
plane. It 1s not possible in general to fill this three-sided hole



with a single cubic algebraic patch with C! continuity. In this
case, the hole-filling patch is split into nine piecewise
components to generate sufficient degrees of freedom for cl
continuity for all adjacent patches [Sed90]. In fact, such a split
also yields ten additional degrees of freedom, i.e. ten new
control points that may be manipulated to influence the shape
of the mesh of patches.

(a) ()]

Fig. 2.2: (a) A 3-sided hole, {b) filled with a 9-patch macro-patch.

A group of piecewise algebraic patches obtained as a result
of splitting a three-sided patch problem, to generate adequate
degrees of freedom for satisfying continuity conditions, is
called a macro-patch. Figure 2.2 illustrated a 9-patch cubic
macro-patch.

It is easy to visualize the two-sided hole problem by
imagining a triangulation of a free-form surface. Associate a
construction tetrahedron with each triangle, and fit the surface
segment within each tetrahedron with an algebraic patch or
with a macro-patch. Clearly surface gaps will appear, as shown
in Figure 2.3a. These gaps are filled with additional patches
called blend-patches, e.g. in Figure 2.3b with two blend-
patches for quadratic algebraic patches, that satisfy inter-patch
continuity conditions [Guo91].

2
blend-patch
2-sided hole construction
tetrahedra
patch patch

two blend-patches

@ for shape control
(b)

(a)
Fig. 2.3: Filling inter-patch gaps and forcing continuity with blend-patches.

2.3 Free-form surface construction

By applying the patch, macro-patch, and blend-patch

concepts summarized above, a free-form surface can be
constructed in the following three-step fashion, illustrated in
Figure 2.4 for a surface that constitutes the boundary of a solid.
1) Specify a triangular faceted input polyhedron P whose
vertices and (optional) associated surface normals are to be
interpolated by the surface (boundary of a free-form solid
for the example in Figure 2.4a).
Associate an apex vertex with each triangular facet, hence
a tetrahedron, and fill each tetrahedron with a three-sided
patch or macro-patch that ‘replaces’ each triangular facet of
P (Figure 2.4b).

2)
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3) Fill the resulting two-sided holes with blend-patches
(Figure 2.4b).

The resulting free-form surface approximates the shape of
polyhedron P, i.e. a ‘smoothing’ of P is obtained. The methods
developed thus far for constructing extended meshes of patches
have used quadratic [Dah89, LW90, Guo91, Dah92] and cubic
[Sed90, Guo91] algebraic patches with appropriate handles for
shape control; see [Men92] for a comparative survey of these
methods. For example, Figure 2.5 provides an example of
shape control exercised on a spherical surface constructed as a
mesh of 32 quadratic patches using Guo's methods (Guo91]. The
experimental implementation described in Section 6, and all
photographs of free-form surfaces and solids in this paper, use
CSRs derived from quadratic patches constructed by Guo's
second order technique.

2-sided hole
filled with 3-sided
blend-patches patchor
3'“3:’" P macro-patch
normal patch or tetrahedron
~— macro-patch

tetrahedron

input polyhedron P
(a)

()]

Fig. 2.4: Scheme for constructing a free-form surface: (a) input polyhedron P,
and (b) tetrahedral constructs for two faces of P.

An Algebraic Patch Representation (APR) of a free-form
surface  constructed using the steps outlined above can be
expressed as the set of n algebraic patches {p;}, without
distinguishing whether p; is a patch or a component of a macro-
or blend-patch. Each p; is specified completely by the degree N
of the patch, the vertices V,, Vy, V3, V4 of its construction
tetrahedron, and the set {wj} of (N+1}N+2)(N+3)/6 weights
associated with the control points (eq. 2.4), i.e.

APR($) = {(N, V|, V5, V3, V4 {wil)ili=1L,n}.  (2.5)

The following properties of a valid APR (per eq. 2.5) of a
free-form surface # in EX, k = 2,3, follow directly from the
construction rules.

2.1 &= kl) pi»and $ C Y T;, where T; is the construction
tetrahedron associated with patch p;.

n = O(f), i.e. the number of patches is linear in the
number f of triangular facets of P.

pi < T; i.e. every patch is contained in its tetrahedron, a
convex-hull property.

Pi Nk-1Pj= 9. V i,j, i#j, all patches are quasi-disjoint.
Tetrahedra are often quasi-disjoint, i.e. T; ry T; = ¢, V ij,
i # j. A given set of algebraic patches that satisfies this
condition will be called a normal construction: for
example, the surfaces in Figure 2.6. Sometimes however,
tetrahedra may overlap, as can be seen from the example
in Figure 2.7. This condition, i.e. T; Ny Tj# ¢, for some i
# j, shall be called an abnormal construction.

2.2
2.3

2.4
2.5



(b}
Fig. 2.5: Shape control on a 32-patch mesh of quadratic algebraic patches: (a)
sphere. (b) tweaked sphere.

2.4 Brep of a free-form solid

If the surface constructed above is the boundary (dA) of a
free-form solid A, then the collection of algebraic patches
APR(JA) comprises a boundary representation of the solid, i.e.
Brep(A). Weights assigned to control points shall be assumed
to be in agreement with the material side of the solid, 1.e. the
material lies where the associated weights are negative. Thus,
tetrahedral vertices V; with negative weight w;,

ap{inis H2is 13 e =W Wi <0 (2.6)
give the sense of the inside of the free-form sohd. ((uy;, 13 1350
H4;) 1N eq. 2.6 are the barycentric coordinates of vertex V,.)

Figure 2.6a shows a planar cross section and the
construction tetrahedra (now triangles) of a 3-D free-form solid
constructed using Guo's technique for quadric patches. Notice
that vertices of P (those that lie in the section plane, marked ")
are interpolated by the boundary of the solid, and that pairs of
blend-patches are used to fill the two-sided holes. A 2-D free-
form solid that interpolates the vertices of P (a polygon in 2-D)
1s shown 1n Figure 2.6b. This figure is casier to follow than the
cross-section in Figure 2.6a because blend-patch constructs are
absent. For the sake of clarity, we shall use illustrations of 2-D
solids henceforth, although all arguments hold for 3-D free-
form solids constructed per Section 2.3. Thus, Figure 2.7
shows an abnormal construction of a 2-D free-form solid.
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blend-patches interpolated vertex

aA
P
(b)

Fig. 2.6: Normal constructions: {a} A planar cross-section of a 3-0 free-form
solid, (b) a 2-D free-form solid.

overlapping
tetrahedron

Fig. 2.7: An abnormal construction in 2-D.

(a)

3 CONSTRUCTIVE SHELL REPRESENTATION

3.1  Trunctets

Induction of a patch halfspace

Consider a single non-empty patch p in its tetrahedron T.
A patch is associated with an extended surface ay(s.t.u.v) = 0,
where ap(s,t,u,v) 1s a low degree (typically 2,3) polynomial
expressed in the barycentric coordinates of its tetrahedron T
(eq. 2.2). The patch representation in barycentric coordinates
can be transformed into cartesian coordinates through a
suitable linear transformation L [Far88, Men92] such that

a(x.y.z) = L{ap(s.t,u,v)), 3.1

where a(x.y,z) is a polynomial of equal degree as ay(s,t.u.v).

An algebraic patch halfspace a(x,y,z) < 0 1s induced by
setting the sign of a(x.y,z) such that the value of a(x.y,z)
evaluated at a tetrahedral vertex V; is equal to the associated
weight w; (eq. 2.6), t.e. a(V;) = w;; 1= 1.4. For example, the
algebraic patch halfspaces for the quadratic patches 1n Figure
3.la.c are respectively an ellipsoid and a hyperboloid of two
sheets shown in 3.1b,d. The regularized complement of an
algebraic patch halfspace, denoted ca, is simply a(x.,y.7) 2 0.

Decomposition of a tetrahedron

Each construction tetrahedron T in EX, k = 2.3, can be
defined as the regularized intersection of k+1 linear halfspaces
h; whose boundaries contain the triangular faces f; of the
tetrahedron (o/; O f)). i.e.

T="% h.

1= Lk+l. (3.2)

An algebraic patch halfspace decomposes the tetrahedron into
two regions T @ and Ty ca, as shown in Figures 1.1 and



(c)

(d)

Fig. 3.1: (@) A quadratic algebraic paich, its trunctet, along with control points,
(b) associated halfspace (ellipsoid), (c) tweaked patch and trunctet, and (d)
associated halfspace (hyperboloid of 2-sheets; the tetrahedral apex vertex

here is behind the top sheet).
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3.2. Each region is called a trunctet (1), since it may be viewed
as a tetrahedron that is truncated (or capped) by the patch, such
as those in Figure 3.1a,c; mathematically,

t=g e (G% A). i=1k+l, ge {a. ca). (3.3)
An inner trunctet 't is defined as the intersection of the
construction tetrahedron and the algebraic patch halfspace
(Figure 3.2), i.e.

lt=amry T, (3.4)
and an outer trunctet 1 is defined as
Ot =cary T. (3.5)

Fig. 3.2: Inner and outer unctets.

Every patch is associated with an inner and outer trunctet,
as shown in Figure 3.23. The distinction between inner and
outer trunctets could encapsulate the orientability of a free-form
surface. If the free-form surface is JA for a solid A, inner
trunctets are those regions in T that have the same material
‘sense’ as the free-form solid. Furthermore, the inner and outer
trunctets associated with a single patch are quasi-disjoint, and
their union is the construction tetrahedron itself [Men92].

3.2 Shells

A free-form surface $ can be associated with a thick shell
S that is the union of trunctets, one associated with each of the
n patches, t.e.

s = Y 1.i=la, (3.6)
and consequently, an inner shell (IS) and an outer shell (°S) can
be defined respectively as

Is = kiJk Iy, i=1n ., and 3.7
O = Y& 91, i=1n. (3.8)
For example, the shaded region in Figure 3.3a shows a

shell composed as the union of trunctets with inner or outer
counterparts chosen at random for every patch. The inner shell
and outer shells are shaded in Figures 3.3b and 3.3¢c
respectively. Figure 3.4 provides 3-D examples of inner shells
-- 3.4a shows the inner shell for a normal construction, and
3.4b for an abnormal construction.

3 Rare cases with peculiar assignment of weights to control
points may cause the algebraic patch halfspace to result in
multiple sheets within T. In such cases, the definitions of inner
and outer trunctets can be modified through the introduction of
additional 'separating’ halfspaces; see Section 5.3 & [Men92].



(b)
Fig. 3.4: Aninner shell for a surface with 204 quadratic algebraic patches: (a)
normal construction, {b) abnormal construction.

3.3 Definition of CSR

CSR of a free-form surface

A Constructive Shell Representation (CSR) of a free-form
surface $ constructed with algebraic patches (eq. 2.5), is a CSG
representation of a shell S associated with H, ie.

CSR(%) = CSG(S) = kijk CSG(1). 1= L,n, 3.9
where S could be 1S, OS, or any shell with randomly chosen
inner or outer trunctets. Thus a CSR is a binary tree with union
operators for nodes, and trunctet-subtrees for leaves. Each
trunctet-subtree n turn has an intersection operator at its root,
since trunctets are defined as the intersection of k+2 halfspaces

(egs. 3.2-3.5). Figure 1.2 provides a 3-D example.
CSR of a free-form solid

In an sumilar manner, a CSR of a solid A (where JA is
constructed as the union of algebraic patches), is the CSG
representation of a shell associated with dA (recall the 3-D
example in Figure 1.3), defined as

29

CSR(A) = CSG(S) = Yk CSG(1). i=l.n (3.10)

4 PROPERTIES

We shall focus on CSRs of free-form solids since they may
be very useful in solid modeling. This section discusses the
properties of CSRs of solids, and the next section discusses the
applications of CSRs for solving some important problems in
solid modeling.

41 Cores of a solid

A shell S of a free-form solid A is associated naturally with
a core C, which is the region of the solid not contained in its
shell, i.e.

C=A~S. (4.1)
Inner (or outer) cores are associated with inner (or outer) shells;
thus, ®C = A @S, a € {1, O}. Two-dimensional examples of
cores may be found in Figure 3.3, and a three-dimensional

example of the inner core is shown in Figure 1.3.
4.2 Properties of trunctets, shells and cores

This section lists some simple properties of trunctets,
shells, and cores that follow from the construction of a valid
Brep(A); see [Men92] for more examples.

Basic properties (Figures 2.6, 2.7, 3.3)

4.1 In general, trunctets/shells/cores are not unique for a
given Brep(A). But, inner/outer trunctets/shells/cores
are unique for a given Brep(A).

4.2  All trunctets, shells and cores are solids (r-sets).

4.3 Since every patch is associated with a trunctet (inner or
outer), it follows that JA ¢ S. and A € %S, a € {], O}.

4.4 A patch p;. can also be expressed as p; = dg; N JT,, where
T; is the inner or outer trunctet associated with the patch
and g; € {a;. ca;}. (See also Figures 1.1 and 3.2.)

4.5  The outer core OC is not a linear polyhedron, as shown
in Figure 33c.

4.6 The inner core IC is always a linear polyhedron, for
example, see Figure 3.3b.

1.7 Os Z A, i.e the outer shell i1s not contained in A: sce
Figure 33c.

Normal constructions (Figures 2.6, 3.3)

4.8  The boundary of a solid 1s contained n the boundary of
its shell, te. dA € JS.

4.9 All runctets are quasi-disjoint, i.e. TN T;=0, Vi)

4.10 The inner shell is contained in the solid, i.e. 1S C A.

4.11 The outer shell is contained in the regularized
complement (c) of the sohd, 1.e. 05 c cA.

Abnormal constructions (Figure 2.7)
Negations of properties for normal constructions hold.

4.12 The solid's boundary is not always contained in the
boundary of its shell, 1.e. JA g &S.

4.13 Not all trunctets are quasi-disjoint, i.e. T, Oy T; # @, for
some 1,}.

4.14 The inner shell need not be contained in A, i.e. 'S Z A.

4.15 The outer shell need not be contained in the regularized

complement of A, i.e. S g cA.



4.3 Properties of CSRs

Representational completeness

We first establish that CSRs can represent solids
unambiguously, providing thereby a new complete
representation scheme for free-form solids. Consider a shell §
represented by CSR(A). A CSG representation of every trunctet
T; of the shell S can be obtained trivially from CSR(A). Further,
b (which is a; or ca;) can be found from CSG(t;), because it is
typlcally a non-linear halfspace Using property 44, p;, = db;
N J1;, and therefore JA is obtained as the union all the pi's
(property 2.1). Now A can be inferred unambiguously from dA
by using the principle of 'boundary determinism', which states
that an r-set is defined unambiguously by its boundary {Req77].
Hence a CSR is a complete representation of a free-form solid.

Property 4.16 CSR(A) is a complete representation of solid A.

A few observations based on the representational
completeness of CSRs follow.

« The proof of property 4.16 provides an algorithm for
computing Brep(A) from CSR(A) using 'boundary
evaluation' (CSG — Brep) operations [RV85] on CSG(t;).

e Completeness holds even though JA fed 88 for abnormal
constructions, i.e. the boundary of the sohd cannot be
retrieved from the boundary of its shell (property 4.12).

¢ Completeness holds even if a patch halfspace g; results in
multiple sheets within its construction tetrahedron T;,
provided CSG(t;) represents the desired trunctet (using
‘separating’ halfspaces, as noted in footnote 3).

Represented point sets

It follows from eq. 3.10 that the point set represented by a
CSR of a single free-form solid A is its shell S;, i.e. [CSR(A))]
= J . However, the point set represented fay a CSR of a
Boolean composition of free-form solids, denoted B(A;, ...,
Ap), does not necessarily correspond to some 'thick shell' S,
of the composed solid A. Note that this does not pose any
problems in light of the completeness of CSRs.

Property 4.17 If A=B(A,, ..., Ay), m > 1, then [CSR(A)] = S;,
but [CSR(A)] # S,4.

For example, Figure 4.1 shows a Boolean intersection of CSRs
of two free-form solids. The point sets [CSR(A )], [CSR(Az)]
[CSR(A)], and S, are shaded. Notice how [CSR(A))], j = 1,2,
correspond to the inner shells of the two solids, but [CSR(A)]
does not constitute some shell (e.g. S,) of A.

Not surprisingly, a 'thick shell’ S, of a Boolean
composition of free-form solids does not in general retain a
trunctet like character. This is because a Boolean composition
of free-form solids could result in patches with non-planar
edges -- edges that do not lie in planar faces of tetrahedra. This
observation could be of significance if one seeks to model free-
form surfaces with non-planar edges using algebraic patches
that are associated intrinsically with planar edges [Men92].

4 In rare cases where planar patches may be used, patch
halfspaces may be marked with a distinguishing 'tag’.

5 We use the notation Xrep(A) to denote a representation of
solid A in scheme Xrep, and [Xrep(A)] to denote the represented
point set. For example, Brep(A) is a boundary representation of
A and [Brep(A)] = dA; similarly [CSG(A)] =
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[CSRA )] 7 [CSRA )1
[CSRAA

z!

() (b)
Fig. 4.1: (a) CSRs of two free-form solids, (b) Boolean intersection,
reprasanted point sets and some 'shell' of the composed solid.

Non-uniqueness

From property 4.1 it follows that there is no restriction on
the kind of shell that a CSR represents. It may represent a shell
with randomly chosen inner and outer trunctets as shown in
Figure 3.3a, or an inner or outer shell (Figures 3.3b,c).

Property 4.18 The CSRs of a free-form solid may represent
non-unique shells.

Non-uniqueness of CSRs does not pose problems as long
as the character of the trunctets (inner, outer, or random) in the
represented shell is known. A system that constructs CSRs
from algebraic patches would keep track of this information,
and the choice of trunctets would be governed typically by the
application at hand. For example, a CSR representing all inner
trunctets is used to produce the displays in Figures 3.4 and 6.2,
while suitably chosen CSR-subsets are used for computing
exact CSG representations of free-form solids in Section 5.2.

Hybrid Brep/CSG character

A CSR is a hybrid Brep/CSG representation since
characteristics of both Brep and CSG schemes are prevalent.
Like CSG, it is a binary tree with primitive halfspaces for
leaves and regularized Boolean operators for nodes. However, a
CSR may also be thought of as representing a ‘thick boundary’
of the solid, exposing a Brep like character. This was exploited
for proving the representational completeness (property 4.16).

This hybrid Brep/CSG character allows algorithmic
conveniences of both schemes to be exploited — specifically
the execution of boundary traversal algorithms (employed
pervasively on Breps [Mil89]) using the divide and conquer
paradigm (applied commonly on CSG [Req80]). A new
line/solid classification algorithm for computing ray-reps
(summarized in Section 5.3) exploits this hybrid character.

5 APPLICATIONS IN SOLID MODELING

5.1 Solid modeling systems

From the mid-1970s until the later 1980s, two generic
architectures of solid modeling systems predominated: systems
which based all applications on Breps, and systems which
maintained two or more consistent representations, usually
CSG and Brep [Req80, Mil89, Voe92]). Dual representation
<CSG, Brep> systems were deemed promising in 1980 [Req80],
but CSG and <CSG, Brep> systems were abandoned
commercially for the following two main reasons [Voe92].



+ CSG technology could accommodate prismatic solids, but
not extended domains® of free-form solids.

« Even for the restricted domain of prismatic solids, system
limitations arose because CSG — Brep conversion methods
were available, but Brep — CSG conversion algorithms were
not developed until recently [SV91a,b,c].

CSRs may be useful to extend the domain of CSG to
represent free-form solids exactly, thereby providing Brep —
CSG conversion methods for free-form solids. Thus CSRs could
create opportunities to resurrect dual representation <CSG,
Brep> systems. An outline of the CSR-based solution to CSG
domain extension is presented below, followed by brief
discussions on other solid modeling applications of CSRs.
Detailed mathematical treatments will be presented in
forthcoming papers; see also [Men92].

5.2 Exact CSG representations

Normal constructions

Using a shell/core approach, CSG(A) can be constructed as
the union of the inner shell and the inner core associated with a
free-form solid A, as for example in Figures 1.3 and 5.1a, i.e.

CSG(IS) U, CSG(O)
CSR(A) w, CSG(IC). .1

CSG(A)

CSG(1S) is A's CSR, which is a Boolean composition of low
degree algebraic halfspaces (eq. 3.10). A well known result in
Brep —» CSG conversion [SV9la] states that a CSG
representation of a linear polyhedron can be computed easily
from its Brep. This result can be applied directly to CSG('C),
since the inner core is a linear polyhedron (property 4.6).

d)

Fig. 5.1: Computing CSG representations of a free-form solid: (a) shell/core
method for a normal construction, (b) constructive method for a normal
construction, (c) constructive method for an abnormal construction, and (d)
segment method for an abnormal construction.

6 The domain of a representation scheme is the set of entities
representable in the scheme, and thus the domain characterizes
the 'descriptive power' of the scheme [Req80}.
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Recall (from Section 2.3) that dA is constructed by
(loosely) replacing every triangular facet of an input
polyhedron P with a patch. A constructive approach for
computing CSG(A) that mimics this construction procedure is
summarized below.

Observe that every patch induces a trunctet that behaves
either as a ‘protrusion’ relative to P (e.g. T, in Figure 5.1b) or as
a 'depression’ relative to P (e.g. T, in Figure 5.1b). Let P denote
the union of the protrusion trunctets and let D denote the union
of all the depression trunctets. CSG(A) can be obtained as the
union of the input polyhedron (P) and the protrusions (£), with
the depressions (D) differenced from this union, i.e.

CSG(A) = (CSG(P) v CSGB)) +« CSGQ). (5.2)

or as the difference of the depressions (D) from the input
polyhedron (P), with the protrusions (P) unioned to this
difference, i.e.

CSG(A) = (CSG(P) « CSG(D) ) i CSG(P). (5.3)

CSG(P) and CSG(D) are CSR-subsets that are easy to obtain
from specific trunctets. As with CSG(IC) in the shell/core
method, CSG(P) can be computed from Brep(P) since P is a
linear polyhedron.

Abnormal constructions

Is is easy to see that the above simple methods do not
apply in general to abnormal constructions. Specifically (from
property 4.14) the shell/core method cannot be applied directly
to abnormal constructions (e.g. Figure 5.1c,d). However, the
constructive approach can be applied to those abnormal
constructions where protrusions do not overlap depressions,
ie. Q=P n D =¢ (e.g. Figure 5.1c, but not 5.1d). Special
treatment is needed for those constructions where Q # ¢, and
summarized below is one possible approach: see Figure 5.1d.

We extend the constructive approach described above to
cover all classes of abnormal constructions by observing that
eqs. 5.2 and 5.3 can be modified respectively as

CSG(A) = ((CSG(P) \y CSG(R)) + CSG(D) vy CSG(A)
(5.4)
and

CSG(A) = ((CSG(P) -, CSG(D)) Uy CSG(P)  CSG(A,),
(5.5)

where A (A.) denotes the 'lost’ (‘excess’) region due to
protrusion/depression trunctet overlaps. The lost (excess)
region is contained in the overlap Q. Using techniques similar
to those employed in Shapiro and Vossler's Brep —» CSG
conversion (or simply BCSG) algorithm [SV91ab], CSG(A))
can be obtained as

CSG(a) = Ye CSG(o), (5.6)
where ©; is a segment that is represented as a suitable
intersection of those trunctets (or their complements) that
belong to P or D, such that G; classifies as 'in’ Q, as well as 'in’
A7, Similarly, CSG(A,) is comprised of segments that are 'in' Q

7 We use the jargon 'in', 'on', and 'out’ as developed in the
context of set membership classification [Til80].



but ‘out’ A. Segment classification can be obtained by
classifying a ‘characteristic' point in its interior with respect to
CSG(Q), and then with respect to Brep(A)5.

From experience, we observe that in practice abnormal
constructions are unlikely to occur (e.g. using methods in
[Guo91]). More importantly, even for abnormal constructions,
a single test

Q=PADle

determines whether the simple CSG representations in egs.
(5.2-5.3) can be employed or not. Furthermore, the relations

[(CSG(P) i CSG(B)) + CSGD)] < A

and
[(CSG(P) + CSG(D)) i CSGP)] 2 A

provide expedient approximate CSG representations of the
free-form solid that could be potentially useful in some solid
modeling applications.

(5.7)

(5.8)

(5.9)

5.3 Other applications
Extending BCSG technology

Contemporary BCSG technology provides conversions
for prismatic solids bounded by 'natural’ (planar, cylindrical,
spherical, conical) quadric surfaces, and some theoretical
results are available for more general algebraic surfaces
[SV9ic). The above methods for computing CSG
representations extend the BCSG conversion to cover free-form
solids as well, provided solid boundaries are represented as
collections of algebraic patches. Three main reasons for the
effectiveness of CSRs in BCSG are summarized in the
following paragraphs.

Algebraic patches induce low degree (typically 2, 3)
halfspaces, as opposed to, for example, a degree 18 halfspace
associated with a bicubic parametric patch.

The acceptably hard problem of 'separation’ encountered
for curved surfaces in the BCSG algorithm [SV9la] is
simplified, mainly because patches are bounded by planar
edges®. Specifically, under certain 'monotonicity’ conditions
(e.g. [Sed8S, Guo91]) or with the use of 'nonsplitting
macropatches’ (NMP) [Guo92], multiple sheets of the zero
contour ay(s,t,u,v) can be avoided entirely, thereby obviating
the separation problem; we call such constructions self-
separating [Men92]. However, if multiple sheets do arise (e.g.
since monotonicity conditions are not globally satisfied), the
separation problem is localized to the construction tetrahedron
for each patch -- a local separation problem. Using results from
[SV91c], the existence of linear separating halfspaces to solve
the local separation problem is shown in [Men92].

In principle, having solved the separation problem, the
BCSG algorithm in [SV9la] that ‘extends’ participating

8 An exponential enumeration and examination of segments
can be obviated by resorting to geometrical calculations such
as those employed in BCSG {SV91a,b), or using an iterative
ray-rep based method developed in [Men92].

9 Separation simplifies considerably because of planar edges in
algebraic patches; separation problems that arise from non-
planar edges are not currently addressed here.
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halfspaces, decomposes space into cells, and determines
classification of cells, could be employed directly to compute
CSG(A). However, the CSR-based CSG constructions described
above (Section 5.2) do not extend all halfspaces; instead
decompositions are considered within known finite extents.
Ensuing CSG construction techniques simplify considerably,
especially for normal constructions (eqs. 5.1-5.3).

Computing ray-reps

Free-form solids bounded by algebraic patches are
constructed in the Brep scheme, and the methods in Section 5.2
provide CSG representations of the solids. Hence a ray-rep of
the free-form solid can be computed using well known
line/solid classification algorithms on Brep or CSG
representations of the solid [Til80, RV85]. Furthermore, given
a CSG representation of a free-form solid, a ray-rep can also be
computed via massively parallel processing on the RayCasting
Engine (RCE) -- a new highly parallel computer for computing
ray-reps from CSG representations [EKLTMMV91].

CSRs provide new methods for computing ray-reps of free-
form solids through algorithms that exploit their hybrid
Brep/CSG character. In essence, the algorithm employs the
CSG-like divide and conquer paradigm for line/solid
classification with respect to the CSR, but interprets the CSR-
based classification results in a Brep fashion to obtain in-solid
segments; the main idea is summarized below.

Consider the classification of line 12 with respect to the
shaded CSR (obtained using divide and conquer) in Figure 5.2;
tetrahedral intercepts are marked 'x’, and patch intercepts »'. It
is easy to see that 12 'in' A can be induced by simply ignoring
the tetrahedral intercepts on 12, and interpreting patch
intercepts as though they were obtained during line/Brep
classification!®. This method can be extended to abnormal
constructions as well [Men92]. From a practical standpoint,
since the new algorithm retains CSG's divide and conquer
character, it is amenable to parallelization, e.g. by mapping it
on the RCE [Men92].

Fig. 5.2: Computing a ray-rep of A from CSR(A).

6 QpATCH EXPERIMENTAL SYSTEM

Figure 6.1 provides a high level overview of the QPATCH
experimental system that is built in the environment of a
2304-processor RCE!! residing in an Adage-3000 frame buffer

10 Lines that pass through interpolated points of P (e.g. 11, 13)
require special treatment, since they need to be distinguished
for singularity [Men92).

1 The RCE is being built under collaborative research between
Cornell and Duke Universities [EKLTMMV91].



backplane, connected 10 a DECSystem 5400 host. A free-form
solid is constructed in the Brep scheme using techniques
developed in [Guo91]. A CSR is constructed from this Brep
(shown as conversion BCSR) using the methods developed in
Section 3. Now one of three possible routes may be taken.

Defene/edst

Brep
(algebraic
patches)

CSR

BCSGA RCE/2

CSG

=T G

Fig. 6.1: High level overview of the QPATCH experimental system.

ray-rep
shell, free-form 1>

APPLICATIONS

A CSR may be processed directly on the current RCE
(marked RCE/1) to compute a ray-rep of a shell.

A CSR may be used to compute a CSG representation of the
solid through the BCSG-f conversion (BCSG for free-form
solids), and the CSG representation may be processed on
RCE/1 to compute a ray-rep of the free-form sohid.

A CSR may be processed on the modified RCE (marked
RCE/2 and currently under design) to compute a ray-rep of
(1) a shell, or (2) the free-form solid directly from the CSR
(by employing the new hybrid Brep/CSG algorithm for
computing a ray-rep from the CSR).

1)
2)

3)

Fig. 6.2: Ray traced vase modeled with 336 quadratic algebraic patches.

Ray-reps computed above are used in various solid
modeling applications, such as mass property calculation,
sweeping, Minkowski operations, interference detection, ray
tracing (Figure 6.2), and NC machining simulation/verification
IMMZ92, MR92). Here are two examples to give an idea of the
system performance; grids of 300x300 rays were used here.
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« The vase example in Figure 6.2, which is modeled with 336
quadratic algebraic patches, contains 1,680 halfspaces in its
CSR; it took 11 seconds to compute a ray-rep of the shell,
and subsequent ray tracing took 53 seconds.

« The example in Figure 3.4 contains 204 quadratic algebraic
patches that interpolate 30 points obtained from a crushed
soda can sampled by a CMM data-acquisition system. The
CSR contains 1,020 halfspaces and it took 8 seconds to
compute its ray-rep and produce a shaded image.

See [Men92] for system details, and more modeling
examples and statistics.

7 CONCLUSIONS AND FUTURE DIRECTIONS

Problems with traditional parametric patching methods for
free-form modeling led to recent developments in algebraic
patching technology, wherein sculptured surfaces are
constructed by piecing together subsgts of low degree
(typically 2, 3) implicit polynomial surfaces contained inside
tetrahedra. The paper exploited this recent line of work on
algebraic patches and introduced a new representation scheme --
Constructive Shell Representation (CSR) -- that treats free-
form surfaces and solids in terms of ‘thick shells’.

We believe that algebraic-patching/CSR technology has
tremendous potential for surface and solid modeling. The
technology is relatively new, and few areas of emphasis for
future work are summarized below.

e Construction of Surfaces: Planar edges in tetrahedral
constructions are a limitation, but they are also the key
reason for simplifying the separation problem in BCSG
conversion. Open issues include: 1) the accommodation of
non-planar edges such that simplicity of separation is
retained, and 2) the automatic conversion of an abnormal
construction to a normal construction (since normal
constructions provide simple solutions, e.g. for CSG and
ray-rep computations).

« Extension of CSR methods: Shell/core notions may be
extended to free-form surfaces that use patches with planar-
edges defined within parallelopipeds [PK89], and similarly
for patches with non-planar edges associated with other
control nets [BI92a,b]. CSR notions may also be extended to
prismatic solids, e.g. wherein Breps of solids may be
constructed such that they are amenable to CSG conversion.
Open issues surround the determination of conditions under
which selfflocal-separation properties hold for such CSR
extensions.

» Applications in solid modeling: Apart from those discussed
here, we believe that there are other opportunities for
exploiting the computationally tractable character of CSRs,
e.g. for generating finite element meshes, or for solving
boundary value problems, or for computing NC tool paths in
sculptured surface machining.

« Applications in surface modeling: There are several open
problems regarding the use of CSRs in surface modeling,
such as supporting non-homogeneous solids, and solids
containing 'mixtures’ of prismatic and sculptured geometry:
see [Men92] for examples.

« Bilateral parametric ¢+ algebraic patch conversion: It is
desirable to convert between parametric and algebraic patch
representations, without loss of 'design properties’ (e.g.



local continuity, curvature, etc.). While parametric
representations of quadratic and cubic algebraic patches can
often be computed using known techniques, the conversion
from parametric 1o algebraic patch representations is largely
an open problem!2,
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