
A Web-Based Interface to Design Information Visualization

Romain Vuillemot, Béatrice Rumpler
Université de Lyon, CNRS

INSA-Lyon, LIRIS, UMR5205
F-69621, France

romain.vuillemot@insa-lyon.fr

ABSTRACT
Information Visualization is a challenging field, enabling a
better use of humans’ visual and cognitive system, to make
sense of very large datasets. This paper aims at improving
the current Information Visualizations design workflow, by
enabling a better cooperation among programmers, design-
ers and users, in a one-to-one and community oriented fash-
ion. Our contribution is a web-based interface, to create vi-
sualization flows that can be edited and shared, between ac-
tors within communities. We detail a real case study where
programmers, designers and users successfully worked to-
gether to quickly design and improve an interactive image
visualization interface, based on images similarities.

Categories and Subject Descriptors
H.5.3 [Information Interfaces and Presentation]: Group
and Organization Interfaces—Web-based interaction; D.1.7
[Software]: Programming Techniques—Visual Programming

General Terms
Visual Programming, Information Visualization, Service Ori-
ented Architecture

Keywords
Information Visualization, Web Services

1. INTRODUCTION
Information Visualization is a challenging field, enabling a

better use of humans’ visual and cognitive system, to make
sense of very large datasets. The Information Visualization
design process involves every single data transformations
steps, from raw data, up to images. Those steps can be con-
sidered as a data flow, and are said to form a pipeline [5].
This pipeline gives a graphical view to better understand
transformation steps and classify them according to their
functions or data structures. It can also assist programmers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MEDES 2009 October 27-30, 2009, Lyon, France
Copyright 2008 ACM 978-1-60558-829-2/08/0003 ...$5.00.

in their early development steps [8]. The pipeline’s output
can be images (or other media type) that are included in
interactive environments to let users zoom, rotate, or filter,
to better perform an analytical process [26]. Thus, users are
given new insights on data to assist them in solving com-
plex tasks, such as pattern detection or monitoring. Those
tasks solving process could not have been done otherwise,
such as with regular tools, and in a reasonable time span
and cognitive load.

Figure 1: A graph visualization issued from the Opte
Project [17], a tentative cartography of the Internet.
This is an example of a successful indirect collabora-
tion between actors in computer networks and bioin-
formatics. In this paper we introduce an interface
to assist and reproduce this successful cooperation.

Our work started by looking closely at the Opte Project [17].
Opte was started in October 2003 by Barrett Lyon, and
aimed at making a visual representation of the Internet,
to detect distributed denial of service attack (DDoS). The
underlying dataset is a connected graph, made of network
routes over millions of IP addresses. Routes are issued from
a traceroute program that determines the route taken by
packets over a IP network, and results in a connected graph.
A flagship visual result is reproduced figure 1, using a force-

directed graph layout which is the Large Graph Layout [1]
library, originally used to make the visualization and ex-
ploration of large biological networks. Image on figure 1 is
dedicated to analysts to detect patterns and get a better
understanding of the Internet structure.

Successful results were also obtained in other application
fields, such as in astronomy, advanced network analysis or
even artistic purpose. Regarding that last application field,
it surprisingly triggered many metaphysical question. Quot-
ing the project’s author Today the image has been used free
of charge across the globe and is part of the permanent collec-
tion at The Museum of Modern Art (MoMA) and the Boston
Museum of Science. It has been used in countless books, me-
dia, and even movies [18].

But from a scientific point of view, the project shortcom-
ings are multiples. For programmers, scripts and programs
that generate the visualization lack of software optimiza-
tions, to scale up to million of edges. Designers require more
design alternatives and comparisons to understand choices
made in the visualization. Finally, users need labels and
captions to understand nodes and edges meanings. Also, an
interactive environment is needed to smoothly zoom in, ro-
tate, and get details on-demand [24] from the dataset. While
open-source software were used, there is no easy way to re-
produce experiments with the same conditions (such as us-
ing the very exact color mapping), especially for people with
no technical knowledge. Nonetheless, we think that indirect
collaboration between all the actors led to an innovation that
just needs a better technical support to be applied to other
applications.

In this paper, we introduce an interface to reproduce and
generalize the Opte Project to other fields of applications.
Our global approach [28] is to consider the Information Vi-
sualization model as a data flow, where transformation steps
are separated and published across a network through a Uni-
form Resource Location (URL). This is a simple way of using
Web Services that has already been proven efficient [30], con-
trary to other approaches [32] using SOAP messages, which
are complex and sensitive to proxies. Our focus is on the
visualization part (and not on the interaction one), which
then require to be coupled with an interactive applications
controller (to select or filter data). The outline of the paper
is as follow: 1) we identify actors (programmers, design-
ers and users) involved in designing Information Visualiza-
tion interfaces and how they interact between each others
(in a one-to-one and community fashion) 2) we introduce
mashviz, a web-based interface allowing those actors to co-
operate and 3) we describe a real-case scenario where those
actors successfully used mashviz to quickly design and im-
prove an interactive image visualization interface, based on
images similarities. Finally we discuss our results and give
our future works.

2. ACTORS AND INTERACTIONS
It is widely acknowledged that interfaces design must be

done by pluri-disciplinary work [21, 7]. Nonetheless, actors
are currently scattered all over many communities, locations,
and their roles and interactions have not been clearly de-
fined, yet. Furthermore, as we mentioned in describing the
Opte Project, the Internet fosters new opportunities due to
its open and decentralized structure. Also, users tend to be-
come active actors too, as long as they are given an efficient
support of sharing and evaluation.

In this section we identify three main actors: program-
mers, designers and users, and then we focus on two com-
mon way they use to exchange information and knowledge:
one-to-one and within communities. Note that other ac-
tors and interactions exist, according to usage, culture or
context: we will discuss them in section 5.

2.1 Actors
Actors involved in the Information Visualization design

workflow are numerous, since the data transformation flow
is long, complex, and pluri-discplinary [21]. We focus on
three actors that are in the heart of the process:

Programmers: they are individuals who write, test, de-
bug, and maintain computer software. They use pro-
gramming languages to encode users’ need, by means
of functions and logical operations that are transformed
by compilers to machine understandable binary code.
Programmers’ outputs are mainly programs, that are
executable on a client side (Executable binary) or re-
motely (Web Services). Programs can be meant to
be reusable such as API (Application Programming
Interface) or libraries. Also programmers can express
recommendations by means of book or design patterns.

Designers: they are individuals who pick up the best so-
lutions among existing ones. Designers’ outputs are
less formal than programmers, since they may have a
less scientific way of work. Outputs are choices among
existing architectures and their know-how is not easy
to communicate and share, since they are based on ex-
periences and habits. Knowledge sharing is organized
in books and best practices exchanges within groups.

Users: they are individuals who use a machine without
complete computer expertise. Users want to achieve
a task that could not have been done manually or in
a limited amount of time and cognitive load. Users
are broad in age and skills, but can be segmented as
follow: the most active ones are innovators and early
adopters (power users), who will quickly adopt new
systems, even at a beta stage. At the opposite lag-
gards are reluctant to use such systems, especially if
they have not been proven stables. In between those
two extremes, the vast majority (about 80%) user com-
puters with an average learning curve. All users will
produce usage statistics and can participate to the sys-
tem evaluation in a direct (forums, comments) and in-
direct (usage count, activity logs) way.

2.2 Interactions
Interactions are active behaviors that actors engage to

communicate and exchange information. We focus on two
interactions types:

One to one: is the simplest way to exchange information
between two single individuals, through a sing com-
munication channel. It can be synchronized or not,
and using different medium types but it has to share
a same communication vocabulary or signs.

Community: is a way to gather individual based on loca-
tion, organization, faith or believes. It has been proper
to humans to build those groups and they tend to be

Figure 2: masvhiz flow creation interface. Middle layout shows composition space (where boxes are linked
together to compose a flow). The top strip gathers information about currently edited flow. The left vertical
strip shows the service list organized in categories. Finally, right vertical strip shows flows overview and
informative logs (errors, warning, etc.).

more and more virtual with broadly available digital
device and Internet access. Communities also tend to
be decentralized and let anyone know everyone about
their production, regardless time or location.

Note that even if we limited our scope to a few actors and
interaction schemes only, it is already heavy to support each
actor’s communications since the combinatory explodes.

2.3 Supporting Actors Interactions
Our focus is now to assist actors’ interactions by means of

a technical structure. A structure (we will use the term plat-
form) helps to uniform communications and workflow pro-
cesses, to make actors working in a cooperative way. Many
collaborative platforms have spread in recent years, and have
been proven efficient coupled with a visual language when
data can be modeled as flows [15]. Visual languages aimed
at reducing the complexity on the client side, to leave ev-
ery technical and low level operations on the application or
server side.

For instance, in the signal processing field, Analog Box [12]
is a modular sound synthesizer that lets users to produce
complex sounds, without any specific signal processing back-
ground. Similarly, advanced image analysis processing can
be done with a few mouse click, using a visual language such
as VIVA [16]. In the data mining field, V4Miner [6] provides
EJB (Enterprise JavaBeans) which assembly produces visu-
alizations that can assist users to solve complex tasks. Also,
Knime [3] is an application based in Eclipse to create data
flows on which to perform data mining tasks.

Nonetheless, those interfaces are only aimed at program-
mers or designers, since they -among other many technical
issues- require client installation and configuration. Access
to regular users is limited, while they could review data flows
and could be included in a feedback loop. Also, those in-
terfaces don’t provide a global share of usages (saved files,
templates and statistics) which could be another useful feed-
back, assuming a critical mass of users exist. Finally, as far
as we know, none have been dedicated to Information Visu-
alization.

3. MASHVIZ INTERFACE
Our contribution is called masvhiz 1, a web-based interface

that allows programmers, designers and users to collaborate
in an asynchronous way, either one-to-one or within commu-
nities, in order to design Information Visualization. Mashviz
aims at making ordinary “knowledge buffers” (recommenda-
tions, programs) fully reusable, regardless programming lan-
guage and executing environment, by making them available
as web-services, on a unique platform. The figure 3 shows
the global workflow of mashviz.

Figure 3: Masvhiz workflow makes actors to coop-
erate in an asynchronous way: 1) programmers wrap
their codes using an API [23] to publish them as web
services, 2) designers assembly services to compose
flows, and 3) users select, use and share flows. Feed-
back is always available using a monitoring interface
(not shown here).

The design workflows is described as follow, and is three-
fold:

1. Service wrapping for programmers

2. Flow composition for designers

3. Flow listing and usage for users

3.1 Service wrapping
Programmers use a dedicated API [23], to wrap programs

(i.e. every transformation steps) and make them available as
web services. Then, only the interface (inputs and outputs)
become visible. Thus, there remain no implementation and
execution constraints anymore: only services IP, ports and
inputs/outputs are required to use them. Technically, the
API is turning programs into stand alone web servers, which
read inputs and produces outputs. Off-the-shelf libraries or
customized scripts can be wrapped to become web services.
According to feedbacks we got from programmers during our
case study in section 4, it remains easy and quick to perform.
Here are the main primitives of the API:
1http://vizod.liris.cnrs.fr/projects/mashviz/

• CheckInput: checks current service input compatibly
with another service.

• SetInput: sets the output stream from a service, as
input stream for the current service.

• GetCommands: gets available commands from the cur-
rent service.

• GetOutputPush: gets the current service output values
in a continuous stream.

The API enables flows composition (i.e. connecting ser-
vices to each others) and performs complex operation such
as aggregation, and synchronizations. Once wrapped, ser-
vices will be categorized by programmers using the pipeline
steps [5] and published (visible on the left vertical strip on
figure 5).

3.2 Flow Composition Interface
Designers compose flows based on services, using mashviz

flow creation interface (figure 2). The interface implements
syntactic and semantic rules [19]. Those rules are invisi-
ble for designers: all the rule checking complexity is imple-
mented within the application [15]. Here are details on the
two sets of rules:

Syntactic rules: hold low level compatibility checking be-
tween services. For instance, service A output can only
be connected to service B input, if their types match.
In the current implementation we used MIME (Multi-
purpose Internet Mail Extensions) inspired types. To
check if types are compatible the web-based interface
triggers a CheckInput call on both services.

Semantic rules: hold higher checking levels, such as if the
flow features navigation history [31], consistency [25]
and any global constraint. For instance, Quality of
Service (i.e. achieving a certain level of quality) is
implemented to guaranty a flow execution time or re-
liability.

To compose a flow, designers select, drag and drop services
(Figure 5) that have been previously published by program-
mers. Then customize services (i.e. boxes) using regular
lists, text fields and check boxes. Services can be connected
to each other if they follow both syntactic and semantic
rules.

Figure 5: Designers (1) select services from the DS
Manager, (2) then drag it to the data space (3) drop
and custom it.

In case a new service is published, the DS Manager (data-
source manager that provides the list of available services,

Figure 4: mashviz flow list interface shows already created flows, which users can edit or clone. User selection
can be performed to filter the flow list by users, tags, module used, count of use, etc.

as a tree) is refreshed and designers are notified. Designers
can save and load flows, with annotations and tags that will
appear in the flow list interface (Figure 4).

3.3 Flow List Interface
Users can use existing flows that appears in the mashviz

flow list interface (figure 4). Information on flows, such as
textual description or overview pictures, are provided to give
users information about the role and complexity of the flow.
Users can edit or clone existing flows, already composed by
designers. Flows can be used in interactive applications by
means of the provided URL by clicking on the execute link.
Users are identified, so their activity is recorded to provide
statistics to both programmers and designers. Also, a pro-
grammer can filter flows to the one using his services only,
to get usages being made with it by the users community.
A monitoring interface (not shown here) gives more details
about run counts, execution time and error rates of services.
At every steps raw data are available, to let programmers,
designers and users to export them and use third party ap-
plications to analyze and communicate them more deeply.

3.4 Implementation notes
We implemented mashviz as a web based interface, re-

quiring zero install on the client side. The look and feel is
based on Yahoo! Pipes [9], which is a visual programming
interface to perform web service mashups. We used Yahoo!
User Interface Library (YUI) [11] and WireIT [10] making
the interface consistent across web browsers. As back end,
we used Apache and a MySql database to store flows and
usage statistics, and allow users to perform queries to fil-
ter and retrieve flows. The API [23] to wrap programs into
web service is written in C# but it can easily be ported into
other languages.

4. CASE STUDY
We are now interested in using mashviz to improve an ex-

isting interactive application (described in section 4.1). We
show how mashviz successfully resulted in an asynchronous
work between programmers who implemented the whole data

preparation flow as services (section 4.2), designers who cre-
ated and colored a graph (section 4.3), and users testing the
MosaiZ application and improving it by selecting other flows
(section 4.4).

4.1 Scenario description
We previously worked on Interactive Image Mosaics2 [27],

which are Image Mosaics (regular images composed from im-
age miniatures) made pan-able and zoom-able, and called
MosaiZ, to explore large non-structured image collections.
Navigation in a MosaiZ allows users to smoothly jump from
a source image, to reach a target image based on a similarity
criteria. This criteria is implemented in a mosaic generator
[13], which integrates many parameters such as gradient, col-
ors, dataset repartition (e.g. not putting the same images
too close). A MosaiZ can be seen as a graph connecting
images. This graph is called a scene graph (Gscene) which
edges are target images, linked to source images, that will
become target if selected by users. Building Gscene is the
crucial part, and the MosaiZ experience can vary grandly
according to the way images are extracted and the mosaic
generator parameters set: a way to let users to find the best
trade off themselves is required, since the options combina-
tory explodes, and as every visual interface it can’t be done
automated since users have to evaluate the resulting MosaiZ
themselves.

4.2 Dataset preparation
The figure 2 shows a fully complete data preparation flow.

The first step is to extract and select images. Images are
stored in a SQL database and extracted from via a SQL
query (selecting images with tag “building”). Each result is
an URL pointing to the image. Then, for each image url, a
fetch service retrieves images and provides it to the OpenCV
[4] service, which performs resize and rotation. Since original
images are modified, and since they will be called multiple
times, a temporary cache will store the modified images.
The temporary cache is located on a remote server, so when
the flow will be executed, the client doesn’t need to have

2http://vizod.liris.cnrs.fr/projects/mosaiz/

any storage facility.
The second preparation step is to extract image charac-

teristics and generate a scene graph. We used the metapixel
library [13] as a mosaic generator, which for each images as
input, produces an image mosaic as output, based on images
features. The metapixel library output is a URL pointing to
the graph (GraphML encoded) which holds the scene graph
structure and refers to images stored in the cache. This URL
is the input of the MosaiZ Zoomable User Interface (based
on the Java library Piccolo2D [2]) that can be launched as
a Java Web start by users.

4.3 Scene Graph visualization
While the scene graph is originally internal to the Java

application, to connect images and construct a space/scale
diagram, it could be visualized to give users an overview of
the dataset: a graph visualization process must be set up.

Figure 6: Graph building and rules to color and vi-
sualize MosaiZ scene graph. The graph that was
initially internal to a Java application and is now
visualized using LGL [1]. The visualization can be
plugged into a 3D multi-resolution environment us-
ing Google Earth [29] or a 2D interface (similar to
Google Map).

To visualize the scene graph in a meaningful way, design-
ers composed a scene graph visualization flow (figure 6) by
including an already wrapped graph layout service, by pro-
grammers. Designers used LGL [1], which is the very same
library used for the Opte project and which is an quick auto-
organizing graph layout. The service can be customized to
color the graph. The red color has been associated to the
count number: a graph vertex will be red if visited at least
once, by users in the MosaiZ application. The LGL output
is an image that needs an interactive environment to zoom
and pan. We connected it to two modules. The first one is
making a KML (Keyhole Markup Language) map that can
be executed by Google Earth [29]. The image resolution
will change regarding user’s altitude on the virtual globe:
the higher his altitude is, the more abstract the image will
be by making an edge detection to highlight main parts of
the graph using The Gimp [14]. Then a Gaussian blur will
be added the more the user zooms in. Finally, on the ground
the original image is displayed to show details. Note that
Google Earth won’t show any geographical information, only
data from our graph will be shown and filtered through the
interface. The second module will display original image as

on a regular 2D map such as Google Map, using the very
same graph generated at the ground level on Google Earth.

4.4 New service required by users
We already emphasized that the dataset preparation step

is crucial, since it will make the MosaiZ relevant or not.
During our experiments, we noted that users complained
about a substantial amount of images needed to be rotated.
The figure 2 shows that in the current dataset preparation,
the OpenCV library was automatically rotating 90 degrees
clockwise, which leads sometimes to a disappointing result.

Figure 7: An automatic rotation service is added
(based on EXIF metadata), to improve the image
dataset preparation flow. If EXIF data are not avail-
able, no operation is performed.

So, users decided to use another flow that takes into ac-
count EXIF (Exchangeable Image File Format) data (meta-
data from digital camera) from pictures, to perform an ef-
ficient automatic rotation (figure 7). This other flow was
picked up because it was more successful in terms of run
count. If that flow didn’t exist, users could have cloned
the basic flow and added an automatic rotation module (as-
suming that automatic rotation module was implemented by
programmers). This operation would have only required a
few clicks for users, with absolutely no programming skills.
Note that if a clone is made, the link between the two flows
will be kept, and users will be able to see the connection.
This means that users can pick up better flows just by look-
ing at clones and related flows (based on similar tagging or
users). Also, programmers and designers will be notified
that a flow has been cloned or a service has been used in
a new flow (it can be done since all actors are identified in
mashviz). And if the EXIF rotation is still not satisfying,
some requests can be made to get a module with automatic
rotation (based on content, not on metadata) to the pro-
grammers’ community. Once a flow is cloned, it is auto-
matically published in the flow list interface, and users can
comment and tag it.

5. DISCUSSION AND CONCLUSION
In this paper we introduced a web based interface, mashviz,

to support collaboration between programmers, designers
and users. We detailed workflows for each actor, and how

to apply it to a real case scenario to improve a current in-
teractive application. Regarding our motivating example
(the Opte Project) we managed to provide a complete en-
vironment that can reproduce it by supporting actors’ co-
operation in an asynchronous way. Syntactic and semantic
rules have been introduced to unload actors from repetitive
checking tasks, and focus on more important tasks, such as
improving flows design.

We limited our scope of study to three main actors: pro-
grammers, designers and users, as well as two interactions
types: one-to-one and communities. But other actors are in-
directly involved, such as artists that can give inspirational
perspectives through exhibitions or books. For instance,
Informative Art [22] aims at integrating data through art
in homes, without cognitive overload. If those visualiza-
tions were based on mashviz (i.e. every transformation step
is published as services and then composed into flows) a
broader audience and application range could be reached,
fostering innovation.

Regarding our experiments, we noticed that roles are not
exclusive. For instance, we noticed after a short training
time only, some users were able to fully use mashviz flow cre-
ation interface. Also some actors can be “complete” such as
power users who are also designers and programmers since
they may have multiple abilities.

One of the major shortcoming of the Opte Project was the
difficulty to plug it with another dataset. Such a possibility
is strongly advised, especially to benchmark a visualization
among others [20]. Using mashviz it becomes easy to use any
dataset, as long as it matches flows inputs. Working with
programmers, we realized that mashviz facilitates vertical
assembly to fully experiment individual contributions, in a
complete existing data flow, up to images and integration
to applications. For instance if a new database query sys-
tem or a graph layout is developed, it can quickly be tested
with an existing data flow (after being wrapped using the
API). Finally, mashviz allows comparisons with concurrent
solutions, which will be an horizontal analysis, such as a
benchmarks would do.

Our next step is to make mashviz available at a wide scale,
as a complete platform with numerous data sources, trans-
formers and logical operators. Also, we plan to include usage
statistics directly in both edition and list interfaces (using
color coding or symbols). So that designers and users will
be aware of execution time (e.g. to identify bottlenecks) to
be able to predict flows behavior and pick up the adequate
flow regarding the dataset, users involved and the task to
achieve.

6. REFERENCES
[1] A. T. Adai, S. V. Date, S. Wieland, and E. M.

Marcotte. Lgl: creating a map of protein function with
an algorithm for visualizing very large biological
networks. J Mol Biol, 340(1):179–190, June 2004.

[2] Benjamin B. Bederson, Jesse Grosjean, and Jon
Meyer. Toolkit design for interactive structured
graphics. IEEE Trans. Softw. Eng., 30(8):535–546,
2004.

[3] M.R. Berthold, N. Cebron, F. Dill, G. Di Fatta, T.R.
Gabriel, F. Georg, T. Meinl, P. Ohl, C. Sieb, and
B. Wiswedel. KNIME: The Konstanz information
miner. In Proceedings of the 4th annual industrial

simulation conference, Workshop on multi-agent
systems and simulations, Palermo. Springer, 2006.

[4] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal
of Software Tools, 2000.

[5] Ed H. Chi. A taxonomy of visualization techniques
using the data state reference model. In INFOVIS,
pages 69–76, 2000.

[6] Thanh-Nghi Do and Jean-Daniel Fekete. V4miner
pour la fouille de données. numéro spécial de la revue
RIA, Revue d’Intelligence Artificielle, 2008.

[7] J. Forlizzi, J. Zimmerman, and S. Evenson. Crafting a
Place for Interaction Design Research in HCI. Design
Issues, 24(3):19–29, 2008.

[8] Jeffrey Heer, Stuart K. Card, and James A. Landay.
prefuse: a toolkit for interactive information
visualization. In CHI, pages 421–430, 2005.

[9] http://developer.yahoo.com/yui/. Yahoo! Pipes. 2009.

[10] http://javascript.neyric.com/wireit/. WireIt. 2009.

[11] http://pipes.yahoo.com. The Yahoo! User Interface
Library (YUI). 2009.

[12] http://www.andyware.com/abox2/. Analog Box 2.
2009.

[13]
http://www.complang.tuwien.ac.at/schani/metapixel/.
Metapixel - A Photomosaic Generator. 2009.

[14] http://www.gimp.org/. Gnu image manipulation
program. 2008.

[15] Wesley M. Johnston, J. R. Paul Hanna, and
Richard J. Millar. Advances in dataflow programming
languages. ACM Comput. Surv., 36(1):1–34, 2004.

[16] Dennis Koelma and Arnold Smeulders. A visual
programming interface for an image processing
environment.

[17] B. Lyon. The opte project. The Opte Project, 2003.

[18] B. Lyon. Opte as an Aesthetic Experience. The Opte
Project, 2005.

[19] Jock Mackinlay. Automating the design of graphical
presentations of relational information. ACM Trans.
Graph., 5(2):110–141, 1986.

[20] Catherine Plaisant, Jean-Daniel Fekete, and Georges
Grinstein. Promoting insight-based evaluation of
visualizations: From contest to benchmark repository.
IEEE Transactions on Visualization and Computer
Graphics, 14(1):120–134, 2008.

[21] J. Preece, Y. Rogers, and H. Sharp. Beyond
Interaction Design: Beyond Human-Computer
Interaction. John Wiley & Sons, Inc. New York, NY,
USA, 2001.

[22] Johan Redström, Tobias Skog, and Lars Hallnäs.
Informative art: using amplified artworks as
information displays. In DARE ’00: Proceedings of
DARE 2000 on Designing augmented reality
environments, pages 103–114, New York, NY, USA,
2000. ACM.

[23] Marian Scuturici. Dataspace API. Technical report,
LIRIS, 2009.

[24] Ben Shneiderman. The eyes have it: A task by data
type taxonomy for information visualizations. In VL
’96: Proceedings of the 1996 IEEE Symposium on
Visual Languages, page 336, Washington, DC, USA,
1996. IEEE Computer Society.

[25] Ben Shneiderman. Designing the User Interface:
Strategies for Effective Human-Computer Interaction.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1997.

[26] James J. Thomas and Kristin A. Cook. Illuminating
the Path: The Research and Development Agenda for
Visual Analytics. National Visualization and Analytics
Ctr, 2005.

[27] R. Vuillemot and B. Rumpler. MosaiZ: Interactive
Image Mosaics. Technical report, LIRIS, 2009.

[28] Romain Vuillemot, Béatrice Rumpler, and Jean-Marie
Pinon. Enterprise Information Systems, chapter
Dissection of a Visualization On-Demand Server,
pages 348–360. LNBIP. Springer Berlin Heidelberg,
April 2009.

[29] Romain Vuillemot and Béatrice Rumpler. Mapping
visualization on-demand onto a virtual globe: an
appealing complement to browser-based navigation. In
HT ’08, pages 249–250, New York, NY, USA, 2008.
ACM.

[30] Martin Wattenberg, Jesse Kriss, and Matt McKeon.
Manyeyes: a site for visualization at internet scale.
IEEE Transactions on Visualization and Computer
Graphics, 13(6):1121–1128, 2007.

[31] Alan Wexelblat. History-based tools for navigation. In
HICSS, 1999.

[32] J. Wood, K. Brodlie, J. Seo, D. Duke, and J. Walton.
A web services architecture for visualization. In
Proceedings of the IEEE Fourth International
Conference on eScience, 2008., pages 1–7. IEEE
Computer Society Press, 2008.

