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Let G = (V, E) be an undirected graph and let S ⊆ V . The S-connectivity λS
G

(u, v) of a node

pair (u, v) in G is the maximum number of uv-paths that no two of them have an edge or a node

in S − {u, v} in common. The corresponding Connectivity Augmentation (CA) problem is: given a

graph G = (V, E), a node subset S ⊆ V , and a nonnegative integer requirement function r(u, v)

on V ×V , add a minimum size set F of new edges to G so that λS
G+F

(u, v) ≥ r(u, v) for all (u, v) ∈
V ×V . Three extensively studied particular cases are: the Edge-CA (S = ∅), the Node-CA (S = V ),

and the Element-CA (r(u, v) = 0 whenever u ∈ S or v ∈ S). A polynomial algorithm for Edge-CA

was developed by Frank. In this paper we consider the Element-CA and the Node-CA, that are

NP-hard even for r(u, v) ∈ {0, 2}. The best known ratios for these problems were: 2 for Element-

CA and O(rmax · ln n) for Node-CA, where rmax = maxu,v∈V r(u, v) and n = |V |. Our main

result is a 7/4-approximation algorithm for the Element-CA, improving the previously best known

2-approximation. For Element-CA with r(u, v) ∈ {0, 1, 2} we give a 3/2-approximation algorithm.

These approximation ratios are based on a new splitting-off theorem, which implies an improved

lower bound on the number of edges needed to cover a skew-supermodular set function. For Node-

CA we establish the following approximation threshold: Node-CA with r(u, v) ∈ {0, k} cannot be

approximated within O(2log1−ε n) for any fixed ε > 0, unless NP ⊆ DTIME(npolylog(n)).

Categories and Subject Descriptors: F.2.2 [Nonnumerical Algorithms and Problems]: Com-
putations on discrete structures; G.2.2 [Discrete Mathematics]: Graph Algorithms

General Terms: Approximation Algorithms, Hardness of Approximation

Additional Key Words and Phrases: connectivity augmentation, element-connectivity, node-
connectivity

1. INTRODUCTION

1.1 Problem statement

Let G = (V,E) be a graph and let S ⊆ V . The S-connectivity λS
G(u, v) of (u, v)

in G is the maximum number of uv-paths that no two of them have an edge or a
node in S − {u, v} in common. Unless stated otherwise, all graphs are assumed to
be undirected. We consider the following problem:

Connectivity Augmentation (CA):
Instance: A graph G = (V,E), S ⊆ V , and a requirement function r(u, v) on

V × V .

A preliminary version of this paper appeared in Proc. SODA 2005, pp. 176–185.
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Objective: Find a minimum size edge set F so that λS
G+F (u, v) ≥ r(u, v) for all

(u, v) ∈ V × V .

Three extensively studied particular cases are: the Edge-CA (S = ∅), the Node-CA

(S = V ), and the Element-CA (r(u, v) = 0 whenever u ∈ S or v ∈ S). A particular
case of the Element-CA is the Hypergraph-Edge-CA where the goal is to augment
a given hypergraph by edges (hyperedges of size two) to meet given pairwise (hy-
per)edge connectivity requirements, see Proposition 4.4. CA is a particular case of
the Generalized Steiner Network problem, where we are given a complete graph with
costs on the edges, S ⊆ V , and connectivity requirements r(u, v), and the goal is
to find a minimum-cost subgraph that satisfies the connectivity requirements. CA

is the case of 0, 1-costs, when the edges of G have cost 0, and any other edge is
allowed by cost 1. See [Kortsarz and Nutov 2007] for classification of Generalized

Steiner Network problems with respect to costs and requirements.
While the Edge-CA was shown to be polynomially solvable in [Frank 1992], the

Hypergraph-Edge-CA and the Node-CA are NP-hard even when the input graph
G is connected and r(u, v) ∈ {0, 2}, see [Cosh et al. 2003] and [Nagamochi and
Ishii 2003], respectively; the NP-hardness proofs in [Cosh et al. 2003] and [Nag-
amochi and Ishii 2003] are essentially identical. The best known ratios for CA

problems are as follows. [Kortsarz and Nutov 2008] established approximation ra-
tios O(ln n) for S 6= V and O(rmax · ln n) for Node-CA (the case S = V ), where
rmax = maxu,v∈V r(u, v) and n = |V |; this result is valid for both directed and
undirected graphs. In fact, for large values of rmax directed and undirected Node-

CA problems were recently shown to be equivalent w.r.t. approximation in [Lando
and Nutov 2009]. The Element-CA admits a 2-approximation algorithm via an ex-
tension of the iterative LP-rounding method of [Jain 2001], which applies also to
the min-cost version of the problem, see [Fleischer et al. 2006] and [Cheriyan et al.
2006]. [Nagamochi and Ishii 2003] gave a combinatorial 3/2-approximation algo-
rithm for Node-CA with r(u, v) ∈ {0, 2} when the input graph G is connected; this
algorithm applies to Element-CA as well.

Here is some additional notation used in the paper. An edge between u, v is
denoted by uv. A uv-path is a (simple) path with endnodes u, v. For an arbitrary
two sets A,B of nodes and edges (or graphs) A−B is the set (or graph) obtained
by deleting B from A, where deletion of a node implies also deletion of all the
edges incident to it; similarly, A + B is the set (graph) obtained by adding B to
A. Let H be a graph or an edge set on node set V . For disjoint X,Y ⊆ V we
denote by δH(X,Y ) the set {uv ∈ H : u ∈ X, v ∈ Y } of the edges in H from X
to Y and dH(X,Y ) = |δH(X,Y )|, δH(X) = δH(X,V −X), and dH(X) = |δH(X)|.
Let κH(u, v) = λV

H(u, v) be the node-connectivity between u, v. Let opt denote the
optimal solution value of a problem instance at hand. Let Z+ denote the set of
non-negative integers. For a function g on V and X ⊆ V let g(X) =

∑

v∈X g(v).

1.2 Our results

Recall that Element-CA is NP-hard even when r(u, v) ∈ {0, 2} and G is connected
[Cosh et al. 2003], and that in this case the problem admits a 3/2-approximation
algorithm [Nagamochi and Ishii 2003]. An approximation ratio better than 2 was
not known for other versions of the problem. We prove:
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Theorem 1.1. Element-CA admits a 7/4-approximation algorithm for arbitrary
requirements, and a 3/2-approximation algorithm if r(u, v) ∈ {0, 1, 2}. The same
holds for Hypergraph Edge-CA.

Theorem 1.1 is based on a new splitting-off theorem, which also implies an im-
proved lower bound on the number of edges needed to cover a skew-supermodular
set function. We need some definitions to present this result.

Definition 1.1. A set-function p : 2V → Z+ is symmetric if p(X) = p(V −X)
for all X ⊆ V , and p is skew-supermodular if p(∅) = 0 and for any X,Y ⊆ V with
p(X), p(Y ) > 0 at least one of the following holds:

p(X) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y ) (1)

p(X) + p(Y ) ≤ p(X − Y ) + p(Y −X) (2)

If (1) always holds for any X,Y ⊆ V with p(X), p(Y ) > 0 then p is supermodular.

Definition 1.2. An edge set F on V covers a set function p, or F is a p-cover,
if dF (X) ≥ p(X) for all X ⊆ V . A function g : V → Z+ is a p-transversal if
g(X) ≡

∑

{g(v) : v ∈ X} ≥ p(X) for all X ⊆ V . Let Tg = {v ∈ V : g(v) ≥ 1}.
A p-transversal g is a minimal p-transversal if for any v ∈ Tg reducing g(v) by 1
results in a function that is not a p-transversal.

CA problems can be casted as the following problem, c.f. [Frank and Jordán 1995;
Benczúr and Frank 1999; Frank 1992; Jain 2001; Fleischer et al. 2006; Cheriyan
et al. 2006; Kortsarz and Nutov 2007].

Set-Function Edge-Cover

Instance: A set-function p on a groundset V .
Objective: Find a minimum size p-cover.

Let opt(p) be the minimum size of a p-cover. As g(v) = dF (X) is a p-transversal
for any p-cover F , opt(p) ≥ g(V )/2 for any p-transversal g with g(V ) minimum.
For a skew-supermodular p, it is known that any minimal p-transversal g minimizes
g(V ), see Lemma 3.2. Thus a natural approach to compute a small p-cover is:
repeatedly choose an edge uv with u, v ∈ Tg, so that updating p and reducing g(u)
and g(v) by 1, keeps g being a p-transversal. This approach works for some special
cases, but in general such an edge uv may not exist.

More formally, given u, v ∈ Tg define puv and guv as follows:

puv(X) = max{p(X)− 1, 0} if |X ∩ {u, v}| = 1 and puv(X) = p(X) otherwise;

guv(x) = g(x)− 1 if x = u or if x = v and guv(x) = g(x) otherwise.

It is easy to see that if p is (symmetric) skew-supermodular, so is puv, e.g. see
[Jain 2001]. However, guv may not be a puv-transversal if g is. We say that a pair
u, v ∈ Tg is (p, g)-legal if guv is a puv-transversal; then replacing p, g by puv, guv is
the splitting-off operation at u, v. Intuitively, splitting-off is an attempt to add the
edge uv to a partial solution, and to consider the residual problem of covering puv

with the residual lower bound dguv(V )/2e = dg(V )/2e − 1.
We consider the simplest algorithm which repeatedly splits-off legal pairs as long

as such exist, and then adds to the partial solution any inclusion minimal solution
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of the residual instance. We will characterize those pairs p, g for which no (p, g)-
legal pair exists, and obtain a new lower bound on opt(p) for a skew supermodular
set-function p.

It would be convenient to describe our results in terms of the projection function
pg of p on Tg defined by pg(T ) = max{p(X) : X ⊆ V,X∩Tg = T} for all T ⊆ Tg. It
follows from the definition of pg that any pg-cover is also a p-cover. The following
statement essentially says that w.l.o.g. we may consider edge-covering pg instead
of p. It was implicitly proved in [Benczúr and Frank 1999], and we will prove a
generalization of it in Section 4.1.

Lemma 1.2. Let p be symmetric skew-supermodular and let g be a minimal p-
transversal. Then pg is symmetric skew-supermodular, any pg-cover is a p-cover,
and opt(p) = opt(pg).

Theorem 1.3. Let p be symmetric skew-supermodular, let g be a minimal p-
transversal, and suppose that no (p, g)-legal pair exists. Then p and g are 0, 1-
valued, |Tg| ≥ 3, and pg(T ) = 1 for all T ⊂ Tg with |T | ∈ {1, 2}. Furthermore,
opt(p) = opt(pg) ≥ d2|Tg|/3e.

Based on Theorem 1.3 we give an approximation algorithm for Set-Function Edge-

Cover with skew-supermodular p, but its polynomial implementation requires that
certain queries related to p can be answered in polynomial time. For an edge set F
and node set X let δF (X) denote the set of edges in F with exactly one endnode in
X. Following [Benczúr and Frank 1999], we assume that for any edge set F with
integral weights {w(e) : e ∈ F} (w(e) is the multiplicity of the edge e) and any
function g on V we have a polynomial time oracle for

min
X⊆V

(g(X) + w(δF (X))− p(X)) (3)

As was pointed in [Benczúr and Frank 1999], for a supermodular p (3) can be real-
ized in polynomial time even if p is given by an evaluation oracle. Such an extension
is not known for skew-supermodular functions. But in applications discussed in this
paper, (3) can be realized in polynomial time via max-flows.

Theorem 1.4. Assuming a polynomial time oracle for (3) is available, Set-

Function Edge-Cover with skew-supermodular p admits a 7/4-approximation algo-
rithm. Furthermore, the problem is APX-hard even for 0, 1-valued set functions for
which no legal pair exists.

The APX-hardness reduction in Theorem 1.4 does not seem to be straightfor-
wardly applicable to p-cover problems arising from augmentation problems. For
example, the Edge-CA is in P.

In [Benczúr and Frank 1999] was developed a polynomial time algorithm that
computes an optimal edge-cover of a symmetric supermodular p, under the assump-
tion that a polynomial time oracle for (3) is available. They used the following lower
bound. A subpartition F of V is p-full if p(∪X∈F ′X) ≥ 1 for every ∅ ⊂ F ′ ⊂ F .
It is easy to see that any p-cover F must induce a connected graph on the parts
of a p-full subpartition F , hence |F | ≥ |F| − 1. Let dim(p) denote the maximum
cardinality of a p-full subpartition. Let g be a p-transversal with g(V ) minimum.
From the discussion above it follows that opt(p) ≥ max{dg(V )/2e,dim(p)− 1} for
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any set-function p. [Benczúr and Frank 1999] showed that for a symmetric super-
modular p an (optimal) p-cover of size max{dg(V )/2e,dim(p)−1} can be computed
in polynomial time. Later, [Szigeti 1999] showed that for an even valued symmetric
skew-supermodular p the bound dg(V )/2e is achievable.

However, for an arbitrary skew-supermodular p the lower bound of [Benczúr and
Frank 1999] is not sufficient to get an approximation 2− ε for some fixed ε even for
0, 1-valued p. To see this let |V | = k ·`, let A1, . . . , A` be a partition of V into ` sets
of size k each, and let F = {X : ∅ 6= X ⊂ Ai for some i}. Set p(X) = 1 if X ∈ F
or if V − X ∈ F . It is easy to verify that: p is symmetric skew-supermodular,
g(v) = 1 for all v ∈ V is a minimal p-transversal so g(V ) = |V | = k · `, and
opt(p) = |V | − ` = `(k − 1) (an optimal solution is a union of trees on each
Ai). On the other hand, dim(p) = k (a maximum p-full subpartition consists
of all singletons from some Ai). The ratio between opt(p) and the lower bound
max{g(V )/2,dim(p)− 1} = k · `/2 is 2(k − 1)/k, which approaches 2 if k is large.

Our 3/2-approximation algorithm for Element-CA with r(u, v) ∈ {0, 1, 2} is based
on a better lower bound than the one in Theorem 1.3. It is easy to see that if p is 0, 1-
valued, then any inclusion minimal p-cover is a forest. Assume that no (p, g)-legal
pair exists. Then any tree on Tg is a p-cover, since p is 0, 1-valued, by Theorem 1.3.
The lower bound in Theorem 1.3 gives a 3/2-approximation for instances without
legal pairs, by just taking any tree on Tg. We prove that if r(u, v) ∈ {0, 1, 2}, then
for the corresponding set-function p the problem can be solved in polynomial time
on instances without legal pairs. Specifically, we show that there exists a partition
T of Tg so that pg(X) = 1 for X ⊂ Tg if, and only if, X divides some part of T ; a
set X divides a set T if X ∩ T, T −X 6= ∅. This implies that any inclusion minimal
or optimal pg-cover is a union of trees on the parts of T .

Our last result is for the Node-CA. [Kortsarz et al. 2004] established an approx-
imation threshold for the problem of finding a min-size spanning subgraph G of a
given graph H so that κG(u, v) ≥ r(u, v) for all u, v ∈ V (this is the case of {1,∞}-
costs) even when r(u, v) ∈ {0, k}. By extending the construction of [Kortsarz et al.
2004], we will show a similar hardness result for the (usually easier) augmentation
version (the {0, 1} costs case), and prove:

Theorem 1.5. Node-CA with r(u, v) ∈ {0, k} cannot be approximated within

O(2log1−ε n) for any fixed ε > 0, unless NP ⊆ DTIME(npolylog(n)).

Recall that CA with S 6= V admits an O(ln n)-approximation algorithm, while
for S = V the best known ratio is O(rmax ln n) [Kortsarz and Nutov 2008]. Theo-
rem 1.5 shows that for S = V a much better (e.g., a polylogarithmic) approxiamtion
algorithm may not exist.

We note that recently Bernáth and Király [Bernáth and Király 2008] showed
several extensions and other interesting applications of the new approach developed
in this paper, including simplified proofs of many classic results, as well as some
new interesting results. It is not clear however that all possible applications of our
approach are exhausted.

This paper is organized as follows. In the rest of this section we briefly survey
some related work. Theorems 1.3, 1.4, 1.1, and 1.5 are proved in Sections 2, 3, 4,
and 5, respectively. In Section 6 we briefly survey some open problems.
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1.3 Related work

We briefly summarize the complexity and approximability status of CA problems.
For a survey of the cases when polynomial algorithms and good characterizations
are available for the minimum see [Frank 2001; 1995]. For directed graphs it was
observed in [Frank 1992] that even for rooted {0, 1}-requirements Edge-CA is at
least as hard as the Set-Cover problem; rooted requirements means that there is a
“root” s ∈ V so that r(u, v) > 0 implies u = s or v = s. Combined with the result
of [Raz and Safra 1997] this implies an Ω(ln n)-approximation threshold for this
simple variant (namely, the problem cannot be approximated within c ln n for some
universal constant c > 0, unless P=NP). By extending the construction from [Frank
1992], a similar approximation threshold was shown in [Nutov 2006] (see also [Lando
and Nutov 2009]) for the undirected Node-CA with rooted {0, k}-requirements and
k = Θ(n).

We note that CA is a particular case of the Generalized Steiner Network problem,
where edges have costs and the goal is to add a min-cost set of edges so that
λS

G+F (u, v) ≥ r(u, v) for all (u, v) ∈ V × V . For Generalized Steiner Network we
may assume that any edge is feasible (if not, assign ”infinite” costs to “forbidden”
edges). Under this assumption CA is the case of {0, 1}-costs. Another type of costs
are the {1,∞}-edge costs, so called Min-Size Subgraph Problems. See surveys in
[Khuller 1995; Kortsarz and Nutov 2007] on approximation algorithms for various
types of Generalized Steiner Network problems.

The Edge-CA:. For general r, a polynomial algorithm was given by [Frank 1992]
based on [Mader 1978] splitting-off theorem. For the min-cost version, [Jain 2001]
gave a 2-approximation algorithm.

The Element-CA:. Recall that the Hypergraph Edge-CA is a particular case of the
Element-CA. [Bang-Jensen and Jackson 1999] showed that the Hypergraph Edge-CA

is in P for uniform requirements r ≡ k on V × V . This result was extended by
[Benczúr and Frank 1999] to requirements r ≡ k on T×T for some T ⊆ V and r = 0
otherwise. The 2-approximation algorithm of [Jain 2001] for the min-cost version
of Edge-CA was extended to the min-cost version of Element-CA by [Fleischer et al.
2006] and by [Cheriyan et al. 2006].

The Node-CA:. For r(u, v) ≡ k for all u, v ∈ V [Jackson and Jordán 2005] gave
an algorithm that for any fixed k computes an optimal solution in polynomial time.
The complexity status for arbitrary k remains a major open question in graph
connectivity (a similar problem for digraphs is solvable in polynomial time [Frank
and Jordán 1995]); the best known approximation algorithm due to [Jackson and
Jordán 2000] computes a solution with roughly (at most) k(k − κ(G))/2 edges
over the optimum, where κ(G) is the node connectivity of G. As was mentioned,
for rooted {0, k}-requirements in [Nutov 2006] an Ω(ln n)-approximation threshold
was established, and the problem also admits an O(ln n)-approximation algorithm
[Kortsarz and Nutov 2008]. However, for requirements r(s, v) = k for all v ∈ V − s
the complexity status of this problem is another open question (for digraphs, this
case is in P even when edges have costs [Frank and Tardos 1989]). For general r,
no tighter hardness results for the min-size version were known.
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2. PROOF OF THEOREM 1.3

In this section we prove Theorem 1.3. Our original proof for the fact that p is 0, 1-
valued in the preliminary version [Nutov 2005] was somewhat long and complicated,
and recently [Bernáth and Király 2008] found a much simpler and more constructive
proof. We see no point in presenting our original proof, and for this part present a
proof along the proof line of [Bernáth and Király 2008].

We say that X ⊂ V with p(X) > 0 is dangerous if g(X) ≤ p(X) + 1. Note that
if X is dangerous and u, v ∈ X ∩Tg, then guv(X) = g(X)− 2, puv(X) = p(X), and
thus guv(X) = g(X)− 2 ≤ p(X) + 1− 2 = puv(X)− 1 < puv(X). Hence a pair u, v
contained in a dangerous set cannot be legal. It is easy to that that this is the only
reason that a pair is not legal, namely, if a pair is not legal then there must be a
dangerous set containing it. Thus we have:

Proposition 2.1. A pair u, v ∈ Tg is not (p, g)-legal if, and only if, some dan-
gerous set contains u, v. 2

Since p is symmetric, existence of a dangerous set X containing u, v implies
(V −X)∩Tg 6= ∅, hence |Tg| ≥ 3 must hold. From (1) and (2) it is easy to see that:

Proposition 2.2. Let p be symmetric skew-supermodular, let µ = max{p(X) :
X ⊆ V }, and let F = {X ⊆ V : p(X) = µ}. Then F is symmetric and X ∩ Y,X ∪
Y ∈ F if (1) holds, or X − Y, Y −X ∈ F if (2) holds, for any X,Y ∈ F .

Lemma 2.3. Let Y ∈ F (so p(Y ) = µ) and let X be a dangerous set (so g(X)−
1 ≤ p(X)).

(i) If (X − Y ) ∩ Tg 6= ∅ and if (1) holds then X ∪ Y ∈ F and g(X − Y ) = 1.

(ii) (ii) If X ∩ Y ∩ Tg 6= ∅ and if (2) holds then Y −X ∈ F and g(X ∩ Y ) = 1.

Proof. For (i), note that (X − Y )∩ Tg 6= ∅ implies g(X ∩ Y ) ≤ g(X)− 1. Thus
if (1) holds, then:

(g(X)−1)+µ ≤ p(X)+p(Y ) ≤ p(X∩Y )+p(X∪Y ) ≤ g(X∩Y )+µ ≤ (g(X)−1)+µ .

Consequently, equality holds everywhere. Thus p(X ∪ Y ) = µ and g(X ∩ Y ) =
g(X)− 1. This implies g(X − Y ) = 1, as g(X) = g(X ∩ Y ) + g(X − Y ).

For (ii), note that X ∩ Y ∩ Tg 6= ∅ implies g(X − Y ) ≤ g(X) − 1. Thus if (2)
holds then:

(g(X)−1)+µ ≤ p(X)+p(Y ) ≤ p(X−Y )+p(Y −X) ≤ g(X−Y )+µ ≤ (g(X)−1)+µ .

Consequently, equality holds everywhere. Thus p(Y − X) = µ and g(X − Y ) =
g(X)− 1. This implies g(X ∩ Y ) = 1 as g(X) = g(X ∩ Y ) + g(X − Y ).

Let Y,Z be any inclusion-minimal disjoint sets in F ; such exist, by Proposi-
tion 2.2. Let y ∈ Y ∩ Tg, z ∈ Z ∩ Tg. We claim that if {y, z} is not (p, g)-legal then
µ = 1. Let X be a dangerous set containing y, z. By the minimality of Y , we must
be in Case (i) of Lemma 2.3, so X ∪ Y ∈ F and g(X − Y ) = 1. By the minimality
of Z and Proposition 2.2, we must have (X ∪ Y ) ∩ Z ∈ F , which is possible only
if Z ⊂ X, since Z, Y are disjoint. But then µ = p(Z) ≤ g(Z) ≤ g(X − Y ) ≤ 1.
Consequently, p is 0, 1-valued.
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Now we prove that g is 0, 1-valued, and that pg(T ) = 1 for all T ⊂ Tg with
|T | ∈ {1, 2}. Recall that pg(T ) = max{p(X) : X ⊆ V,X ∩ Tg = T}, hence pg is
0, 1-valued since p is. Let u, v ∈ Tg. By Proposition 2.1, there exists a dangerous set
Xuv containing u, v. As p(Xuv) = 1, we must have g(Xuv) = 2, so g(u) = g(v) = 1.
This implies that g is 0, 1-valued. Also note that Xuv ∩ Tg = {u, v}, and that for
every v ∈ Tg there exists a set Xv with g(Xv) = p(Xv) = 1, by the minimality
of g. Consequently, for every T ⊆ Tg with |T | ∈ {1, 2} there exists X ⊆ V with
X ∩ Tg = T so that p(X) = 1, hence pg(T ) = 1 for every such T .

Finally, we prove the lower bound opt(p) = opt(pg) ≥ d2|Tg|/3e. Let F be a
pg-cover, so every edge in F has both endnodes in Tg. To see that |F | ≥ d2|Tg|/3e,
note that in the graph (Tg, F ) every connected component must have at least 3
nodes. Indeed, if there is a connected component T in (Tg, F ) with |T | ∈ {1, 2}
then T is not covered by F , while pg(T ) > 0, hence F is not a feasible solution.

The proof of Theorem 1.3 is complete.

3. PROOF OF THEOREM 1.4

A set X with p(X) > 0 is (p, g)-tight if p(X) = g(X).

Proposition 3.1. Let p be skew-supermodular, let g be a p-transversal, and let
X,Y be (p, g)-tight sets. Then at least one of the following holds: X ∩Y,X ∪Y are
both (p, g)-tight (if (1) holds) or g(X∩Y ) = 0 and X−Y, Y −X are both (p, g)-tight
(if (2) holds).

Proof. Note that g(X)+ g(Y ) = g(X ∩Y )+ g(X ∪Y ) and that g(X)+ g(Y ) =
g(X − Y ) + g(Y −X) + 2g(X ∩ Y ).

If (1) holds then:

g(X) + g(Y ) = p(X) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y ) ≤ g(X ∩ Y ) + g(X ∪ Y )

= g(X) + g(Y ) .

Consequently, equality holds everywhere, which implies that X ∩Y,X ∪Y are both
(p, g)-tight.

If (2) holds then:

g(X) + g(Y ) = p(X) + p(Y ) ≤ p(X − Y ) + p(Y −X) ≤ g(X − Y ) + g(Y −X)

= g(X) + g(Y )− 2g(X ∩ Y ).

Consequently, g(X ∩ Y ) = 0 and equality holds everywhere, which implies that
X − Y, Y −X are both (p, g)-tight.

Let ν(p) = max{
∑

X∈F p(X) : F is a subpartition of V }. Clearly, g(V ) ≥ ν(p)
and opt(p) ≥ ν(p)/2 for any p and its transversal g, hence the following (known)
statement implies opt(p) ≥ g(V )/2 for a skew-supermodular p.

Lemma 3.2. If p is skew-supermodular then g(V ) = ν(p) for any minimal p-
transversal g.

Proof. Among all families of (p, g)-tight sets whose union contains Tg, let F be
one with

∑

X∈F |X| minimal. We claim that the sets in F are pairwise disjoint.
Indeed, by Proposition 3.1, any X,Y ∈ F can be replaced either by X ∪ Y (if
(1) holds), or by X − Y, Y −X (if (2) holds), and the union of the sets in F will
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still contain Tg. However, if X,Y ∈ F intersect, then |X ∪ Y | < |X| + |Y | and
|X − Y | + |Y − X| < |X| + |Y |, so we obtain a contradiction to the minimality
of

∑

X∈F |X|. Thus ν(p) ≥
∑

X∈F p(X) =
∑

X∈F g(X) = g(Tg) = g(V ). Since
g(V ) ≥ ν(p), equality holds everywhere, implying g(V ) = ν(p).

If the requirement are exponential in n, then a polynomial implementation of
algorithms for CA problems is achieved by specifying the multiplicity of every
added edge. For an integer k, let k × uv denote a set of k parallel edges between
u and v. Assuming k ≤ min{g(u), g(v)}, let pk×uv(X) = max{p(X) − k, 0} if
|X ∩ {u, v}| = 1 and pk×uv(X) = p(X) otherwise; gk×uv(x) = g(x) − k if x = u
or if x = v and gk×uv(x) = g(x) otherwise. The following algorithm starts with
a symmetric skew-supermodular set-function p, a minimal p-transversal g, and a
partial solution F = ∅.

The Legal Pairs Algorithm

Phase 1:

While there exists a (p, g)-legal pair u, v do:
1. Find the maximum integer k ≤ min{g(u), g(v)} so that

gk×uv is a pk×uv-transversal;
2. g ← gk×uv, p← pk×uv, F ← F + k × uv;

EndWhile
Phase 2:

p′ ← p, g′ ← g;
Let F ′ be an inclusion minimal p′-cover on T ′ = {v ∈ V : g′(v) = 1}.
Output F + F ′.

If a polynomial oracle for (3) is available, then the algorithm can be implemented
in polynomial time. Specifically, g can be computed in polynomial time, and the
integer k in the main loop of Phase 1 can be found using binary search; see [Benczúr
and Frank 1999] for details.

For the approximation ratio, note that Theorem 1.3 implies |F ′| ≤ (3/2) ·opt(p′).
Indeed, opt(p′) ≥ 2|Tg′ |/3 while |F ′| ≤ |Tg′ | since p is 0, 1-valued by Theorem 1.3,
so F ′ is a forest on Tg′ . The ratio 7/4 follows from the following statement by
substituting β = 3/2.

Claim 3.3. If |F ′| ≤ βopt(p′) for some β then |F |+ |F ′| ≤ (1 + β/2)opt(p).

Proof. By Lemma 3.2, |F | = g(V )/2− g′(V )/2 = ν(p)/2− g′(V )/2. By Theo-
rem 1.3, F ′ is a forest on Tg′ , thus |F ′| ≤ g′(V ). Consequently, we have:

|F |+ |F ′| = ν(p)/2− g′(V )/2 + |F ′| ≤ ν(p)/2 + |F ′|/2 ≤ opt(p) + βopt(p′)/2

≤ (1 + β/2)opt(p).

Finally, we prove the APX-hardness of our problem by reducing it to the following
problem:

3-Set Packing

Instance: A set-family S of subsets of size 3 each of a groundset V .
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Objective: Find a subfamily S ′ ⊆ S of pairwise disjoint sets (packing) of maximal
size.

Given an instance S of 3-Set Packing let F = {X ⊂ V : 1 ≤ |X| ≤ 3, X /∈ S}.
Let p(X) = 1 if X ∈ F or if V −X ∈ F , and p(X) = 0 otherwise. It is easy to see
that p is symmetric skew-supermodular, that g(v) = 1 for all v ∈ V is the unique
minimal p-transversal, and that no (p, g)-legal pair exists.

Lemma 3.4. opt(p) = n − η − b(n − 3η)/4c, where η is the maximum packing
size.

Proof. A partition T of V is p-separating if p (∪T∈T ′T ) = 0 for every T ′ ⊆ T .
It is easy to see that F is a p-cover of a 0, 1-valued set-function p on V if, and
only if, the partition into connected components of (V, F ) is p-separating; thus
opt(p) = |V | − ζ(p), where ζ(p) is the maximum size of a p-separating partition.
By the definition of p in the lemma, T is a p-separating partition if, and only if,
|T | ≥ 3 for every T ∈ T and if |T | = 3 then T ∈ S. Thus a maximum size p-
separating partition is obtained by adding to a maximum packing S ′ a maximum
collection of sets of size 4 each, except of maybe one of size > 4. Consequently,
ζ(p) = η + b(n− 3η)/4c, and the statement follows.

By Lemma 3.4 opt(p) = 2n/3 if η = n/3. Kann [Khuller 1995] showed that there
exists ε0 > 0 such that the decision problem whether η = n/3 or η ≤ (1 − ε0)n/3
is NP-complete. In the latter case

opt(p) ≥ n−
(1− ε0)n

3
−

⌊ε0n

4

⌋

≥
2n

3
+

ε0n

12
=

2n

3
(1 + ε0/8).

Therefore, the decision problem whether opt(p) ≤ 2n/3 or opt(p) ≥ 2n
3 (1 + ε0/8) is

also NP-complete. The APX-hardness follows.
The proof of Theorem 1.4 is complete.

4. PROOF OF THEOREM 1.1

4.1 Reducing Element-CA to skew-supermodular Set-Function Edge-Cover

Edge-CA problems can be casted as edge-cover problems of a supermodular or a
skew-supermodular function p, c.f., [Frank and Jordán 1995; Benczúr and Frank
1999; Frank 1992; Jain 2001; Fleischer et al. 2006; Cheriyan et al. 2006; Kortsarz
and Nutov 2007]. For Edge-CA, an appropriate choice of p is as follows. By Menger’s
Theorem, F is a feasible solution to Edge-CA if, and only if, dG+F (X) ≥ R(X)
for all ∅ ⊂ X ⊂ V , where R(X) = max{r(u, v) : u ∈ X, v ∈ V − X} (and
R(∅) = R(V ) = 0). That is

dF (X) ≥ p(X) = max{0, R(X)− dG(X)} ∀ ∅ ⊆ X ⊆ V.

For Element-CA we start with a more general model where p is defined on pairs
of subsets of V (see [Frank and Jordán 1995; Fleischer et al. 2006; Cheriyan et al.
2006; Kortsarz and Nutov 2007]). We need the following formulation of Menger’s
Theorem for S-connectivity, that is easily deduced from the original theorem by
standard constructions.
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Theorem 4.1 Menger’s Theorem for S-Connectivity.

Let u, v be two nodes of a (directed or undirected) graph G = (V,E) and let S ⊆ V .
Then

λS
G(u, v) = min{|C| : C ⊆ E + S − {u, v}, G− C has no uv-path}

= min{dG(X ′, X ′′) + |V − (X ′ + X ′′)| : u ∈ X ′, v ∈ X ′′,

X ′ ∩X ′′ = ∅, V − (X ′ + X ′′) ⊆ S}

A setpair is an ordered pair (X ′, X ′′) of disjoint subsets of the groundset. An
edge set F covers a setpair-function q if dF (X ′, X ′′) ≥ q(X ′, X ′′) for every setpair
(X ′, X ′′). Element-CA can be casted as a Setpair-Function Edge-Cover problem as
follows (c.f., [Frank and Jordán 1995; Fleischer et al. 2006; Cheriyan et al. 2006;
Kortsarz and Nutov 2007] for details). Let (G = (V,E), S, r) be an instance of
Element-CA. Note that V − (X ′ + X ′′) ⊆ S if, and only if, V − S ⊆ X ′ + X ′′. For
a setpair (X ′, X ′′) of V with V − S ⊆ X ′ + X ′′ let

R(X ′, X ′′) = max{r(u, v) : u ∈ X ′, v ∈ X ′′},

d̂G(X ′, X ′′) = dG(X ′, X ′′) + |V − (X ′ + X ′′)|.

Given T ⊆ V , a setpair (X ′, X ′′) is a T -setpair if T ⊆ X ′ ∪ X ′′. By Menger’s
Theorem for S-Connectivity, F is a feasible solution to Element-CA if, and only if,
F covers the setpair-function q defined by

q(X ′, X ′′) = max{R(X ′, X ′′)− d̂G(X ′, X ′′), 0} ∀ (V − S)-setpair (X ′, X ′′) (4)

and q(X ′, X ′′) = 0 otherwise.

Definition 4.1. A setpair-function q is symmetric if q(X ′, X ′′) = q(X ′′, X ′) for
every setpair (X ′, X ′′), and q is skew-bisupermodular if q(X ′, X ′′) = 0 whenever
X ′ = ∅ and for any setpairs (X ′, X ′′), (Y ′, Y ′′) with q(X ′, X ′′), q(Y ′, Y ′′) > 0 at
least one of the following holds:

q(X ′, X ′′) + q(Y ′, Y ′′) ≤ q(X ′ ∩ Y ′, X ′′ ∪ Y ′′) + q(X ′ ∪ Y ′, X ′′ ∩ Y ′′) (5)

q(X ′, X ′′) + q(Y ′, Y ′′) ≤ q(X ′ ∩ Y ′′, X ′′ ∪ Y ′) + q(X ′′ ∩ Y ′, X ′ ∪ Y ′′) . (6)

Let q be a setpair-function on V and let T ⊆ V . We say that q is T -projectable
if X ′ ∩ T,X ′′ ∩ T is a proper partition of T whenever q(X ′, X ′′) > 0.

Claim 4.2. Let q be a T -projectable setpair function. If q is skew-bisupermodular
then for any q-cover F there exists a q-cover FT on T so that |FT | = |F |.

Proof. Let F be a q-cover and suppose that there is e = uv ∈ F with u /∈ T .
Let q′ be the residual setpair function w.r.t. F ′ = F − e, namely, q′(X ′, X ′′) =
max{q(X ′, X ′′) − dF ′(X ′, X ′′), 0}. It is known that q′ is symmetric skew-bisuper-
modular if q is, c.f., [Fleischer et al. 2006; Cheriyan et al. 2006]. Clearly, e covers
q′, hence q′ is 0, 1-valued. Let F = {(X ′, X ′′) : q′(X ′, X ′′) = 1}. As e covers q′,
we have u ∈ X ′ and v ∈ X ′′, or v ∈ X ′ and u ∈ X ′′, for any (X ′, X ′′) ∈ F . Let
(X ′, X ′′) ∈ F be with u ∈ X ′ and X ′ ∩ T inclusion minimal, and let t ∈ X ′ ∩ T ;
such t exists, since q, and thus also q′ is T -projectable, hence X ′ ∩ T,X ′′ ∩ T is
a proper partition of T for any (X ′, X ′′) ∈ F . We claim that tv covers q′. Let
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(Y ′, Y ′′) ∈ F . Since q′ is skew-bisupermodular, and since uv covers q′ we have:
(X ′ ∩ Y ′, X ′′ ∪ Y ′′), (X ′ ∪ Y ′, X ′′ ∩ Y ′′) ∈ F if u ∈ Y ′ and v ∈ Y ′′, or
(X ′ ∩ Y ′′, X ′′ ∪ Y ′), (X ′ ∪ Y ′′, X ′′ ∩ Y ′) ∈ F if v ∈ Y ′ and u ∈ Y ′′.
By the minimality of X ′∩T , we must have X ′∩T ⊆ X ′∩Y ′∩T in the former case
and X ′ ∩ T ⊆ X ′ ∩ Y ′′ ∩ T in the latter case. In each one of the cases, tv covers
(Y ′, Y ′′). Thus tv covers q′, and this implies that F ′ = F − e + tv is a q-cover. We
repeat this replacement procedure for any edge that has an endnode in V −T , until
obtaining a q-cover FT on T with |FT | = |F |.

If q is T -projectable, then the projection of q on T is a set-function p on T defined
by

p(X) = max{q(X ′, X ′′) : X ′ ∩ T = X} (7)

Claim 4.3. Let q be a T -projectable setpair-function, and let p be the projection
of q on T . Then p is symmetric if q is, and p is skew-supermodular if q is skew-
bisupermodular.

Proof. From the definition of p it follows that p is symmetric if q is. We prove
that p is skew-supermodular if q is skew-bisupermodular. Let (X ′, X ′′), (Y ′, Y ′′)
be setpairs so that q(X ′, X ′′) = p(X) > 0 and q(Y ′, Y ′′) = p(Y ) > 0, where
X = X ′ ∩ T and Y = Y ′ ∩ T .

If (5) holds then:

p(X) + p(Y ) = q(X ′, X ′′) + q(Y ′, Y ′′) ≤

≤ q(X ′ ∩ Y ′, X ′′ ∪ Y ′′) + q(X ′ ∪ Y ′, X ′′ ∩ Y ′′) ≤

≤ p((X ′ ∩ Y ′) ∩ T ) + p((X ′ ∪ Y ′) ∩ T ) = p(X ∩ Y ) + p(X ∪ Y ).

If (6) holds then:

p(X) + p(Y ) = q(X ′, X ′′) + q(Y ′, Y ′′) ≤

≤ q(X ′ ∩ Y ′′, X ′′ ∪ Y ′) + q(X ′′ ∩ Y ′, X ′ ∪ Y ′′) ≤

≤ p((X ′ ∩ Y ′′) ∩ T ) + p((X ′′ ∩ Y ′) ∩ T ) = p(X − Y ) + p(Y −X).

This implies that p is skew-supermodular if q is skew-bisupermodular.

Claims 4.2 and 4.3 imply an approximation ratio preserving reduction from
Setpair-Function Edge-Cover with skew-bisupermodular q to Set-Function Edge-Cover

with the skew-supermodular projection p on T (provided q is T -projectable).
The 7/4-approximation in Theorem 1.1 follows. Let T = V −S. For Element-CA,

the setpair-function q in (4) is symmetric skew-bisupermodular, and T -projectable.
Claims 4.2 and 4.3 imply an approximation ratio preserving reduction to Set-

Function Edge-Cover with skew-supermodular p, where p is the projection of q on
T = V − S. It is not hard to verify that via max-flows a minimal p-transversal g
can be found in polynomial time, and that (3) for p can be realized in polynomial
time. Consequently, Theorem 1.4 implies that the Legal Pairs Algorithm applied on
p is a 7/4-approximation algorithm for Element-CA.

Note that symmetric skew-supermodular set-functions are a particular case of
symmetric skew-bisupermodular setpair functions. Namely, if p is a set function
then the corresponding setpair-function is q(X,V −X) = p(X) and q(X ′, X ′′) = 0
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otherwise. Note also that with this correspondence any symmetric set-function p
is Tg-projectable, for any p-transversal g. Hence Claims 4.2 and 4.3 with T = Tg

imply Lemma 1.2 from the Introduction.

Remark: For Element-CA with r(u, v) = k on T × T for some T ⊆ V the set
function q in (4) is symmetric bisupermodular, namely, (5) holds for any setpairs
(X ′, X ′′), (Y ′, Y ′′) with q(X ′, X ′′), q(Y ′, Y ′′) > 0. The projection p of q on T is
symmetric supermodular, by the first case in the proof of Claim 4.3. Thus Claim
4.2 implies that the algorithm of Benczúr and Frank [Benczúr and Frank 1999]
applied on p solves this version of Element-CA.

Via the following well known reduction our algorithms apply also for Hypergraph

Edge-CA. Recall that in the Hypergraph Edge-CA the goal is to augment a hyper-
graph H = (U, S) by edges of size two to meet prescribed pairwise (hyper)edge
connectivity requirements. For basic definitions on hypergraphs we refer the reader
to [Duchet 1995].

Proposition 4.4. The Hypergraph Edge-CA admits a polynomial time approxi-
mation ratio preserving reduction to the Element-CA.

Proof. A bipartite graph G = (U +S,E) is the incidence graph of a hypergraph
H = (U, S) if E = {us : u ∈ s ∈ S}. Thus, for every instance IH = (H = (U, S), r)
of hypergraph edge-CA corresponds an instance IG = (G = (U+S,E), r) of element-
CA. Furthermore, if λH(u, v) is the maximum number of hyperedge disjoint uv-
paths in H, then for any edge set F on U we have λH+F (u, v) = λS

G+F (u, v) for
all u, v ∈ U . That is, an edge set FU on U is a feasible solution to IH if, and
only if, FU is a feasible solution to IG. This reduces the hypergraph Edge-CA to
an instance of Element-CA with a restriction that adding edges incident to nodes
in S is not allowed. Claim 4.3 shows that by dropping this restriction we get an
equivalent problem. That is, the Hypergraph Edge-CA is equivalent to the restriction
of Element-CA to bipartite graphs with parts S, V − S.

Remark: The min-cost Hypergraph Edge-CA admits a similar polynomial time
approximation ratio preserving reduction to the min-cost Element-CA. For that,
take G to be the incidence graph of H, and set to infinity the costs of the edges
incident S. For example, as the min-cost Element-CA admits a 2-approximation
algorithm [Fleischer et al. 2006; Cheriyan et al. 2006] we get the same result for the
min-cost Hypergraph Edge-CA. The inverse reduction does not seem to work, since
in the Element-CA we might be allowed to add edges incident to nodes in S, while
no such edges can exist in Hypergraph Edge-CA.

4.2 A 3/2-approximation for Element-CA with r(u, v) ∈ {0, 1, 2}

Let (G = (V,E), S, r) be an instance of Element-CA, and let D = {uv : r(u, v) −
λS

G(u, v) ≥ 1} be the “demands” that are not satisfied. Clearly, we may and will
assume that r(u, v) = 0 if uv /∈ D. Let q be the setpair-function defined by (4), let
p be the projection of q on T = V − S, let g be a minimal p-transversal, and let pg

be the projection of p on Tg.
For a (connected) component H of G let α(H) = max{r(u, v) : u, v ∈ V, {u, v} ∩

H 6= ∅}. Following [Frank 1992], we say that H is a marginal component if r(u, v) ≤
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λS
G(u, v) for any u, v ∈ H and R(H,V −H) ≤ 1. If r(u, v) ∈ {0, 1, 2} and r(u, v) = 0

whenever uv /∈ D, this is equivalent to α(H) ≤ 1. It is easy to see that if α(H) = 0
then |H ∩ Tg| = 0 and H can be eliminated.

The algorithm is based on the following statement, which is of independent in-
terest:

Theorem 4.5. Suppose that no (p, g)-legal pair exists for an instance of Element-

CA with r(u, v) ∈ {0, 1, 2}. Then G has at most one non-marginal component. If
G has a non-marginal component H with |H ∩ Tg| ≥ 4 then there is s ∈ S ∩H so
that |C ∩ Tg| ≤ 1 for any component C of H − s.

It is not hard to verify that Theorem 4.5 implies:

Corollary 4.6. Under the assumptions of Theorem 4.5, let T be the partition
of Tg induced by the components of G + D − s, where s is as in Theorem 4.5 if
|H∩Tg| ≥ 4 and s = ∅ if |H∩Tg| ≤ 3 or if all components of G are marginal. Then
pg(X) = 1 for X ⊂ Tg if, and only if, X divides some part of T . Consequently,
opt(pg) = |Tg| − |T |, and any inclusion minimal or optimal pg-cover is a union of
trees on the parts of T .

A 3/2-approximation algorithm for Element-CA with r(u, v) ∈ {0, 1, 2} follows
by substituting β = 1 in Claim 3.3, as in Phase 2 of the Legal Pairs Algorithm an
optimal solution is found.

In the rest of this section we prove Theorem 4.5. Assume that no (p, g)-legal
pair exists. By Theorem 1.3 and the definition of p we have that uv ∈ D implies
r(u, v)− λS

G(u, v) = 1, and:

Claim 4.7. q(X ′, X ′′) = 1 for a setpair (X ′, X ′′) if, and only if, exactly one of
the following holds:

(i) R(X ′, X ′′) = 1, δ(X ′, X ′′) = ∅, and X ′, X ′′ is a partition of V .

(ii) R(X ′, X ′′) = 2, δ(X ′, X ′′) = {e} for some e ∈ E and X ′, X ′′ partition V .

(iii) R(X ′, X ′′) = 2, δ(X ′, X ′′) = ∅ and V − (X ′ ∪X ′′) = {s} for some s ∈ S.

Claim 4.8. Let Pi be a uivi-path in G, i = 1, 2, for distinct u1, v1, u2, v2 ∈ Tg.
Then P1, P2 share a node s ∈ S and have no other node in common.

Proof. By Theorem 1.3 there is X ⊂ V − S with X ∩ Tg = {u1, u2} and
p(X) = 1. Let (X ′, X ′′) be a setpair with q(X ′, X ′′) = 1 and X ′ ∩ T = X. In
particular, X ′ ∩ Tg = {u1, u2} and v1, v2 ∈ X ′′. As P1, P2 are paths between X ′

and X ′′, (i) in Claim 4.7 cannot hold. Thus we have:
(*) P1, P2 share: an edge (if (ii) in Claim 4.7 holds), or a node s ∈ S (if (iii) in
Claim 4.7 holds).
It is not hard to verify that if P1, P2 have an edge or a node not from S in common,
then there are a u1u2-path and a v1v2-path, or there are a u1v2-path and a u2v1-
path, that do not have an edge or a node in S in common. In both cases we obtain
a contradiction to (*) for some other pair.

Claim 4.9. |H ∩ Tg| ≥ 2 if α(H) = 2, and |H ∩ Tg| = α(H) if α(H) ∈ {0, 1}.

Proof. Suppose that α(H) = 2. Then r(u, v) = 2 for some u, v ∈ H with
uv ∈ D. We prove that |H∩Tg| ≥ 2. Let (X ′, X ′′) be a setpair with u ∈ X ′, v ∈ X ′′,
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and d̂(X ′, X ′′) = λS
G(u, v) = 1. It is easy to see that then d̂(X ′∩H,X ′′∪(X ′−H)) =

d̂(X ′′ ∩H,X ′ ∪ (X ′′−H)) = 1. Thus each of X ′ ∩H,X ′′ ∩H contains a node from
Tg.

Suppose that α(H) ∈ {0, 1}. As we assume that no (p, g)-legal pair exists, p and
g are 0, 1-valued, by Theorem 1.3. Thus by the minimality of g, for every v ∈ Tg

there exists a set Xv with g(Xv) = p(Xv) = 1. Consequently, Tg is obtained by
picking one node from every minimal member of F = {X ⊂ V − S : p(X) = 1}. It
is easy to see that if α = 1 then H −S is a minimal member of F , and if α(H) = 0
then any minimal member of F is disjoint to H.

Claim 4.10. G has at most one non-marginal component.

Proof. Suppose to the contrary that G has non-marginal components H1 6= H2.
Then by Claim 4.9, |H1∩Tg|, |H2∩Tg| ≥ 2. Let u1, v1 ∈ H1∩Tg and u2, v2 ∈ H2∩Tg.
Let Pi be a uivi-path, i = 1, 2. Then P1, P2 have no edge or node in common,
contradicting Claim 4.8.

Claim 4.11. Suppose that G has a non-marginal component H. If |H ∩ Tg| ≥ 4
then there is s ∈ S ∩H so that |C ∩ Tg| ≤ 1 for any component C of H − s.

Proof. It is sufficient to show that if |H∩Tg| ≥ 4 then there is s ∈ S∩H so that
s belongs to any uv-path P with u, v ∈ Tg. Let P1, P2 and s be as in Claim 4.8, let
{u′, v′} = {u1, v1, u2, v2} − {u, v}, and let P ′ be a u′v′-path in H. By Claim 4.8,
P and P ′ share a node s′ ∈ S and have no other node in common. One can easily
verify that if s′ 6= s then there is a pair of paths between disjoint pairs in Tg that
have an edge in common, contradicting Claim 4.8.

Remark. Claim 4.11 is not true if |H ∩Tg| = 3 even for edge-connectivity (the case
S = ∅). For example:

V = {v1, v2, v3, t1, t2, t3},

E = {v1v2, v2v3, v3v1, v1t1, v2t2, v3t3},

r(ti, tj) = 2, and Tg = {t1, t2, t3}.

The proof of Theorem 4.5 is complete.

Remark. In the preliminary version [Nutov 2005] the author also claimed that the
Legal Pairs Algorithm has approximation ratio 3/2 for Element-CA with r(u, v) ∈
{0, k}. This result is correct, but its full proof is long and complicated, and will be
presented elsewhere. Specifically, the proof is based on the following analogue of
Theorem 4.5 and Corollary 4.6:

Theorem 4.12. Suppose that no (p, g)-legal pair exists for an instance of Ele-

ment-CA with r(u, v) ∈ {0, k}. Then λS
G(u, v) = k − 1 for all u, v ∈ Tg, and there

exists K ⊆ S with |K| = k− 1 so that |C ∩Tg| ≤ 1 for any component C of G−K.
Furthermore, let T be the partition of Tg induced by the components of G+D−K.
Then |T | ≥ 3 for all T ∈ T , and pg(X) = 1 for X ⊂ Tg if, and only if, X divides
some part of T . Consequently, opt(pg) = |Tg| − |T |, and any inclusion minimal or
optimal pg-cover is a union of trees on the parts of T .
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5. PROOF OF THEOREM 1.5

To prove Theorem 1.5, we reduce the Node-CA with r(u, v) ∈ {0, k} to the following
problem:

Min-Rep:
Instance: A bipartite graph H = (A + B, I), and equitable partitions A of A and

B of B.
Objective: Find a minimum size node set A′ ∪ B′, where A′ ⊆ A and B′ ⊆ B,

so that for any Ai ∈ A, Bj ∈ B with δI(Ai, Bj) 6= ∅ there are a ∈ A′∩Ai

and b ∈ B′ ∩Bj so that ab ∈ I.

Let H be a graph on a node set V . Recall that κH(u, v) = λV
H(u, v) for u, v ∈ V .

For X ⊆ V let ΓH(X) denote the set of neighbors of X in H. An instance of
Min-Rep has the star property if |ΓH(b) ∩ Ai| ≤ 1 holds for every b ∈ B and any
Ai ∈ A. The following statement follows directly from the Parallel Repetition
Theorem of [Raz 1998], that considered hardness of approximation for the so called
Label-Cover-Max problem, e.g., see [Kortsarz et al. 2004, Theorem 2.1].

Theorem 5.1. Min-Rep with star property on instances with n nodes cannot be
approximated within O(2log1−ε n) for any ε > 0, unless NP ⊆ DTIME(npolylog(n)).

The proof of Theorem 1.5 follows. Given an instance (H = (A + B, I),A,B) of
Min-Rep we construct an instance (G = (V,E), r) of node-CA as follows. Let

E = {ij : Ai ∈ A, Bj ∈ B, δH(Ai, Bj) 6= ∅}.

The graph G = (V,E) is obtained from H as follows.

(1) Add to H: a set {a1, . . . , a|A|, b1, . . . , b|B|} of |A| + |B| nodes, and for every
ij ∈ E a pair of nodes aij , bij (so a total number of nodes added to H is
|A|+ |B|+ 2|E|). Thus

V = A + B + {a1, . . . , a|A|, b1, . . . , b|B|}+ {aij : ij ∈ E}+ {bij : ij ∈ E}.

and |V | = (|A|+ |B|) + (|A|+ |B|+ 2|E|).

(2) For every ij ∈ E connect: aij to every node that is not in Āij = Ai+Bj+bj+bij ,
and bij to every node that is not in B̄ij = Ai + Bj + ai + aij . Thus

E = I + {aijw : ij ∈ E , w ∈ V − Āij}+ {bijw : ij ∈ E , w ∈ V − B̄ij}.

For ij ∈ E let

Cij = V − (Āij + B̄ij) = ΓG(aij) ∩ ΓG(bij).

Since the partitions A,B are equitable, the sets Cij are all of the same size, say
k − 1. Every node in Cij is an internal node of an aijbij-path of length 2. By the
construction, in Gij = G−Cij there is no aijbij-path. Thus Cij is a minimum node
cut separating aij and bij and

κG(aij , bij) = k − 1 for ij ∈ E .

The requirement function is defined by:

r(aij , bij) = k for ij ∈ E
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and r(u, v) = 0 otherwise. Clearly, the construction is polynomial.
For an edge set F and ij ∈ E let Fij be the edges in F with both endnodes in

Gij . Clearly:

Claim 5.2. For every ij ∈ E there is no aijbij-path in Gij, and a set F of edges
is a feasible solution to (G, r) if, and only if, Gij + Fij contains an aijbij-path for
every ij ∈ E. 2

An edge is proper if it connects bj to some node in Bj , or ai to some node in Ai.

Claim 5.3. Let F be a feasible solution to (G, r). If e ∈ F is a non-proper edge
then there exist proper edges e′, e′′ such that F−e+{e′, e′′} is also a feasible solution
to (G, r). Thus there exists a proper feasible solution F ′ with |F ′| ≤ 2|F |.

Proof. Assume that F − e is not a feasible solution, as otherwise the statement
is trivial. Then, by Claim 5.2, one of the following three cases holds, where for each
case we indicate an appropriate choice of e′, e′′:

• e ∈ δF (Ai + ai + aij , Bj + bj + bij) for some ij ∈ E :
in this case set {e′, e′′} = {aia, bjb}, for some ab ∈ I (such edge ab exists, since
ij ∈ E).

• e = aija for some a ∈ Ai or e = bijb for some b ∈ Bj :
set e′ = e′′ = aia or e′ = e′′ = bjb, respectively.

• e = a′a′′ for some a′, a′′ ∈ Ai or e = b′b′′ for some b′, b′′ ∈ Bj :
set {e′, e′′} = {aia

′, aia
′′} or {e′, e′′} = {bjb

′, bjb
′′}, respectively.

In each one of the cases, it is easy to see that for any ij ∈ E with e ∈ Fij holds:
the endnodes of e′, e′′ are nodes of Gij , and in Gij + (Fij − e + {e′, e′′}) there is an
aijbij-path. Thus F − e + {e′, e′′} is a feasible solution as well, by Claim 5.2.

Claim 5.4. A proper edge set F is a feasible solution to (G, r) if, and only if,
the end-nodes of F contained in A+B is a feasible solution to the original Min-Rep

instance.

Proof. Note that for every node v ∈ A + B naturally corresponds a unique
proper edge, namely, aiv if v ∈ Ai and bjv if v ∈ Bj . Thus there is a bijective
correspondence between proper edge sets and subsets A′ + B′ of A + B, where
A′ ⊆ A,B′ ⊆ B. Let A′ + B′ and F be such corresponding pair. Recall that
A′ + B′ is a feasible solution to Min-Rep if, and only if, for every ij ∈ E there are
a ∈ A′∩Ai, b ∈ B′∩Bj such that ab ∈ I. Note that for ij ∈ E there are such a, b if,
and only if, there is an aijbij-path aij , ai, a, b, bj , bij of length 5 in Gij + Fij ; this is
true since our Min-Rep instance has the star property. The statement now follows
from Claim 5.2.

Since in the construction |V | = O(n2), where n = |A|+ |B|, Theorem 5.1 implies
Theorem 1.5.

Remark: The best known approximation ratio for Min-Rep is O(
√

|A|+ |B|) [Pe-
leg 2007]. Claim 5.4 implies that if Min-Rep with star property has “approxi-
mation threshold” (|A|+ |B|)ε

, then the node-CA has “approximation threshold”
(|A|+ |B|)ε

= Ω(|V |ε/2).
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6. OPEN PROBLEMS

One open problem is to improve the hardness results for Element-CA (the current
one just states that the problem is NP-hard) or the approximation ratio. Another
open problem is whether we can compute in polynomial time an optimal solution for
general instances of Element-CA without legal pairs; if so, then this will give a 3/2-
approximation algorithm. Note that Theorem 1.4 does not imply APX-hardness
for Set-Function Edge-Cover instances arising from Element-CA instances.

For Set-Function Edge-Cover with skew supermodular p, we conjecture that better
ratios can be achieved than the ones given in this paper; our goal was just to break
the 2 barrier. Specifically, at Phase 1 of the Legal Pairs Algorithm a more advanced
strategy is to split-off pairs while trying to minimize the edge-set F ′ computed at
Phase 2. It is also possible that our ratio of 3/2 on instances without legal pairs
can be improved.

For Node-CA we have shown an approximation threshold Ω(2log1−ε n)) for {0, k}-
requirements, while in [Kortsarz and Nutov 2008] an rmax ·O(log n)-approximation
algorithm was shown for arbitrary requirements. Note that k = Θ(n) in the reduc-
tion we used, while for undirected graphs and small values of k constant approx-
imation guarantees can be achieved. In the preliminary version [Nutov 2005] the
author posed the following two questions:

(1) Can one achieve a constant approximation ratio for (undirected) Node-CA with
k = rmax bounded by a constant, namely, does the problem admits a ρ(k)-
approximation algorithm, where ρ(k) is a function of k only?

(2) Can one a achieve an approximation ratio O(n1−ε) for Node-CA?

Recently, the author answered the first question in [Nutov 2008], obtaining for
Node-CA approximation ratios O(k ln2 k) for arbitrary requirements and O(ln2 k)
for rooted requirements. The second question still remains open.
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