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ABSTRACT 

Subgraph patterns are widely used in graph classification, but 
their effectiveness is often hampered by large number of patterns 

or lack of discrimination power among individual patterns. We 

introduce a novel classification method based on pattern co-

occurrence to derive graph classification rules. Our method 
employs a pattern exploration order such that the complementary 

discriminative patterns are examined first. Patterns are grouped 

into co-occurrence rules during the pattern exploration, leading to 

an integrated process of pattern mining and classifier learning. By 
taking advantage of co-occurrence information, our method can 

generate strong features by assembling weak features. Unlike 

previous methods that invoke the pattern mining process 

repeatedly, our method only performs pattern mining once. In 
addition, our method produces a more interpretable classifier and 

shows better or competitive classification effectiveness in terms of 

accuracy and execution time.  

Categories and Subject Descriptors 
H.2.8 [Database management]: Database Applications---data 
mining; I.5.2 [Pattern Recognition]: Design Methodology---

Classifier design and evaluation; Feature evaluation and selection 

General Terms 
Algorithms, Experimentation, Performance 

Keywords 
Graph mining, graph classification, classification rule 

1. INTRODUCTION 
Graphs are powerful data structures for organizing vast quantities 

of data.  Mining for graph patterns has steadily grown as a topic of 
interest and has found applications in a wide range of fields, 

including bioinformatics and chemoinformatics [9, 15, 1], 

database indexing [8], and web information management [17]. 

The interest of this paper is to utilize these graph patterns to 
derive a classification model to distinguish between graphs of 

different class labels.  We focus on a binary classification that 

assigns a graph to either a positive class or a negative class.  Note 

that this binary graph classification model has many applications. 

For example, proteins, whose structures can be represented by 

graphs, can be classified into two classes: those which perform a 

certain function and those which do not. Similarly, chemical 

compounds can be classified into two classes: those which are 
active and those which are not. Note that in these applications, the 

positive and negative classes may not necessarily contain 

comparable number of graphs. It is also possible that graphs in the 

negative class may be much more diverse than graphs in the 
positive class.  

Given a training set that contains both positive graphs and 
negative graphs, the objective of graph classification is to build a 

prediction model that separates these two classes. Early work [10, 

7, 2] in graph classification took a straightforward two-step 

approach, which first generates a set of subgraph patterns and then 
employs a generic classification model in the feature space 

constructed by mapping the occurrence of a graph pattern to a 

feature. A major shortcoming of this approach is the decoupling 

of the subgraph pattern mining and classifier construction. The 
number of subgraph patterns generated in the first step is usually 

very large and includes many patterns which may not correspond 

to features of high classification power. This often leads to 

prolonged running time and poor classification accuracy.  

To overcome this drawback, recent approaches in graph 

classification integrate subgraph pattern mining and classifier 

construction. Several boosting algorithms have been proposed 
which look for discriminative subgraph patterns without 

examining all possible subgraphs [14, 16, 18]. These algorithms 

mine patterns repeatedly in multiple iterations. During each 

subsequent iteration, misclassified graphs are given higher 
weights.  However, this approach may take many iterations to 

reach a high classification accuracy, resulting in long execution 

time. The LEAP algorithm [22] takes a novel divergence from this 

standard and introduces two concepts: (i) structural leap search 
and (ii) frequency-descending mining.  This method is faster than 

previous methods because it is able to quickly locate patterns that 

individually have high discrimination power, without exploring 

the whole pattern space. Furthermore, it gives a much smaller 
pattern set than traditional graph mining algorithms, which 

facilitates classification model training.  However, this method 

focuses on the discriminative power of individual patterns and 

hence does not work well in two scenarios. (1) When no 
individual pattern has high discrimination power, a group of 

patterns may jointly have higher discrimination power (see 

example in Section 3.2). LEAP is not designed for evaluating joint 

discrimination power of multiple patterns that have low individual 
discrimination powers.  LEAP is therefore apt to fail in 

identifying these patterns. (2) Furthermore, the top-k patterns 

found by LEAP may not necessarily compose the best classifier, 
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especially when these k patterns share most of their supporting 

graphs. Therefore, LEAP is not a suitable stand-alone graph 
classification algorithm. To construct a good classification model, 

we need to invoke LEAP multiple times. We adjust the weight of 

each graph after each invocation of LEAP so that the next 

invocation will identify discriminative patterns that are 
complementary to the ones returned by earlier invocations. The 

union of these patterns can then be used as features to train a 

classifier. Another algorithm gPLS [19] adapts the powerful 

mathematical tool of PLS (Partial Least Squares) regression to 
graph mining to collect informative subgraph patterns and build a 

classifier directly with fewer iterations than typical boosting 

methods. It creates latent variables involving response variables, 

thus leading to better predictions. However, these latent variables 
have the known disadvantage of poor interpretability. CORK [20] 

is a subgraph-based algorithm for binary graph classification 

which attempts to discover frequent subgraphs that remove 

correspondence between graphs in the positive and negative 
classes. Given a set of subgraphs, the number of correspondences 

is the total number of pairs of graphs that cannot be discriminated 

by these subgraphs. The number of correspondences is sub-

modular and can usually achieve good results. However, it is not 
perfect since subgraphs of vastly different discrimination power 

may have the same number of correspondences (see example in 

Section 2).  

Therefore, we propose to investigate the discrimination power of 

co-occurrence of subgraph patterns and design a method to mine 

co-occurrence rules that can be readily used to classify graphs into 

positive and negative classes. These co-occurrence rules are able 
to capture complex graph features that offer high discrimination 

power. We propose an algorithm, COM (Co-Occurrence rule 

Miner), which employs an efficient pattern exploration order to 

locate subgraph patterns whose co-occurrence is indicative of 
graph classification. These co-occurrence rules offer higher 

classification accuracy as well as better interpretability than 

previous approaches. 

Table 1. Comparison of latest graph mining algorithms for 

graph classification 

 Repeated 

mining 

Generates 

classifier 

Classifier 

interpretability 

Joint 

discrimination 

power 

LEAP Yes No Med No 

gPLS Yes Yes Low Yes 

CORK Yes No Med No 

COM No Yes High Yes 

The remainder of this paper is organized as follows. Section 2 
reviews related work. We introduce the problem definition in 

Section 3 and the pattern exploration order of COM in Section 4.  

The COM algorithm is presented in Section 5. Experimental 

results are given in Section 6. Section 7 concludes the paper. 

2.  RELATED WORK                           
Early graph mining researches focused on finding all patterns with 

frequency higher than a user-specified threshold. Such work 

includes AGM [12], FSG [13], gSpan [23], FFSM [11] and so on. 
They successfully solved the problem of efficient enumeration of 

patterns without repetition. Since then, the research focus has 

shifted to investigating sensible ways to confine the pattern space. 

gPrune [24] carried out an extensive study on graph pattern 

mining with constraints in which users can specify additional 
criterions defining the subset of patterns they are interested in. 

However, most of the constraints are conformation-based, so it 

does not work well when users have little knowledge about the 

graph set. Besides, only a few types of constraints can be 
effectively adopted in graph pattern mining. Chen et al. [6] 

proposed a method to represent similar patterns which have 

similar conformations and supporting sets by using a 

representative pattern. This can effectively reduce the number of 
patterns that must be investigated, but there is still much 

redundancy when these patterns are used in graph classification. 

Additionally, the process of finding representative patterns is 

performed after graph pattern mining, so it still suffers from the 
inefficiency of examining a huge pattern space. Yan et al. [22] 

made binary graph classification much more efficient by 

proposing the LEAP algorithm, which finds the top-k patterns 

evaluated using an objective function score that measures each 
pattern’s significance. However, the set of top-k patterns may 

have a high level of redundancy if there is significant overlap in 

their supporting graphs, therefore forming a poor classification 

set. To solve this problem, an iterative mining framework is used 
in the LEAP experiments, mining optimal patterns iteratively until 

all graphs are covered by some patterns. Although adopting an 

iterative feature selection strategy can lead to high accuracy, it 

makes the process less efficient because LEAP needs to be called 
repeatedly.  Furthermore, when there are few discriminative 

patterns, the effectiveness of LEAP may also be compromised. 

Shortly after LEAP, Saigo et al. [19] proposed a graph 

classification algorithm called gPLS by using PLS (Partial Least 
Square) regression, which also showed high efficiency and 

accuracy. Partial least squares regression has strong prediction 

power, but in its model PLS uses latent variables, generated from 

analysis of both observations and predictors, that are difficult to 
interpret. Thoma et al. [20] proposed a subgraph-based binary 

graph classification algorithm CORK. The goal is to find the most 

discriminative subgraph set instead of individual discriminative 

subgraphs. CORK uses the number of correspondences as quality 
criterion to measure the discrimination power of a subgraph set. It 

enables CORK to achieve near-optimal result because the number 

of correspondence is submodular. However, this criterion may be 

problematic in measuring discrimination power, because two 
subgraph sets can have exactly the same correspondence score but 

significantly different discrimination power. For example, if there 

are two subgraph sets A and B. A fails to discriminate 1 positive 

graph and 9 negative graphs; B fails to discriminate 3 positive 
graphs and 3 negative graphs. Then the number of 

correspondences of A and B are 9 in both scenarios, but A leads to 

a much better classifier than B as A only misclassifies one graph 

while B may misclassify three graphs. 

3. PROBLEM ANALYSIS 
We first introduce the terminology and notations used in this 

paper.  
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3.1 Definitions 

 

Figure 1. An example of two sets of graphs 

DEFINITION 1 (Undirected Graph).  A graph is denoted by     

g = (V, E), where V is a set of nodes (vertices) and E is a set of 
edges connecting the nodes. Both nodes and edges may have 

labels. 

Figure 1 shows eight undirected graphs: N1, N2, N3, N4 and P1, P2, 
P3, P4. For these simple illustrations, the edges are unlabeled, 

although our work handles graphs with labeled edges. The node 

set of a graph g is denoted as V(g) and the edge set of g is denoted 

as E(g). For example, in graph N1, the node set V(N1) is {A, B, D, 
E} and the edge set E(N1) is {A-B, A-D, D-E, B-E}.  

DEFINITION 2 (Connectivity). For two nodes v0 and vn in 
graph g, if there exists a sequence of nodes v0, v1, v2, …, vn such 

that there is an edge in g connecting vi and vi+1, for any i, 0 ≤ i < 

n, then v0 and vn are connected. For a graph g, if every two nodes 

in g are connected, then g is connected. 

All graphs in Figure 1 are connected graphs. 

DEFINITION 3 (Subgraph Isomorphism). The label of a node 
u is denoted as l(u) and the label of an edge (u, v) is denoted as 

l((u, v)). For two graphs g and g’, if there is an injection f: V(g)  

V(g’), such that for any node v in V(g), l(u) = l(f(u)) and for any 

edge (u, v) in E(g), l((u, v)) = l((f(u), f(v))), then g is a subgraph of 
g’ and g’ is a supergraph of g, or g’ supports g.  

In this paper, a subgraph is also called a pattern and we are only 
interested in connected subgraphs with at least two nodes. For 

example, A-D is a pattern in Figure 1 because A-D is a 2-node 

connected subgraph of N1, N2 and P1. 

A pattern is frequent if it is supported by some threshold 

proportion of graphs in a graph set.   

DEFINITION 3 (Frequency). Given a graph set S, for a 
subgraph g, let S’ = {g’ | g’ is in S and g’ supports g}, then the 

frequency of g is |S’| / |S|.  

For example, in graph set {N1, N2, N3, N4} in Figure 1, the 

supporting set of A-D is {N1, N2} and its frequency is 0.5. 

In order to build a classification model, we use a training set 
containing a positive graph set and a negative graph set to 

generate rules that discriminate between graphs in the two sets. 

Without loss of generality, we assume that the positive set is the 

interesting set and the negative set is the decoy. In this paper, we 

use graph set {N1, N2, N3, N4} in Figure 1 as the negative set and 
graph set {P1, P2, P3, P4} as the positive set to illustrate our 

intuition and algorithm.  

3.2 Challenges 
The first and perhaps biggest challenge in using patterns in graph 
classification is feature selection. The number of patterns in a 

graph set may be exponential to the graph size. It is infeasible and 

unnecessary to use all of them in learning a classification model. 

Therefore, some measurement needs to be adopted to choose a 
subset of patterns as features. However, even if a measurement is 

given, applying it to all patterns is often an extremely time-

consuming process because of the exponential pattern space.  

In addition to the enormous pattern space, another challenge is 

that the graph set may not have many individual patterns that are 

highly discriminative. In a binary classification, for instance, all 

patterns may occur equally frequently (or infrequently) in both the 
positive set and negative set, which makes it difficult to separate 

the two sets merely based on individual patterns. In the example 

in Figure 1, there is no individual subgraph that occurs in more 

than one positive graph and cannot be found in negative graphs.  
Thus, we propose to consider pattern co-occurrence in building 

classification model. Even if all patterns occur almost equally 

frequently in both positive and negative sets, co-occurrence of 

several patterns may still be discriminative. For example, in 
Figure 1, pattern A-B and pattern B-C both occur in half of the 

positive graphs and half of the negative graphs. Normally these 

two patterns are not considered discriminative by most previous 

methods. However, A-B and B-C always occur together in positive 
graphs but never co-occur in negative graphs. Therefore the co-

occurrence of A-B and B-C is very discriminative.  

A third challenge arises from the asymmetry of the positive and 

negative graph sets in terms of the number of graphs in each set 

and the similarity of these graphs. This requires the classification 

model to be able to give different treatments for positive and 
negative graphs. 

3.3 Our Contribution  
We propose a method COM to mine co-occurrence rules. Our 

method can be integrated into any commonly used subgraph 
mining algorithms. In this paper, we use FFSM [11] as an 

example algorithm for frequent subgraph mining to illustrate the 

principle of COM.  Several key features of the FFSM algorithm 

make it an ideal choice for this purpose: (i) a simple graph 
canonical form, (ii) an algebraic graph framework to guarantee 

that all frequent subgraphs are enumerated unambiguously, and 

(iii) completely avoiding subgraph isomorphism testing by 

maintaining an embedding set for each frequent subgraph.  

The COM algorithm starts with the set of single-edge patterns and 

incrementally extends these patterns using the candidate-
proposing operation FFSM-Extension [11].  The discrimination 

score is then defined as 𝑑 𝑝 = 𝑙𝑜𝑔  
𝑓𝑝 (𝑝)

𝑓𝑛 (𝑝)
 , where fp(p) and fn(p) 

represent the pattern’s frequency in the positive set and the 

negative set, respectively. Focusing on discriminative patterns 

reduces the pattern space significantly.  

COM organizes patterns into teams of co-occurrence rules to form 

a rule set.  Whenever a new pattern is generated, the 
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discrimination score of every rule is calculated with the pattern’s 

inclusion and then the pattern is inserted into the rule that yields 
the greatest increase in discrimination score. The algorithm 

terminates when either all patterns have been found or the rule set 

can successfully identify all positive graphs. A graph g is 

classified to be positive if it satisfies at least one rule from the 
rule set. Taking advantage of co-occurrence information of 

patterns enables us to find features with high discrimination 

power even when there are few discriminative patterns because it 

is possible that the co-occurrence of several patterns may be 
frequent in the positive set and rare in the negative set when each 

individual pattern is almost equally frequent in both sets. Using 

co-occurrence information may also improve time efficiency since 

co-occurrence of several weakly discriminative patterns can be as 
powerful as a strongly discriminative pattern, therefore our 

method does not require global optimization. Additionally, co-

occurrence rules are formed by co-occurring patterns, and thus 

have better interpretability than most other classifiers, such as 
SVM, based on mathematical models. The idea of subgraph co-

occurrence rules may seem similar to CBA (Classification Based 

on Association) or the usage of co-occurrence in text mining. 

However, in our graph classification problem, subgraph patterns 
(analogous to “items” in CBA or “units of text” in text mining) 

are not available prior to mining and it is impractical to enumerate 

all of them due to the exponential pattern space. Our subgraph co-

occurrence discovery task is more challenging than CBA and text 
mining using co-occurrence because we need to efficiently 

integrate subgraph mining and co-occurrence mining, which, as 

far as we know, has not been thoroughly studied before.                                                         

4. PATTERN EXPLORATION ORDER 

4.1 Pattern Exploration Order Based on 

CAM 
All patterns in a graph set can be organized in a tree structure. 

Each tree node represents a pattern and is a supergraph of its 

parent node, with the root node being an empty graph. Traversing 

this tree can enumerate all distinct patterns without repetition. To 
facilitate this, a graph canonical code is often employed. Several 

graph coding methods have been proposed for this purpose. We 

adopt the CAM (Canonical Adjacency Matrix) code [11] in this 

paper, but our method can be easily applied to other graph coding 
strategies. 

DEFINITION 4 (Code). The code of a graph g is the sequence 
formed by row-wise concatenating the lower triangle entries of an 

adjacency matrix M of g. 

The code of a graph g is not unique because g may have up to (n!) 
different adjacency matrices. So we use standard lexicographic 

order on sequences to define a total order on all possible codes. 

The matrix that produces the maximal code for a graph g is called 

the Canonical Adjacency Matrix of g and the corresponding code 
is the CAM code of g. The CAM code of a graph g is unique. It is 

proved that exploring a pattern tree with the CAM codes [11] can 

enumerate all patterns without repetition.  

 

 

 

A 1 0 

1 D 1 

0 1 E 

adjacency matrix M 

D 1 1 

1 A 0 

1 0 E 

adjacency matrix N 

Figure 2. An example of adjacency matrices 

For example, in Figure 1, A-D-E is a pattern in graph P1. Figure 2 

shows two different adjacency matrices of A-D-E. A “1” indicates 
the existence of an edge between two nodes while a “0” indicates 

the absence of an edge. Adjacency matrix M leads to code 

A1D01E and adjacency matrix N leads to code D1A10E. Although 

both of them are correct codes of A-D-E, D1A10E is less than 
A1D01E lexicographically. In fact, A1D01E is the largest code for 

A-D-E, so it is the CAM code and adjacency matrix M is the 

canonical adjacency matrix. 

4.2 Scoring Function 
Even with an efficient graph coding scheme, it is still intractable 

to find graph features by exploring the entire pattern tree because 

of its prohibitive size. However, not all patterns are suitable to be 

used as graph features and usually a small number of 
discriminative patterns are sufficient for effective classification. 

Therefore, we only need to find a subset of patterns that can 

promise an effective classifier.  

Selecting graph features by answering whether a subset of 

patterns can lead to an effective classifier is extremely inefficient 

because of the huge number of pattern combinations. Therefore, 
in most cases, individual patterns are evaluated for their 

effectiveness in classification rather than pattern combinations. 

Let 𝑓𝑝  be the frequency of a pattern 𝑝 in the positive set and 𝑓𝑛  be 

the frequency in the negative set.  The effectiveness of 𝑝  in 

classification is usually measured by the value of a scoring 

function 𝑑 𝑓𝑝 , 𝑓𝑛 . The larger this value is, the more effective 𝑝 is 

in classification. Most scoring functions require balanced 

contributions of 𝑓𝑝 and 𝑓𝑛 to the value. However, in many 

applications, such as those considered in this paper, graphs in the 
positive set shared some (unknown) commonality but the negative 

set are much more diverse and lacks common patterns. Thus, there 

may not exist any discriminative patterns in the negative set. In 

addition, discriminative patterns found in the positive set are of 
much more interest to users. In this paper, we choose the 

following function: 

𝑑 𝑝 = 𝑑 𝑓𝑝 , 𝑓𝑛 = 𝑙𝑜𝑔  
𝑓𝑝

𝑓𝑛
  

The rationale for this simple scoring function is that the more 

frequent p is in the positive set and less frequent 𝑝 is in the 

negative set, the more discriminative 𝑝 is. For example, in Figure 
1, the positive frequency of pattern A-B is 0.5 and its negative 

frequency is also 0.5, so the score of A-B is 𝑙𝑜𝑔  
0.5

0.5
 = 0 . 

Additionally, in our experiments this scoring function led to better 
classification accuracy than G-test score [22] and Delta criterion 

[20]. 

This scoring function cannot give a value when 𝑓𝑝  or 𝑓𝑛 is equal to 

zero. We solve this problem as follows: 
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 If 𝑓𝑝  of a pattern p is 0, then we do not consider this pattern 

because we are only interested in patterns found in the 
positive set 

 If 𝑓𝑛  of a pattern 𝑝 is 0, we replace it with a positive value 

very close to zero. 

4.3 A Better Pattern Exploration Order 
With a given scoring function, we can rank all patterns by their 

scores. Unlike LEAP, which looks for patterns with the top-k 
scores, we want to reorganize the pattern tree to increase the 

probability that we visit patterns with higher score ranks earlier 

than those with lower score ranks. The need for a more effective 

pattern exploration order is due to the fact that most pattern 
enumeration algorithms tend to visit patterns with similar 

conformations together since they usually have similar codes. 

This does not cause any side effect on effectiveness of pattern 

enumeration, but it has a huge negative impact on finding 
complementary discriminative patterns because patterns with 

similar conformations are much more likely to have overlapping 

supporting sets.  

We want to take advantage of the following observation:  let p be 

a pattern in the pattern tree and 𝑝′ be the parent pattern of p, the 

score rank of 𝑝  is correlated with the value of ∆ 𝑝 = 𝑑 𝑝 −
𝑑(𝑝′). For patterns with two nodes, we set their Δ values equal to 

their scores 𝑑 𝑝 . 

Therefore, when we explore the pattern space, we first enumerate 
all patterns with 2 nodes as candidates and insert them into a heap 

structure with the candidate having the highest ∆ value at the top. 
Ties are broken by favoring higher positive frequency and then by 

CAM code order. Then we always take the pattern at the top of 

the heap and generate all of its super-patterns with one more edge 

by performing the CAM extension operation [11]. We insert new 
patterns into the heap structure. In this way, we are able to visit 

patterns with high score ranks early and patterns with overlapping 

supporting sets late.  The algorithm is as follows: 

 

1. 𝑃 ←  𝑎𝑙𝑙 𝑜𝑟𝑑𝑒𝑟𝑒𝑑 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 𝑤𝑖𝑡𝑕 2 𝑛𝑜𝑑𝑒𝑠  
2. 𝑝 ← 𝑛𝑒𝑥𝑡 𝑢𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑖𝑛 𝑃 𝑤𝑖𝑡𝑕max∆(𝑝) 

3. 𝑤𝑕𝑖𝑙𝑒  𝑝 ≠ 𝑁𝑈𝐿𝐿  
4. 𝑒 ←  𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑝   
5. 𝑃 ← 𝑃 ∪ 𝑒 

6. 𝑃 ← 𝑃 − {𝑝} 
7. 𝑝 ← 𝑛𝑒𝑥𝑡 𝑢𝑛𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑖𝑛 𝑃 𝑤𝑖𝑡𝑕max∆(𝑝) 

5. GENERATING CO-OCCURRENCE 

RULES 

5.1 Classification Rules 
DEFINITION 5 (Co-occurrence Rule). Given a positive graph 

set 𝑆𝑝  and a negative graph set 𝑆𝑛 , let P = {p | p is supported by at 

least one graph in Sp} be the set of all subgraphs in Sp, any subset 

P’ of P can form a co-occurrence rule P’ → PositiveGraph. Since 
all co-occurrence rules we are interested in have the same right 

hand side, in the following discussion, we omit the right hand side 

of the rule and use the pattern set at the left hand side to represent 

the rule.  

For example, {A-B, B-C} is a co-occurrence rule in Figure 1. 

DEFINITION 6 (Satisfying a Rule). Given a graph g and a rule 

r, g satisfies r iff g supports all patterns in r. 

In Figure 1, {A-B, B-C} is satisfied by P1 and P2. 

Let Sp’ be the set of all positive graphs that satisfy r and 𝑆𝑛 ′ be the 
set of all negative graphs satisfying r, the positive frequency of r 

is denoted as 𝑓𝑝 𝑟 =
 𝑆𝑝 ′ 

 𝑆𝑝  
; the negative frequency of r is denoted 

as 𝑓𝑛 𝑟 =
 𝑆𝑛 ′ 

 𝑆𝑛  
. Scoring functions can be applied to a co-

occurrence rule  𝑟:𝑑 𝑟 = 𝑑 𝑓𝑝 𝑟 , 𝑓𝑛(𝑟) . 

The output of our algorithm is a set of co-occurrence rules R = 

{r0, r1, …, rn}. It is straightforward to use R as a classifier to 
classify graphs. Given graph g, if g satisfies at least one rule in R, 

then it is classified as positive; otherwise g is classified as 

negative. In addition, because each co-occurrence rule is formed 

by co-occurred patterns, these pattern co-occurrences can be 
treated as complex graph features. 

5.2 Co-occurrence Rule Generation 
Any set of patterns can form a co-occurrence rule, but not all of 
them have high classification accuracy. Ideally, we want co-

occurrence rules consisting of patterns with high frequency in the 

positive graph set and low frequency in the negative graph set. On 

one hand, as long as a graph g satisfies a rule, it will be classified 
as positive, so a strong rule should have low negative frequency; 

on the other hand, co-occurrence rules are prone to the overfitting 

problem if each of them is satisfied by only a small portion of the 

positive set. Therefore, we use two user-specified parameters tp 
and tn to quantify the quality of a rule, where tp is the minimal 

positive frequency allowed for a resulting rule and tn is the 

maximal negative frequency permitted. The goal of our algorithm 

is to find a co-occurrence rule set R to maximize the number of 
graphs that can be classified correctly, where each rule in R has 

positive frequency no less than tp and negative frequency no 

greater than tn. 

This problem can be proved to be equivalent to the set cover 
problem and is therefore NP complete. It is intractable to find an 

optimal solution in the enormous pattern space. Therefore, we 

adopt a greedy approach for rule generation. Let the candidate 

rule set be Rt and the resulting rule set be R. The algorithm 
explores the pattern space with the heuristic order in Section 4 and 

whenever it comes to a new pattern p that has not been processed 

before, if there exists one positive supporting graph of p that does 

not satisfy any rule generated so far, the algorithm generates a 
new candidate co-occurrence rule containing only p and examines 

the possibility of merging this new rule into existing candidate 

rules. Given a new pattern p and a candidate rule𝑟𝑡 ,∆ 𝑝, 𝑟𝑡 =
𝑑 𝑟𝑡 ∪  𝑝  − 𝑑(𝑝). Pattern p is to be inserted into candidate rule 

𝑟 ′, 𝑟 ′ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑟𝑡∈𝑅 ′(∆(𝑝, 𝑟𝑡)), ∆(𝑝, 𝑟𝑡) ≥ 0. If there are patterns 

in r’ whose supporting sets are supersets of the supporting set of 

p, then inclusion of p into r’ will make these patterns redundant. 

These patterns will be removed from r’ when p is inserted. Then, 
for either the newly generated rule {p} or the updated r’, if it has fp 

≥ tp and fn ≤ tn and it can cover at least one positive graph that 

does not satisfy any rule in R, it will be removed from Rt and 

inserted into R. The algorithm terminates either when all patterns 
are explored or when all positive graphs can satisfy some resulting 

rules. Although in the worst case the algorithm is still exhaustive, 

experiments show that it is time efficient in practice. 
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Beginning of step 1 Beginning of step 2 Beginning of step 3 

Beginning of step 4 Beginning of step 5 Beginning of step 6 

Heap top = B-C 

R’ = {{A-B}} 

R = {} 

Not yet covered 
positive graphs 

= {P1, P2, P3, P4} 

Heap top = D-E 

R’ = {} 

R = {{A-B, B-C}} 

Not yet covered 
positive graphs 

= {P3, P4} 

Heap top = A-B 

R’ = {} 

R = {} 

Not yet covered 
positive graphs 

= {P1, P2, P3, P4} 

Heap top = G-H 

R’ = {{D-G}} 

R = {{A-B, B-C}} 

Not yet covered 

positive graphs 

= {P3, P4} 

Heap top = D-G 

R’ = {} 

R = {{A-B, B-C}} 

Not yet covered 

positive graphs 

= {P3, P4} 

Heap top = null 

R’ = {} 

R = {{A-B, B-C}, 

{D-G, G-H}}  

Not yet covered 

positive graphs 
= {}  

 

For example, let tp = 50% and tn = 0%, in Figure 1, the frequent 

subgraphs of 2 nodes in the positive set are A-B, B-C, D-E, D-G, 
and G-H. Only positive patterns with frequency no less than tp 

need to be considered because (1) as mentioned earlier we only 

consider positive patterns and (2) the frequency of a rule with 

patterns less frequent than tp must be less than tp as well. We 

initialize the rule sets to be empty: 𝑅′ = {} and 𝑅 = {}. 

1. 𝑝 ← 𝑛𝑒𝑥𝑡 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 

2. 𝑤𝑕𝑖𝑙𝑒 (𝑝 ≠ 𝑁𝑈𝐿𝐿 𝑎𝑛𝑑 

𝑅 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑐𝑜𝑣𝑒𝑟 𝑎𝑙𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑔𝑟𝑎𝑝𝑕𝑠) 

3.         𝑟′ ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑟𝑡∈𝑅 ′(∆(𝑝, 𝑟𝑡)) 

4.         𝑖𝑓  ∆ 𝑝, 𝑟𝑡  ≥ 0  
5.      𝑟 ′ ← 𝑝 ∪ 𝑟′ 

6.         𝑅′ = { 𝑝 } ∪ 𝑅′       

7.         𝑖𝑓   𝑝  𝑐𝑜𝑣𝑒𝑟𝑠 𝑎𝑛𝑦 𝑔𝑟𝑎𝑝𝑕 𝑛𝑜𝑡 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝑅  
8.                   𝑅′ = 𝑅′ − { 𝑝 } 
9.                   𝑅 = 𝑅 ∪ { 𝑝 } 
10.         𝑖𝑓  𝑟 ′𝑐𝑜𝑣𝑒𝑟𝑠 𝑎𝑛𝑦 𝑔𝑟𝑎𝑝𝑕 𝑛𝑜𝑡 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝑅  

11.                   𝑅′ = 𝑅′ − {𝑟′} 

12.                   𝑅 = 𝑅 ∪ {𝑟′} 
13. 𝑝 ← 𝑛𝑒𝑥𝑡 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 

According to the pattern exploration order introduced in Section 

4, A-B is the first pattern to process. For simplicity, the example is 

designed so that these edges cannot extend to any larger patterns 

with fp no less than tp. A new candidate rule {A-B} is added into 
R’. Note that R’ was empty and thus there does not exist any rule 

in R’ to insert A-B. Next, {B-C} is added into R’ and B-C is added 

into candidate rule {A-B} because Δ({B-C}, {A-B}) is no less than 

0. The modified candidate rule {A-B, B-C} have fp ≥ tp and fn ≤ tn, 
therefore it is removed from R’ and added into R. Next, D-E is at 

the top of the heap, but there is no need to consider it because 

both of its supporting graphs, P1 and P2, satisfy rule {A-B, B-C} 

and therefore considering D-E cannot lead to a better classifier. 
Then, following a similar procedure, we can generate rule {D-G, 

G-H} and add it into R. Now the algorithm terminates because: 1) 

the heap structure for candidate patterns is empty and 2) {A-B, B-

C} and {D-G, G-H} are sufficient to cover all graphs in the 
positive set. For each step, the initial status of R’, R, the pattern at 

the heap top and the set of positive graphs not yet covered by R 

are shown in Figure 3. 

Figure 3. An example of rule generation 

6. EXPERIMENTS 
The algorithm is implemented in C++ and compiled with g++. 

The experiments are performed on a PC with 2.00 GHz dual core 

and 3 GB memory. We use protein datasets and small molecule 

datasets in our experiments. The protein datasets consist of protein 
structures from Protein Data Bank 1  classified by SCOP 2 

(Structural Classification of Proteins), which organizes protein 

structures into a 4-level hierarchy: class, fold, superfamily and 

family, from high level to low level. The lower the level is, the 
more details are considered and thus more useful to the scientists. 

We select protein structures in the same families as positive sets. 

In order to remove redundancy and possible bias in graph sets, we 

only use proteins with pairwise sequence identity less than 90% 
from the culled PDB list created by Dunbrack Lab 3 . Table 2 

shows the 6 protein families used in experiments. We then 

randomly select 256 other proteins (i.e., not members of the 6 

families) from the culled PDB list as a common negative set. To 
generate a protein graph, each graph node denotes an amino acid, 

whose location is represented by the location of its alpha carbon. 

We perform 3-D Almost Delaunay Tessellation [3] on locations of 

all alpha carbons  in the protein to generate the edges. Nodes are 
labeled with their amino acid type and edges are labeled with the 

distance between the alpha carbons. We only consider edges 

shorter than 11.5 angstroms because amino acids have little long-

distance interaction. On average, each protein graph has 250 
nodes and 1600 edges. The small molecule datasets consist of 

chemical compound structures from PubChem4 classified by their 

biological activities, listed in Table 3. Each compound can be 

either active or inactive (we do not consider inconclusive and 
discrepant records) in a bioassay. For each bioassay, we randomly 

select 400 active compounds as the positive set and 1600 inactive 

compounds (the sample size is similar to what is used in the 

original report of LEAP+SVM) as the negative set for 
performance evaluation. The graph representation of compounds 

is straightforward. Each atom is represented by a graph node 

labeled with the atom type and each chemical bond is represented 
by a graph edge labeled with the bond type. On average, each 

compound graph has 47 nodes and 49 edges. 

Table 2. List of selected protein families 

SCOP_ID Family name 
Number of 

selected proteins 

56437 C-type lectin domains 38 

48623 Vertebrate phospholipase A2  29 

48942 C1 set domains (antibody constant 

domain like) 

38 

52592 G proteins 33 

88854 Protein kinases, catalytic subunit 41 

56251 Proteasome subunits 35 

                                                                    
1 http://www.rcsb.org/pdb/ 
2 http://scop.mrc-lmb.cam.ac.uk/scop/ 

3 http://dunbrack.fccc.edu/PISCES.php 

4 http://pubchem.ncbi.nlm.nih.gov 

578



 

Table 3. List of selected bioassays 

Assay 

ID 
Tumor Description 

Total Number 

of Actives 

Total 

Number of 

Inactives 

1 Non-Small Cell Lung 2047 38410 

41 Prostate 1568 25967 

47 Central Nerv Sys 2018 38350 

83 Breast 2287 25510 

109 Ovarian 2072 38551 

145 Renal 1948 38157 

We evaluate the classification power using the following three 

measures: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑛𝑢𝑚𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑  𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
 

6.1 Comparison with Other Methods 

We compare our method COM with two alternative approaches: 

(1) LEAP+SVM [22] and (2) gPLS [19]. LEAP+SVM invokes 
LEAP iteratively until every training example can be represented 

by some discovered subgraphs and then takes the discriminative 

subgraphs found by LEAP as features to train a Support Vector 

Machine (SVM) [21] classifier. LIBSVM [5] is used in the 
experiments. We use a linear kernel with parameter C selected 

from {2-11, 2-10, …, 210, 211} by cross-validation on the training set 

only. We use 5-fold cross validation in our experiments.  We 

could not furnish a thorough comparison with CORK because the 
current release of CORK 5  entails very long execution time. It 

takes hours to days (if not longer) to process a small dataset. As a 

result, CORK is not able to finish its execution within reasonable 

time except for one compound dataset (bioassay ID 1). We will 
show its result in Section 6.1.2. 

6.1.1 Protein datasets 
For protein datasets, we use tp=30%, tn=0% for COM and leap 

length = 0.1 for LEAP+SVM 6 . For gPLS, we use frequency 

threshold = 30% and exhaustively examine all combinations from 

m = {2, 4, 8, 16} and k = {2, 4, 8, 16} where m is number of 
iterations and k is number of patterns obtained per search. This 

candidate parameter set is adapted for protein datasets. For each 

dataset, we report the best test accuracy among all settings7. In 

                                                                    
5 http://www.dbs.ifi.lmu.de/~thoma/pub/sdm09/ 

6  Setting leap length = 0.1 significantly improved LEAP’s 

efficiency with only minor impact to the resulting pattern’s 
score. We also experimented with leap length = 0.05 which 

delivered the same accuracy but required longer runtime. 

7 Please note that, for COM and LEAP+SVM, we use the same 

parameters for all protein datasets. We perform exhaustive 
search and report the best result for gPLS because this is how 

gPLS was evaluated originally in [23]. 

addition, we need to set a subgraph size threshold = 3 for gPLS 

because it runs out of memory for higher subgraph size threshold. 
Fortunately, this small size threshold has little impact on 

classification accuracy as most subgraph patterns found by COM 

and LEAP+SVM have size = 3 or 4. 

 

Figure 4. Runtime comparison (protein datasets): COM vs. 

gPLS vs. LEAP+SVM 

Figure 4 compares the time efficiency of COM, gPLS 8 , and 

LEAP+SVM. It shows that gPLS and LEAP+SVM have similar 
runtime while COM is an order of magnitude faster than them for 

most protein datasets. This is because COM finds discriminative 

features sooner than LEAP and gPLS. Usually the early stage of 

pattern exploration only enumerates weak pattern features. COM 
can generate strong features from weak features in the early 

exploration by taking advantage of co-occurrence information 

while LEAP and gPLS only use these weak features to refine 

further mining. The time difference is also due to COM’s heuristic 
exploration order, greedy strategy and unnecessity of repeated 

executions.  

 

Figure 5. Normalized accuracy comparison (protein datasets): 

COM vs. gPLS vs. LEAP+SVM  

Figure 5 compares the normalized accuracy of the classifiers 

generated by COM, gPLS and LEAP+SVM. COM outperforms 

LEAP+SVM for all 6 protein datasets, although for most datasets 
the margin may be small. Compared with gPLS, COM has 

competitive result for the first 4 datasets, 5% lower accuracy for 

dataset 52592 and 7% lower accuracy for dataset 56251. 

 

Figure 6. Sensitivity comparison (protein datasets): COM vs. 

gPLS vs. LEAP+SVM 

                                                                    
8 The time for searching for optimal parameter setting is NOT 

included. 
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Figure 7. Specificity comparison (protein datasets): COM vs. 

gPLS vs. LEAP+SVM 

Figure 6 and Figure 7 decompose the normalized accuracy into 

sensitivity and specificity to provide more insight. Compared with 

LEAP+SVM, COM has higher sensitivity at the cost of slightly 

lower specificity. The substantial difference in sensitivity between 
COM and LEAP+SVM is because of the iterative feature 

selection method that LEAP relies on. As soon as a positive graph 

g is covered by a certain number of features, g becomes much less 

important or even removed from the positive set completely. The 
advantages of iterative feature selection are (1) positive graphs 

that are relatively harder to discriminate will be emphasized and 

(2) the positive set may shrink as the algorithm runs, which 

reduces the runtime of the next execution of LEAP. However, it is 
prone to the overfitting problem when most graphs in the dataset 

are removed. This is because when most graphs can be covered by 

discriminative patterns and removed from the dataset, the number 

of remaining graphs is so small that LEAP tends to discover very 
large subgraphs. An extreme example is that when there is only 

one positive graph left against an enormous negative set, then the 

positive graph itself is the optimal discriminative pattern which is, 

however, useless in classifying other positive graphs. In contrast, 
COM does not remove graphs from the positive set and thus will 

always find features covering a large number of graphs. As a 

result, COM is less likely to misclassify positive graphs. As for 

specificity, it is understandable that COM has slightly lower 
specificity because, as long as a graph satisfies one rule, it will be 

classified as positive. Therefore, COM tends to correctly classify 

more positive graphs and misclassify a few negative graphs as 

positive graphs (yet only slightly lower than LEAP+SVM). This 
explains why a simple classifier generated by COM can 

outperform the sophisticated SVM.  

Comparing COM and gPLS, we find that gPLS generally 

produces classifiers with competitive accuracy and better 

sensitivity (1-7% for 5 protein families and 25% higher for family 

56251) at the cost of lower specificity in most cases, but it 
requires exhaustive search for the best parameter setting. While 

COM and LEAP+SVM use the same parameter setting for all 

protein families, gPLS requires different parameter settings for 

different training sets of a family to generate classifiers with high 
classification power on the corresponding test sets. We take 

protein family 48942 as an example. As we use 5-fold cross 

validation, we have 5 different pairs of training set and test set for 

protein family 48942. Below we list the optimal parameter setting 
for each pair and the average normalized accuracy for each pair if 

its optimal parameter setting is used for all 5 training-test pairs. 

 

 

Table 4. List of optimal parameter settings for gPLS and their 

average normalized accuracy for 5 training-test pairs of 

family 48942 

Training-test pairs 
Optimal parameter 

setting (m, k) 
Average normalized 
accuracy using (m, k) 

1 (8, 4) 0.8377 

2 (2, 2) 0.8377 

3 (2, 4) 0.6847 

4 (4, 16) 0.6847 

5 (2, 8) 0.6963 

The normalized accuracy reported in Figure 5 is 92.11% as we use 
the optimal parameter setting for each training-test pair. We can 

see from Table 4, if we use one of the optimal parameters for all 5 

training-test pairs, then we will have at least 8% drop in 

normalized accuracy. In fact, for family 48942, m=16, k=8 leads 
to the best average normalized accuracy 86% if all 5 pairs use the 

same parameter setting, still 6% lower than the 92.11% which is a 

result of using the best parameter setting for each training-test 

pair. In addition, the relationship between the parameters and 
classification result is obscure, making it very difficult to tune 

parameters. 

6.1.2 Compound datasets 
For compound datasets, we only compare COM and LEAP+SVM 

because gPLS needs exhaustive parameter search with a much 

larger search space for the compound datasets and it runs out of 

memory when the subgraph size threshold is larger than 9. We use 
tp = 1%, tn = 0.4% for COM because the datasets are much larger 

and more diverse than the protein datasets. Leap length for 

LEAP+SVM is still set to 0.1. We also set a subgraph pattern size 

threshold s = 5 for COM. The size of patterns found by LEAP is 
typically 10-20 and the number of patterns in a co-occurrence rule 

is usually 2-4. 

 

Figure 8. Runtime comparison (compound datasets): COM vs. 

LEAP vs. SVM 

Figure 8 compares the runtime of COM and LEAP+SVM. Here 

we divide the runtime of LEAP+SVM into runtime of LEAP and 
runtime of SVM because, for the compound datasets, the 

computational cost of SVM is no longer trivial compared with the 

computational cost of COM. It shows that COM is 40-120 times 

faster than LEAP. In fact, even the SVM classifier building step 
takes much longer time than COM because the compound datasets 

have a large number of graphs and subgraph features. 
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Figure 9. Normalized accuracy comparison (compound 

datasets): COM vs. LEAP+SVM 

Although COM uses much less time to generate classifiers, its 

classifiers are still very competitive to the classifiers by 

LEAP+SVM in terms of normalized accuracy. Figure 9 shows the 

normalized accuracy of these two approaches. LEAP+SVM has 
slightly higher normalized accuracy than COM for 5 compound 

datasets, but the difference is merely 2.45% on average and is 

always less than 5%. 

Again we decompose the normalized accuracy into sensitivity and 

specificity, shown in Figure 10 and Figure 11 respectively. Figure 

10 demonstrates that COM has more than 10% higher sensitivity 
than LEAP+SVM and its disadvantage in specificity (15% lower) 

is also obvious as shown in Figure 11, which is similar to what we 

have from the protein datasets except that the difference in 

specificity between COM and LEAP+SVM is larger for the 
compound datasets than that for the protein datasets. The larger 

difference in specificity is a result of the relatively high negative 

frequency threshold tn (0.4%) used for compound datasets. If we 

further lower tn and have higher specificity, then the sensitivity 
drops because the classifier overfits the training set and the 

normalized accuracy is barely affected. Figure 12 compares the 

average normalized accuracy, sensitivity and specificity between 

using tn=0.4%, tn=0.25% and tn=0.1%.  

 

Figure 10. Sensitivity comparison (compound datasets): COM 

vs. LEAP+SVM 

 

Figure 11. Specificity comparison (compound datasets): COM 

vs. LEAP+SVM 

 

Figure 12. Comparison of average normalized accuracy, 

sensitivity, specificity between using tn = 0.4%, tn = 0.25% and 

tn = 0.1% for COM (tp = 1%, subgraph size threshold = 5, 

compound datasets) 

We also run CORK on all of our datasets and are only able to get 

its result on one dataset (bioassay ID=1) with frequency 
threshold=10%, due to its long runtime (more than 20 hours). 

Additionally, because LIBSVM is too slow to train a classifier 

using subgraph features from CORK, we use Random Forests [4] 

instead. We generate 100 trees and examine all possible values for 
the number of features used to split a node. The best result is 

comparable to COM, with normalized accuracy=71.6% (72.8% 

for COM), sensitivity=49% (64%) and specificity=94.2% 

(81.5%). Clearly, COM is far more efficient than CORK. 

6.2 COM Performance Analysis 
We first study the effectiveness of the pattern exploration order 

used in COM with tp = 0.3 and tn = 0 on the protein datasets. In 

COM, patterns are explored in the descending order of ancestors’ 
Δ values (illustrated in Section 4.3). An alternative is to explore 

patterns in the descending order of their ancestors’ scores (by 

replacing Δ in Section 4.3 with score value d). Figure 13 shows 

that exploration in the order of Δ values is more efficient than in 
the order of scores. The runtime difference seems marginal for 

some protein families mainly because standard operations such as 

collecting occurrences of frequent edges dominate the overall 

runtime for those families. We observe that using score value d 
causes patterns with similar supporting sets to be explored 

together, which is not ideal to the generation of rules. Let p and q 

be two patterns complementary to each other and the score of p is 

higher than that of q. If we explore pattern space guided by 
ancestors’ scores, all superpatterns (or supergraphs) of p are 

examined before q because they have higher scores than q. 

However, they cannot complement pattern p because their 

supporting sets are subsets of p’s supporting set. However, if we 
use ancestors’ Δ values, there is a much better chance that q is 

explored before many of p’s superpatterns.  

 

Figure 13. COM runtime comparison between different 

exploration orders (protein datasets): by delta value vs. by 

score 

Now we study the relationship between performance and the two 

parameters tp and tn. We fix tp and adjust tn for the compound 

datasets and fix tn and adjust tp for the protein datasets. The 

difference in average runtime using different parameters is 
marginal. We compare the average normalized accuracy, 

sensitivity and specificity in Figure 12 and Figure 14. Figure 12 

shows that when tn decreases, the specificity increases accordingly 

and the normalized accuracy remains the same while the 
sensitivity drops. Figure 14 demonstrates that, when tp decreases, 

the sensitivity goes down but the specificity is almost unaffected. 

Therefore, these two parameters can be used by users to adjust the 

trade-off between the sensitivity and specificity. 

0
0.2
0.4
0.6
0.8

1

1 41 47 83 109 145

N
o

rm
al

iz
e

d
 

A
cc

u
ra

cy

Bioassay ID

COM

LEAP+SVM

0

0.2

0.4

0.6

0.8

1

1 41 47 83 109 145

Se
n

si
ti

vi
ty

Bioassay ID

COM

LEAP+SVM

0
0.2
0.4
0.6
0.8

1

1 41 47 83 109 145

Sp
e

ci
fi

ci
ty

Bioassay ID

COM

LEAP+SVM

0

0.2

0.4

0.6

0.8

1

Norm. Acc. sensitivity specificity

tn=0.4%

tn=0.25%

tn=0.1%

0

2

4

6

88854 56437 48942 48623 52592 56251

R
u

n
ti

m
e

 (
se

c)

SCOP ID

by delta
by score

581



 

Figure 14. Comparison of average normalized accuracy, 
sensitivity, specificity between using tp = 0.3, tp = 0.2 and tp = 

0.1 for COM (tn = 0%, no size limit, protein datasets) 

7. CONCLUSIONS 
In this paper, we investigate the problem of using subgraph 

patterns for graph classification and propose the algorithm COM 

to meet the pressing need for efficient graph classification 

methods. By using an efficient pattern exploration order and 
grouping patterns into co-occurrence rules, COM is easy to 

implement and understand. Even though we adopt FFSM as the 

basic subgraph mining routine in COM, the pattern exploration 

order and co-occurrence rule generation routine can be integrated 
with any other subgraph mining algorithm. In spite of its 

seemingly simple classification model, experiments show that 

COM is time-efficient and delivers high classification accuracy. 

Another advantage of COM is the high interpretability of its 
classifiers. In the future, we plan to incorporate the connectivity 

between subgraph patterns into the classification model. 
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