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ABSTRACT 

In this paper we propose a new provenance model which is 

tailored to a class of workflow-based applications. We motivate 

the approach with use cases from the astronomy community. We 

generalize the class of applications the approach is relevant to and 

propose a pipeline-centric provenance model. Finally, we evaluate 

the benefits in terms of storage needed by the approach when 

applied to an astronomy application. 
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1. INTRODUCTION 
Provenance is commonly defined as the origin, source or history 

of the derivation of some object. For scientists, provenance of 

scientific results would indicate how results were derived, what 

parameters influenced the derivation, what datasets were used as 

input to the experiment, etc.  In other words, provenance of 

scientific results would help reproducibility [1, 2]--a fundamental 

tenet of the scientific method. 

Data provenance has recently attracted significant interest in 

several areas, including e-Science and grid computing, databases, 

visualization, digital libraries, web technologies, and operating 

systems [3] [4].  Of particular interest is the provenance of data 

generated by scientific workflows [5].  Today, as data are 

generated automatically through the execution of complex, inter-

related  processes, it is ever more difficult to interpret the results. 

While data are being processed, provenance information can be 

automatically captured and then stored in a provenance store. The 

resulting derived data products (both intermediate and final) can 

also be stored in an archive, with metadata about them stored in a 

metadata catalog and location information stored in a replica 

catalog. Thus, in the context of computer systems, the provenance 

of a data product is the process that led to that product, where 

process encompasses all the derivations, datasets, parameters, 

software and hardware components, computational processes, 

digital or non-digital artifacts that were involved in deriving and 

influencing the data product.   

In theory such provenance could be extremely large, however, in 

practice, detailed provenance information is not required by end 

users, since their needs tend to be limited to specific tasks, such as 

experiment reproducibility or the validation of an analysis. 

In this paper we focus on the provenance of data derived by 

scientific/computational workflows [5, 6].  Computational 

workflows have become a useful tool in conducting complex 

scientific analyses. They provide a framework that can be used to 

compose data processing and simulation codes developed by 

different scientists. At the same time, workflows have also 

become a useful representation for managing the execution of 

large-scale computations.  The workflow representation not only 

facilitates overall creation and management of the computation 

but also builds a foundation upon which results can be validated 

and shared. Computational workflows are used to analyze data 

from instruments, to simulate complex phenomena, to mine large 

geographically distributed data sets, and perform other 

sophisticated computations.  

In this paper we argue that in the case of data derived through 

scientific workflows, we can minimize the amount of provenance 

that needs to be stored in order to provide information about how 

data was derived and to enable reproducibility.  

The contributions of this paper are: 

1. A simplified approach to provenance capture for a class 

of deterministic applications. 

2. A definition of application characteristics where this 

approach is applicable.  

3. Preliminary results showing storage usage 

improvement.  

The rest of the paper is organized as follows. The next section 

illustrates the need for provenance in astronomy applications and 

describes the Montage application [7, 8] [9] that motivated our 

work. Section 3 generalizes the class of applications that can 

benefit from our proposed approach. Section 4 describes our 

pipeline-centric provenance model. Initial evaluation of the 

approach in the context of the astronomy application Montage is 

shown in Section 5. Related work is discussed in Section 6, 

followed by conclusions in Section 7. 

2. Provenance in Astronomy Applications 
In this section we describe the use cases that motivated our work.  

Cases 1 through 3 are derived from surveys of users of the data 

archives at the California Institute of Technology’s Infrared 

Processing and Analysis Center (IPAC). The fourth use case 

derives from the expected rapid observing cadence of the Large 

Synoptic Survey Telescope (LSST). The use cases demonstrate 

the need for both metadata (data descriptions that assign meaning 

to the data), and data provenance (information about how data 

was derived).  Both metadata and provenance are critical to the 

ability to interpret a particular data item and thus vital to the 

scientific process as it is conducted in-silico. 

2.1 Use Case 1: 
A researcher is studying the dynamics of a cluster of galaxies and 

wants to know what imaging data are available in archives and in 



the literature.  The researcher wants to know the following about 

available images: 

1) What images are available for the cluster of interest that 

contain wavelengths between 0.3 and 2.2 microns, and have 

a spatial extent of 3 x 3 degrees. 

2) For those images obtained by surveys, what are the 

sensitivities of the surveys at these wavelengths? 

3) How are the images constructed: 

a) Are they data sets released by missions, or by individual 

astronomers? 

b) If data are released by individual astronomers: What are 

the telescope, bandpass, instrument, and time? 

c) What processing package and version/algorithm(s) were 

used to process the images? Where can the packages be 

found? 

d) Are the raw data and calibrators available? Where are 

they located? 

e) Where in the cluster of interest are all these images? 

f) What are the image footprints on the sky?  What are the 

pixel scales? etc. 

Clearly not all questions relate to the provenance records of the 

images that the scientists searches. As in most cases, the questions 

posed relate to both the metadata about the original/raw data and 

the metadata that was associated with the processed images. One 

could argue that questions 1, 2, 3 a, b, d, e, and f are metadata 

queries establishing the existence of data products and their basic 

attributes.  However, questions 3 c and d are provenance 

questions, which aim to establish how the images where 

constructed during processing and to support reproducibility as in 

the case of question 3d.  Often, such information is not released 

along with the image data but is necessary for the interpretation of 

the objects seen (or not seen) in the cluster images. 

2.2 Use Case 2 
A researcher wants to use multi-wavelength images of the Taurus 

Dark Cloud to construct a catalog of very faint protostar 

candidates (at the plate limit) to support an observing proposal. 

Knowing the details of the image processing is absolutely crucial 

for a meaningful analysis. 

The researcher needs to know: 

1. All the image data available online between 0.5 microns 

and 25 microns. 

2. If these are "primary" mission products:  

a. What processing algorithms were used?  

b. How was the original data calibrated?  

c. Are the original files and algorithms 

available? 

3. If the images are created from other products: 

a. How have the original products been 

processed?  

b. Has the data been averaged and reprocessed in 

space and time?  

c. Have the input image parameters (projection, 

sampling, orientation) been changed to make 

these products?  

d. How well have they been calibrated?  

e. How were calibration offsets between images 

handled?  

f. Are the algorithms available?  

g. For ground-based data, how have 

backgrounds been rectified or removed?  

4. Where are the original images? 

5. What are their limiting sensitivities? 

6. Have artifacts in the images been identified?   

In this scenario, most of the questions relate to the provenance of 

the data. Only questions 1, 4, 5, and 6 relate to image metadata. 

2.3 Use Case 3 
A researcher wants to carry out a spectroscopic study of the 

abundances of quasars using only available echelle data in the 

archives or the literature.  Some of the questions that need to be 

answered are: 

1. What echelle spectra are accessible from 0.3 microns to 

2.2 microns in ground-based archives. 

2. If the spectra are reduced, or if they are in the literature: 

a. What code/algorithm was used to reduce 

them? 

b. Are atmospheric absorption effects removed? 

c. Has any flux calibration been attempted? 

d. Are trace profiles available for each of the 

orders? Point Spread Functions? Signal-to-

noise? Line profiles? 

3. If the spectra are not reduced: 

a. What is the calibration data and where is it 

dark, biased, traced, focused, or flat? 

b. What calibration lamps were measured? 

c. Is the calibration data available? 

4. For all data, what is the: 

a. target, position, exposure start/stop time, 

wavelength range, exposure time, program 

info (PI, etc), telescope, instrument, grating, 

weather logs on date of observation.  

In this scenario, questions 1 and 4 refer to metadata and questions 

2 and 3 refer to provenance.  

2.4 Use Case 4 
The LSST is expected to begin operations in 2015 [10].  About 

90% of the observing time will be devoted to a deep-wide-fast 

survey mode that will observe a 20,000 square degree region 

about 1,000 times. The rapid cadence of this program will produce 

about 30 TB of data per night, leading to a total of 60 PB of raw 

data, and 30 PB of metadata over ten years of operations. The 

total data volume after processing will be several hundred 

petabytes.  Permanent archiving of this volume of data is not 

feasible, so the efficient recording of provenance is a crucial part 

of LSST’s data management plan. 

2.5  Montage—A commonly used astronomy 

application 



Montage, developed at Caltech, is an application that constructs 

custom science-grade astronomical image mosaics on demand 

based on several existing images. The inputs to the workflow 

include a “template header file” that specifies the mosaic to be 

constructed, and several input images in standard FITS format (a 

file format used throughout the astronomy community) [11]. Input 

images are taken from archives such as 2MASS [12]. The input 

images are first re-projected to the coordinate space of the output 

mosaic.  The re-projected images are then background rectified 

and co-added to create the final output mosaic. Figure 1 shows the 

structure of a small Montage workflow using vertices to represent 

tasks and edges to represent data dependencies between tasks. 

Montage workflows typically contain a large number of tasks that 

process large amounts of data. For example, a workflow to 

generate the 2 degree square mosaic of 2MASS images centered 

around the celestial object M17 would contain approximately 

1,000 individual tasks. 

3. CLASS OF APPLICATIONS 
Montage is an example of a class of well-specified deterministic 

applications that are common in science. These applications 

usually consist of a series of codes (i.e. components) connected 

together to perform large-scale analysis routines. Other examples 

of this class of application include: seismic hazard analysis for 

earthquake forecasts, analysis of large-scale social networks, 

analysis of the epigenomic properties of DNA sequences, 

searching for gravitational waves in interferometer data, and many 

others.   These applications have a number of characteristics that 

can be taken advantage of to enable the reproducibility of results 

and the determination of provenance. These characteristics are as 

follows: 

1. The application is deterministic. Repeating the 

application with the same inputs produces the same 

outputs.  

2. The application is automated. The application does not 

require human intervention to execute.  

3. The application is not monolithic i.e. the application is 

broken up into many different components that are 

connected together in a workflow.  

4. The application is self-contained. By this we mean, that 

the application and all its components can be easily 

assembled in one location. For example, the 

components of Montage can be assembled in one 

directory. 

5. The application does not require any specialized 

hardware to function.  

6. The application uses data from well-known, well-

documented sources. In astronomy, for example, 

significant effort is deployed in documenting the 

functionality of the telescopes and satellites that provide 

source data.  

7. Source data is well preserved, archived systematically, 

and can be readily accessed. For example, the Sloan 

Digital Sky Survey provides direct access to archived 

image data at http://das.sdss.org. 

The last characteristic is optional in our approach. However, if 

applications rely on such sources, our approach can optimize the 

data provenance storage further (Section 5). 

Not all applications have these characteristics. For example, some 

applications rely on services provided by third parties and thus the 

components of the application cannot be assembled in one place. 

Other applications require direct interaction with a human. For 

example, a human’s intervention might be necessary to steer a 

computational simulation. Still others might not be deterministic. 

For example, the application could be dependent on a true random 

number generator i.e. one initialized by a physical process.  

However, while these characteristics are not universally 

applicable, they do describe a wide variety of important scientific 

applications as noted above. We now present a model for 

provenance that takes advantage of these characteristics.  

4. PIPELINE-CENTRIC PROVENANCE 

MODEL  
To determine the provenance of an application’s output, one needs 

to be able to ascertain the relationship between the steps involved 

in generating the output, how those steps executed, and what data 

each step used during execution. This information can be modeled 

as a graph (Figure 2) that links the output data to the 

process/component that generated it, which in turn is linked to its 

input data, which is likewise linked to another component and so 

on. Thus the goal is to obtain such a provenance graph that 

accurately reflects the execution of the application in question.  It 

is important to note that users may ask provenance questions 

about any portion of the graph not just the output. For example, 

they may ask for the provenance of a particular intermediate data 

product.  

 

 

Figure 1: Small Montage Workflow. 

 



 

Figure 2: A basic provenance graph. 

One approach to obtain this graph is to instrument the application 

to capture all steps and all the data resulting from those steps, 

including intermediate data. However, for scientific applications, 

storing intermediate data is not practical because of storage 

constraints. Another downside to this approach is the need to 

instrument the application in order to track data flow, which for 

many applications is infeasible due to the usage of legacy codes.  

However, because the applications we consider have the 7 

characteristics listed in Section 3, we can take a new approach that 

circumvents these issues.  

The approach we adopt is to leverage the workflow or pipeline 

used to define the application as the core of our model. The 

pipeline defines the nodes and edges in the provenance graph 

under the assumption that the pipeline defines all inputs and 

outputs of every component. (Later we discuss how to deal with 

conditional branches.) This inversion is possible because the 

application is deterministic (Characteristic #1). The pipeline itself 

is not sufficient to answer provenance queries, in particular, about 

intermediate data. For example, which data products led to Dinter 

being as it is (in Figure 2). 

To answer these queries, we need to be able to re-execute the 

pipeline to duplicate the original run. This requires the following 

information in addition to the pipeline: 

 The original input data. 

 The executables corresponding to each component 

defined in the pipeline. 

 The parameter settings for each component. 

 The execution environment for running the application. 

With this information, we can reproduce any intermediate data 

product. Thus, intermediate data in our approach is treated as 

virtual data [13, 14]. Then the procedure to determine the 

provenance of any Dinter would be to determine the subgraph of 

the workflow that is responsible for Dinter, and re-execute that 

subset. During the re-execution phase, one could also store all 

intermediate data products and return those as part of the answer 

to the provenance query. For workflow management systems that 

support conditions as part of their workflow language, this re-

execution approach could be used to determine when a particular 

conditional branch was taken by re-executing up to that condition. 

Obviously, if execution overhead is of concern, intermediate data 

products can still be stored.  An interesting test of this approach 

would be to pick the set of intermediate data products that would 

optimize re-execution for determining provenance. In other 

words, which data are cheaper to store than to regenerate.  

One important question is whether this approach can accurately 

deal with determining the provenance of errors. In workflow 

systems such as Pegasus [15], errors in data are explicitly 

modeled as outputs (including stderr files). Thus, we can trace 

back through the workflow to determine which component is 

responsible for the error. Furthermore, because our approach 

specifically captures the execution environment, for almost all 

non-hardware related errors, we can determine the exact situation 

in which the error occurred.  

Thus far we have discussed our general pipeline-centric model 

and its requirements. We now present the realization of this 

model. 

4.1 A Pipeline-Centric Provenance Package 
Our model is realized as a directory containing a workflow, a set 

of files in subdirectories, and a manifest that ties the contents 

together. The directory can be compressed as a zip or tar file to 

create a package describing the provenance of the experiment.  

This approach to packaging is common. For example, both Open 

Office and Microsoft Office use it for storing office documents 

(see the Open Document Format and Open Packaging Convention 

respectively). Additionally, myExperiment Packs [16] and Kepler 

KAR [17] files use a similar technique.  

In our approach provenance packages are WHIP bundles 

(http://www.whipplugin.org/).  The manifest of a WHIP bundle is 

an XML file conforming to the Atom Feed Schema 

(http://atompub.org/rfc4287.html).  Atom is a widely used format 

for syndicating content over the web. An Atom feed consists of a 

a series of entries, each of which contains a list of categories. A 

WHIP manifest file contains a single entry. The categories in a 

WHIP manifest file point to the various contents of the bundle. 

Importantly, categories can point to both objects within the bundle 

and remote objects. The manifest for a provenance package 

includes: 

 Metadata such as the creator of the bundle, the date of 

creation, and the workflow format 

 The workflow description 

 Input data 

 Output data 

 Virtual machine characteristics and the VM image 

location 

The VM image contains software needed to execute the 

workflow-based application. In our example this includes: Globus 

[18], Condor [19], Pegasus and application binaries. 

We expect that the virtual machines are configured as they were 

used in the execution of the workflow. Thus, they should contain 

all the necessary libraries for running the codes required by the 

workflow. The use of virtual machines is fundamental to our 

approach as it allows the entire execution environment to be 

captured, thus allowing for exact replication. 

Figure 3 shows a portion of the contents of a WHIP manifest.  The 

category “entrypoint” refers to the file containing the workflow 

described using the Pegasus [20] DAX format [21]. Note that the 

DAX will also contain the parameter settings for the workflow.  

The category “VM” contains a URL to the VM image that was 

used in the execution of the workflow. The VM images can be 

quite large as can be seen in Table 1, but they can be reused by a 

number of (in this case) Montage workflows. Thus it may be 

beneficial to include only references to them. This reliance on 

virtual machines is enabled by the notion that the application does 

not run on specialized hardware (Characteristic 5). Another 

approach would be to store the application codes in the WHIP 

rather than in the VM image. Storing application codes in the 

WHIP would potentially provide efficient re-execution in cases 

where it is not necessary to load the VM; for example if the 



current execution environment is suitable for running the 

workflow. 

The category “inputfile” refers to all the inputs required to rerun 

the workflow. When using input data that is stored long-term in an 

archive the actual input files can be omitted from the bundle and 

instead URLs or a metadata query to this data can be provided.  

The final category “outputfile” refers to the outputs of the 

execution of the workflow. If the outputs of the workflow are 

large, they can be omitted from the bundle and the workflow can 

be re-executed to reproduce them.  

For applications that follow the characteristics described in 

Section 3, a WHIP bundle containing all the information 

described above, provides all the necessary information to re-

execute the experiment, and determine the provenance of the data. 

However, while such a package is comprehensive, it also requires 

significant storage space.  Example bundles are located at: 

http://pegasus.isi.edu/workflows/montage/. 

4.2 Storage Efficiencies through References 
By taking advantage of the characteristics of the applications we 

consider, and by using the functionality of the WHIP bundle to 

refer to external locations, the size of a provenance package can 

be significantly reduced, as demonstrated in Section 5. In the 

extreme case, we imagine that the entire bundle would only 

contain metadata, a workflow description, and references to input 

data and VM images. This is under the assumption that all input 

data, all virtual machines, and all codes are stored in a remotely 

accessible archival repository. 

While it is not the case at the moment, many scientific fields are 

beginning to store data in curated archives. As previously 

mentioned, sky survey data is available from such a repository. In 

addition, the scientific community that studies climate change has 

set up a network of data centers for topics ranging from 

biodiversity to glaciology 

(http://www.ngdc.noaa.gov/wdc/list.shtml). Besides data sets, 

there are a number of national software repositories for scientific 

computing codes [22]. Finally, Amazon provides a number of 

preconfigured virtual machine images for use on their cloud. 

These preconfigured virtual machines are a step towards an 

accessible archived library of virtual machines.  

In the next section, we show how the pipeline provenance model 

can reduce the amount of storage needed for provenance through 

the use of re-execution and references.  

 

 

<?xml version="1.0"?> 

<entry xmlns="http://www.w3.org/2005/Atom"> 

  <title>Montage Workflow</title>  

  <author>   <name>Gaurang Mehta</name> 

    <email>gmehta@isi.edu</email>   </author> 

  <id>http://pegasus.isi.edu/workflows/montage/1</id> 

  <link 

href="http://pegasus.isi.edu/workflows/montage/montage-1-

0.1.whip" rel="alternate"/> 

  <updated>2009-07-30T23:19:03Z</updated> 

  <summary>This workflow from the Montage 

(http://montage.ipac.caltech.edu) application is used to 

generate science… 

… 

  <category 

scheme="http://org.whipplugin/data/description/datatype" 

term="http://pegasus.isi.edu/schema/DAX" label="The 

format of the workflow description"/> 

  <category 

scheme="http://org.whipplugin/data/description/entrypoint

" term="data/montage.dax" label="The workflow 

description" /> 

  <category 

scheme="http://pegasus.isi.edu/workflows/inputfile" 

term="data/input/2mass-atlas-990502s-j1420186.fits" 

size="2111040" label="An input file"/> 

… 

   <category 

scheme="http://pegasus.isi.edu/workflows/VM" 

term="http://pegasus.isi.edu/workflows/montage/fc8-

x86_64-montage.img" size="2684354560" arch="x86_64" 

os="Fedora Core 8" type="EC2 Image" label="The VM 

Image for Amazon EC2 containing Pegasus, Condor and 

Globus to run the workflow" /> 

  <category 

scheme="http://pegasus.isi.edu/workflows/outputfile" 

term="data/output/mosaic.jpg" size="2478" label="An 

output file"/> 

</entry> 

Figure 3: A snippet of the WHIP manifest. 

 



 

5. EVALUATION  
In order to evaluate the benefits of the proposed approach, we 

measured the amount of disk space needed to store provenance 

information in the traditional approach versus our pipeline 

provenance model. In the traditional approach all the information 

about the input, intermediate, and final data are stored as well as 

the workflow description and all the information associated with 

its execution.  

Table 1 shows the disk space needed to store provenance 

information about Montage workflows of various sizes.  As the 

size of the mosaics increases from 0.5 degree squares of the sky to 

8 degree squares, so does the size of the input data and the size of 

the workflow to be executed.  We distinguish between input data, 

intermediate data which are generated and consumed as part of the 

workflow execution, and the output data which correspond to the 

desired mosaic.  The code represents the Montage code base, but 

does not include the workflow management code. The latter is 

included in the virtual image described below.  The workflow 

specification is the size of the workflow as it is described in XML. 

The specification is in a form of a Directed Acyclic Graph, where 

the nodes of the graph represent the computations and their input 

and output data. The dependencies between the computations are 

also specified. The VM size corresponds to the size of the virtual 

machine image, which includes Fedora 8 with Java, Pegasus, 

Condor, Globus and some miscellaneous packages for Perl, C, 

C++, etc.  This VM can be deployed on a cloud such as Amazon 

EC2 [23] or another virtual environment and be used as a host for 

the workflow computations.  The full execution directory 

corresponds to all the files needed for the workflow engine to 

submit the workflow to the execution environment as well as all 

the logging information generated during the workflow execution.  

In the traditional provenance model all the information above 

would be considered a part of the provenance record and would be 

stored. While this enables queries to be performed without the 

need for re-execution, this also adds significantly to the storage 

overhead.  

In order to conduct a preliminary evaluation of our approach, we 

measured the data footprint of the traditional and pipeline 

provenance approach for the Montage application when managed 

by the Pegasus Workflow Management System. The results are 

shown in Figure 4.  The X-axis shows the size of the Montage 

mosaic in degrees square.  The Y-axis shows the total data 

footprint in megabytes (on a logarithmic scale).  We plotted four 

different quantities: 1) the data footprint of the traditional 

provenance approach, which saves everything seen in Table 1 

with the exception of the VM, 2) the same quantity as 1) but 

includes the Virtual Machine image, 3) the data footprint of the 

proposed pipeline-centric provenance model, and 4) the data 

footprint of the pipeline-centric model as implemented in the 

WHIP format, which compresses the elements of the bundle. 

In the pipeline-centric provenance package we included:   

 The Metadata which includes the creator of the bundle, date 

of creation, workflow format 

 The workflow description 

 The input data 

 A reference to the VM image 

We can see that in this case the pipeline-centric approach is on 

average 70% more efficient in terms of storage than the traditional 

approach. Additionally, when the pipeline-centric approach is 

implemented as a WHIP bundle, this improvement grows to 

almost 90% (although one could argue that the traditional 

provenance records can be compressed as well).  If we include 

only references to the input data rather than the data themselves, 

as can be done for applications that access well maintained data 

archives, then the bundles would be even smaller.  

 

 

 

Figure 4: Data Footprint of Different Approaches to 

Provenance. 

 

 

Mosaic 

Size 

Input Data Intermediate 

Data 

Output 

Data 

Code Workflow 

Specification 

VM Size Full Exec 

Dir 

Total 

0.5 31.50MB 251.7 MB 56.3 MB 49 MB 0.081 MB 759.8 MB 1.2 MB 1,149.581 MB 

1 94.5MB 767 MB 204 MB 49 MB 0.2607 MB 759.8 MB 3.2 MB 1,877.7607 MB 

2 302.4MB 2504 MB 796 MB 49 MB 8769 MB 759.8 MB 11 MB 1,3191.2 MB 

4 1224.3MB 10300 MB 3269 MB 49 MB 3.8 MB 759.8 MB 44 MB 1,5649.9 MB 

6 2578.8 MB 21938 MB 7396 MB 49 MB 8 MB 759.8 MB 92 MB 3,2821.6 MB 

8 4414.2 MB 37951 MB 13191 MB 49 MB 14 MB 759.8 MB 160 MB 5,6539 MB 

Table 1: Data size of various Montage Workflow Artifacts. 

 



A drawback of our approach is that having only partial 

provenance records requires the workflow to be re-executed when 

a user wants to inspect or query the records. Thus we have the 

classic space versus time tradeoff. In our model, we assume that 

provenance data will not be frequently inspected or queried and 

thus re-execution will not be expensive. However, if some data 

are more popular than others, it may be beneficial to keep their 

full provenance records to be able to efficiently answer 

provenance queries. 

In order to quantify the cost (in time) of workflow re-execution, 

we show the runtime of Montage on an Amazon EC2 extra large, 

64-bit, high CPU instance with 7 GB of memory, 8 virtual cores 

with 2.5 EC2 Compute Units each, 1690 GB of instance storage, 

and high I/O performance.  The cost of such an instance is $0.80 

per instance hour (http://aws.amazon.com/ec2/instance-types/).  

Figure 4 shows the runtime of Montage on such an instance. 

 

 

 

 

  

 

Figure 4: Runtime of Montage on a Large Instance of EC2. 

 

For the largest size mosaic (8 degrees square) the runtime is just 

over 2 hours on the average, for a cost of $2.40. Generating 2 or 4 

degree square mosaic takes less than 30 minutes and costs $0.80.  

6. RELATED WORK  
A number of systems and approaches have been developed to 

address provenance in e-Science applications. Bose and Frew [3] 

provide an extensive overview of provenance systems. Simmahn 

et al. [4] discuss various provenance systems for use in e-Science. 

Some systems, such as PASS [24], are execution-centric, focusing 

on gathering runtime information in the context of interactive 

applications. Other systems, such as Taverna [25], use a workflow 

to organize provenance information at runtime [26].  Finally, the 

database community has focused on the provenance of derived 

tuples. A good example of an extended database is Trio [27].  

Unlike database systems, the applications we consider run on 

heterogeneous data (usually in the form of files) using complex 

codes. Execution-centric systems cater to more interactive 

applications whereas the applications we consider are well defined 

at the outset. The pipeline centric provenance model is closest to 

workflow-centric models. However, these models are not focused 

on re-execution as the mechanism to retrieve provenance. Instead, 

they use the workflow as a way to structure provenance 

information. 

The closest work to our approach is the Virtual Data System 

(VDS) [28]. In this approach, provenance queries are, in some 

cases, answered by re-executing a workflow to retrieve 

intermediate results as suggested by the pipeline provenance 

model. Our work differs in that VDS uses a centralized database 

to store provenance data whereas our model focuses on collecting 

provenance information into an easily transportable package. 

Additionally, our work helps users understand when a provenance 

system based on re-execution is appropriate for their application. 

Lastly, unlike VDS, we focus on the storage advantages of this 

approach. 

Other work has considered how to efficiently store provenance 

information. Chapman et al. describe a series of “provenance 

factorization” algorithms that find common subtrees in a 

provenance graph, which can be then collapsed to reduce the size 

of the provenance graph [29]. Heinis and Alonso describe an 

interval representation for provenance graphs that significantly 

reduces their size [30]. Groth et al. describe the use of references 

to reduce the size of provenance graphs [31].  The pipeline 

provenance model differs from these approaches in that it uses the 

notion of reproducibility to compress provenance information. 

However, unlike these methods, our approach may have 

significant query time impact because of the need for re-execution 

to retrieve intermediate data. 

The concept of reproducibility has been discussed widely as a 

motivating factor for provenance [32]. There is a broad movement 

to encourage reproducible science (http://www.rrplanet.com). Our 

approach is not just to use provenance for reproducibility, but use 

the notion of reproducibility as the basis for provenance capture.  

7. CONCLUSIONS 
The pipeline-centric provenance model provides a packaging 

mechanism to capture the provenance of data produced by a class 

of applications common in e-Science.  While this model can 

capture the data necessary to cover our example use-cases from 

Montage there is still work to be done to enable querying of these 

packages. We plan to add a query mechanism that transparently 

re-executes workflows to determine the provenance of 

intermediate data products. This query mechanism will support 

the retrieval of remotely stored data. We envision that the results 

of provenance queries will be returned as an Open Provenance 

Model graph [33] enabling interoperability between pipeline-

centric provenance packages and other provenance systems. Once 

this query mechanism has been developed, we aim to measure the 

overhead of query by re-execution in comparison to standard 

query mechanisms that store all intermediate data. This will allow 

for the characterization of the trade-off between storage overhead 

and query time.  

Both provenance and reproducibility are fundamental parts of the 

scientific process. For a certain class of scientific applications, the 

ability to reproduce a result can provide enough information to 

determine the provenance of output data. In this paper, we have 

described a pipeline-centric provenance model that captures all 

necessary information for provenance in a single package. 

Furthermore, we have shown using an initial set of experiments 

that significant storage reductions can be achieved using this 

model. Finally, we have described the type of applications that are 

suitable for this model. This work is the first step towards a 



greater understanding of the intersection of provenance and 

reproducibility in scientific workflow- based applications. 
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