
Scalable Continuous Range Monitoring of Moving Objects
in Symbolic Indoor Space

Bin Yang1,2 Hua Lu1 Christian S. Jensen1

1Department of Computer Science, Aalborg University, Denmark
2School of Computer Science, Fudan University, China

byang@fudan.edu.cn, luhua@cs.aau.dk, csj@cs.aau.dk

ABSTRACT
Indoor spaces accommodate large populations of individuals. The
continuous range monitoring of such objects can be used as a foun-
dation for a wide variety of applications, e.g., space planning, way
finding, and security. Indoor space differs from outdoor space in
that symbolic locations, e.g., rooms, rather than Euclidean posi-
tions or spatial network locations are important. In addition, posi-
tioning based on presence sensing devices, rather than, e.g., GPS, is
assumed. Such devices report the objects in their activation ranges.
We propose an incremental, query-aware continuous range query
processing technique for objects moving in this setting. A set of
critical devices is determined for each query, and only the obser-
vations from those devices are used to continuously maintain the
query result. Due to the limitations of the positioning devices,
queries contain certain and uncertain results. A maximum-speed
constraint on object movement is used to refine the latter results.
A comprehensive experimental study with both synthetic and real
data suggests that our proposal is efficient and scalable.

Categories and Subject Descriptors
H.2.8 [DATABASE MANAGEMENT]: Database Applications

General Terms
Algorithms, Design, Experimentation, Management

Keywords
Indoor Moving Objects, Symbolic Indoor Space, Continuous Range
Monitoring

1. INTRODUCTION
People spend large parts of their lives in indoor spaces such as

office buildings, shopping centers, conference facilities, airports,
and other transport infrastructures. Meanwhile, such spaces are be-
coming increasingly large and complex. For example, the London
Underground has 268 stations and a network of 408 kilometers [1].
Each hour, 146,000 passengers enter its tube system: during the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’09, November 2–6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$10.00.

three morning peak hours alone, 51,100 people enter the busiest
tube station, Waterloo; and the total number of daily passengers
exceeds 4 million.

With the deployment of indoor positioning based on technolo-
gies such as RFID [19] and Bluetooth [8], it is possible to contin-
uously monitor indoor moving objects in order to support various
applications. For example, such monitoring is very useful for space
use analysis and security purposes. However, existing techniques
for continuous range monitoring in outdoor spaces [10, 15, 16] are
not easily applicable in indoor spaces, for two main reasons.

First, an indoor space is typically modeled differently from an
outdoor space, where either an Euclidean space or a spatial net-
work is typically assumed. Indoor space is characterized by entities
such as doors, rooms, and hallways that enable and constrain move-
ment. This renders movement more constrained than movement in
Euclidean spaces. Consequently, geometric movement represen-
tations, e.g., the linear model that is widely adopted for outdoor
movement, are not suitable for indoor movement. Further, indoor
movement is less constrained than movement in a spatial network,
where objects are constrained to a polyline. As a result, symbolic
models, rather than geometric models, of indoor space are often
used [3].

Second, proximity-based indoor positioning technologies differ
fundamentally from those typically assumed in outdoor settings.
Unlike GPS and cellular positioning technologies that are capa-
ble of continuously reporting the position and velocity of an object
with varying accuracies, proximity-based indoor positioning tech-
nologies are unable to report velocities or accurate locations [9]. In
particular, an indoor object is detected only when it enters the acti-
vation range of a position sensing device, e.g., an RFID reader or a
Bluetooth hotspot.

To the best of our knowledge, this paper represents the first work
on the continuous monitoring of moving objects in symbolic indoor
space. The paper’s contribution is fourfold. First, it proposes an
infrastructure for indoor range monitoring, which includes a state
classification of the moving objects and a hashing-based object in-
dexing scheme that exploits the states.

Second, a query-aware scheme is proposed for the incremental
maintenance of range queries. For each query, critical devices are
determined so that only the new observations from those devices
are needed in order to maintain the query’s result. The partitioning
of critical devices into five classes enables efficient update.

Third, we provide query results with certain results and uncer-
tain results. Probabilities for the uncertain results are derived from
assumed maximum object speeds.

Fourth, the paper reports results of a comprehensive performance
study of the paper’s proposals using both synthetic and real data.

The remainder of the paper is organized as follows. Section 2

covers preliminaries and Section 3 elaborates on the management
of indoor moving objects. Section 4 presents the proposals for the
processing of range monitoring queries. Section 5 covers the em-
pirical studies. Finally, Section 6 briefly reviews the related work
and Section 7 concludes and discusses research directions.

2. PRELIMINARIES
A simplified plan of the first floor of the CS Department at Aal-

borg University is shown in Figure 1. The floor is divided into three
clusters, each having its own (numbered) hallway and rooms. The
clusters are connected by a common hallway, labeled 40. Other
floors can be reached via a staircase, labeled 50. The outside is la-
beled 0. For simplicity, we regard hallways and staircases as rooms.
For example, we use “room 10” for “hallway 10.”

13

11

12

14

23
21

22

31

32

33

35

10

20

30

50

11'

11

12

13

21

23

3116

32

33

35

20

40

0

10

30

22

15

34

34
5

1

4

1'

4'

2 2'

3'

3

Figure 1: Floor Plan and Positioning Device Deployment

2.1 Symbolic Indoor Positioning
We assume the use of presence, or proximity-based, sensing tech-

nologies such as RFID, Bluetooth, and Infrared. We do not con-
sider signal strength [2] as the activation ranges of RFID readers
in our setting are relatively small (tens of centimeters to 3 me-
ters [19]).

These technologies employ proximity analysis [9], which deter-
mines when an object is within the activation range of a device.
Each device detects and reports the observed objects at a relatively
high sampling rate. A reading (deviceID , objectID , t) states that
object objectID is detected by device deviceID at time t.

A positioning device deployment is shown in Figure 1, where
the numbered red circles indicate the devices and their activation
ranges. For positioning devices with overlapping ranges, we treat
the intersection as the activation range of a new, virtual position-
ing device. For example, the intersection of device1 and device1′

is assigned to a device device1′1. An object seen by device1,
but not device1′ , is then in the non-intersecting part of the range
of device1. Unlike overlapping devices, so-called paired devices,
covered in Section 2.2, are used to detect movement direction, e.g.,
entry/exit of a room.

For each moving object, only its first and last appearances in the
range of a device are of interest. We thus introduce a pre-processing
module in-between the sensing devices and the continuous query
processing module that continuously (according to the sampling
unit Ts) receives readings from all positioning devices, and outputs

records in the format (deviceID , objectID , t, flag). Here, flag =
ENTER indicates that the object is entering the device’s activation
range; flag = LEAVE indicates the object is leaving the range.
The deviceID can be that of a virtual device. Unless explicitly
stated otherwise, this applies to all deviceIDs in the rest of the
paper. Due to space limitations, we omit the details of the pre-
processing module.

2.2 Positioning Device Deployment Graph
We differentiate between two types of positioning devices.
Partitioning devices partition the indoor space into cells in the

sense that an object cannot move from one cell to another without
being observed. An example is a device deployed by the single
door of a room. There are two options for partitioning devices.
First, undirected partitioning devices (UP) cannot detect move-
ment directions between two cells. For example, device21 can-
not tell whether an observed object enters or leaves cell c21. Note
that device1, device1′ , and device1′1 are also undirected. Sec-
ond, directed partitioning devices (DP) consist of entry/exit pairs
of devices, which enables the movement direction of an object to
be inferred by the reading sequence. An example is device11 and
device11′ in Figure 1.

Next, presence devices (PR) simply sense the presence of objects
in their ranges. These are exemplified by device10 in Figure 1.

A Devices mapping maintains the information on the positioning
devices:

Devices : Σdevices → {(ActRange,TYPE)},
where Σdevices is the domain of device identifiers, ActRange in-
dicates the activation range of a device (a geometry describing the
range); and TYPE indicates the type of a device: UP, DP, or PR.

To facilitate object tracking and querying, a deployment graph
G = (C, E, Σdevices, `E) is created based on the topological rela-
tionship between the floor plan and the positioning device deploy-
ment. The set of vertices C consists of the cells formed by the
partitioning devices. The set of edges E consists of sets {ci, cj},
where ci, cj ∈ C. Further, `E : E → 2Σdevices maps an edge to a
set of positioning devices: a non-loop edge {ci, cj} is mapped to
the device(s) that partitions cells ci and cj , and a loop edge {ci, ci}
is mapped to the presence device(s) in cell ci.

An in-depth study on deployment graphs, including relevant data
structures and algorithms is available elsewhere work [7]. The de-
ployment graph of Figure 1 is shown in Figure 2, where the label
Di indicates the positioning device devicei.

20

D4,D4',D4'4

10 3040

50

D3,D3',D3'3D1,D1',D1'1

D2,D2',D2'2

12

13

D12

D13

D16

21

22 23

D21 31

35

32

33

D31

D33

0

D5

D22 D23

D32

D35

11

D11, D11'

D15

D20

D10

D30,D34

Figure 2: Positioning Device Deployment Graph

Each cell created by a reader deployment corresponds to one or
more rooms. For example, cell c10 is mapped to rooms 10 and 14
because an object can go between these rooms without being ob-
served. A mapping Cells : C → 2Σrooms maintains this relation-
ship, where Σrooms is the domain of room identifiers.

It is important to observe that rooms make up a partitioning of
a floor plan that is independent of a particular deployment of posi-
tioning devices. In contrast, a cell partitioning is caused by a de-
ployment of positioning devices. The extent of a cell is the union of
the extents of the rooms that make up the cell, excluding the ranges
of any intersecting devices. In the example, cell c10 is the union
of rooms 10 and 14 excluding the activation ranges of device1 ,
device1 ′ , device1 ′1 device10 , device11 ′ , device12 , and device13 .
Thus an indoor space is partitioned into activation ranges and cells.

3. MANAGEMENT OF INDOOR OBJECTS

3.1 States of Indoor Moving Objects
A deployment of positioning devices induces an active subspace

that is the union of the activation ranges of all the positioning de-
vices and an inactive subspace that is the part of space that is not
covered by any positioning device. An object is said to be in the
active (inactive) state when it is in the active (inactive) subspace.

Using the Devices mapping from Section 2.2, we are able to
directly determine the whereabouts of active objects. For inactive
objects, additional processing and information are needed to infer
their possible locations.

We refine the inactive state so that an object is in the determinis-
tic state if it is certain that the object is in one specific cell; it is in
the nondeterministic state if it can be in several cells.

More specifically, if a moving object leaves (the activation range
of) a presence device d, it must be still in the cell G.`−1

E (d) until it
is again seen 1. Therefore, its state changes from active to determin-
istic. In our running example, if an object leaves device10 , it must
enter c10. If an object leaves a directed partitioning device pair,
the cell the object is entering can be determined from the reading
sequence. Therefore, its state also changes from active to determin-
istic. Thus, if an object is seen at device11 ′ and then device11 , it
must enter c11.

In contrast, if an object leaves an undirected partitioning device,
the object can be in either of the cells in G.`−1

E (d). Therefore, its
state changes from active to nondeterministic. For example, if a
moving object leaves device12 , it can be in either c10 or c12.

If an object enters the range of a positioning device, its state
changes from inactive (deterministic or nondeterministic) to active.

An object cannot switch directly between deterministic and non-
deterministic. For an object to enter/leave a cell, it must be detected
by a partitioning device, which makes its state become active be-
fore it can switch.

Based on the resulting state diagram, in Figure 3, we proceed to
present specific object indexing structures.

Active

Deterministic Nondeterministic

Leave PR or DP devices

Enter any

positioning device

Leave UP devices

Inactive

Figure 3: Indoor Moving Object State Diagram

1G.`−1
E is the reverse function of G.`E introduced in Section 2.2. For

simplicity, we throughout the paper use G.`−1
E (d) to denote G.`−1

E (D),
where D ⊆ Σdevices. Specifically, D = {d} if d is a non-overlapping UP
device or the only PR in a cell; D is the set of overlapping UP devices if d is
one of them; D is the set of two DP devices if d is one of them; otherwise,
D is the set of all PR devices in the same cell as d. Note that for an arbitrary
device d, the corresponding set D is unique.

3.2 Indexing Indoor Moving Objects
The partitioning devices render the indoor space discrete. This

and the specifics of the positioning devices render indexes for free-
moving outdoor objects unsuitable for indoor objects.

We propose an indexing scheme that utilizes several hash tables.
Let Oindoor be the set of all the moving objects in the indoor space
of interest. A Device Hash Table (DHT) is created that maps each
positioning device, identified by deviceID , to the set of active ob-
jects in its range:
DHT [deviceID] = OA; deviceID ∈ Σdevices, OA ⊆ Oindoor.

Next, a Cell Deterministic Hash Table (CDHT) maps each cell,
identified by cellID , to the set of deterministic objects in it:

CDHT [cellID] = OD ; cellID ∈ C, OD ⊆ Oindoor.

Similarly, a Cell Nondeterministic Hash Table (CNHT) maps a cell
to the set of nondeterministic objects in it:

CNHT [cellID] = ON ; cellID ∈ C, ON ⊆ Oindoor.

Finally, an Object Hash Table (OHT) captures the states of all
objects:
OHT [objectID] = (STATE , t, IDSet); objectID ∈ Oindoor.

Here STATE denotes the object’s current state; t is the start time
of the state; IDSet is a set of cell identifiers or a set of device iden-
tifiers, indicating where the object can currently be. If the object’s
state is active, IDSet is a singleton set consisting of a device identi-
fier. If the state is deterministic, IDSet is a singleton set consisting
of a cell identifier. If the state is nondeterministic, IDSet is a set of
cell identifiers.

The four hash tables need updating whenever there is a new out-
put from the pre-processing module. The update algorithm, de-
scribed in Algorithm 1, handles a record received from the pre-
processing module according to its flag value.

Algorithm 1 updateHashTables(Pre-processing output O, De-
ploymentGraph G)
1: IDSet sSet ← ∅;
2: if O.flag = ENTER then
3: sSet ← OHT [O.objectID].IDSet ;
4: if OHT [O.objectID].STATE = Active then
5: for the single element c in sSet do
6: Delete O.objectID from DHT [c];
7: else if OHT [O.objectID].STATE = Deterministic then
8: for the single element c in sSet do
9: Delete O.objectID from CDHT [c];

10: else
11: for each element c in sSet do
12: Delete O.objectID from CNHT [c];
13: Add O.objectID to DHT [O.deviceID];
14: OHT [O.objectID] ← (Active, O.t, {O.deviceID});
15: else
16: Delete O.objectID from DHT [O.deviceID];
17: sSet ← G.`−1

E (O.deviceID);
18: if Devices(O.deviceID).TYPE = UP then
19: OHT [O.objectID] ← (Nondeterministic,O.t,sSet);
20: for each element c in sSet do
21: Add O.objectID to CNHT [c];
22: else
23: OHT [O.objectID] ← (Deterministic,O.t,sSet);
24: for the single element c in sSet do
25: Add O.objectID to CDHT [c];

For an ENTER record, if the object’s previous state is active, it
is deleted from the corresponding device’s DHT (lines 4–6). If its
previous state is deterministic, it is deleted from the corresponding
cell’s CDHT (lines 7–9). Otherwise, its previous state is nonde-
terministic, and the object is deleted from all corresponding cells’
CNHT s (lines 10–12). After the deletion, the object is added into

the DHT of the current device, and its state is updated accordingly
(lines 13–14).

For a LEAVE record, the object is deleted from the correspond-
ing device’s DHT (lines 15–16). The possible cells are determined
by the function G.`−1

E (lines 17). If the object leaves a UP device,
its state becomes nondeterministic, and the object is added into all
the corresponding cells’ CNHT s (lines 18–21). If the object leaves
a DP or PR device, its state becomes deterministic, and the object
is added into the corresponding cell’s CDHT (lines 22–25).

The implementation uses bitmaps for storing the sets of object
identifiers in DHT , CDHT , and CNHT . In particular, each value
in these hash tables maintains a bitmap, each bit of which corre-
sponds to a specific object. A bit is set only if the object is currently
in the object set of the value. Bitmaps require little space, render-
ing main-memory storage of these hash tables possible. Combined
with suitable masks, bitwise AND and OR operations render up-
dates (the insertions and deletions in Algorithm 1) very efficient.

4. CONTINUOUS RANGE MONITORING
4.1 Query Definition and Solution Overview

A Continuous Range Monitoring Query (CRMQ) takes an in-
door spatial range R as parameter. It is activated when it is regis-
tered in the system, say ts. At each point in time, it then reports all
objects that are currently within R. This continues until the query
is unregistered from the system, say te. The query result is main-
tained from time ts to time te as follows.

∀t ∈ [ts, te]: o ∈ CRMQ [R](M) ⇔ o ∈M∧ posM(o, t) ∈ R,

where M indicates all the objects moving in the indoor space;
posM is a function which can determine the location of the object
o at timestamp t. Multiple monitoring queries may be expected
to coexist in the system. They can be registered (unregistered) at
different times.

The result of a CRMQ needs updating whenever an object enters
or leaves its range. A naive approach is to reevaluate each query
when a new observation is produced by the pre-processing module.
However, this yields an unnecessarily high workload, especially
when the number of concurrent queries is high. Another solution
entails periodical reevaluation, which searches the index structures
and computes an up-to-date result periodically, according to user
configurations. These two approaches are query blind, as they do
not take advantage of the ranges of the registered queries when they
process the queries.

We propose a query-aware and incremental approach. The idea
is that not every pre-processing observation causes changes to the
result of every CRMQ . For each query, we identify the critical de-
vices from which new observations may change the query’s result.
Accordingly, only ENTER and LEAVE observations from such
devices are needed to correctly update the results of the relevant
monitoring queries.

Our approach is shown in Figure 4. When a new query is reg-
istered in the system, the hash indexes are searched for all moving
objects currently in the query range. The set of critical devices and
the result of the query are stored in main memory. As time elapses,
new observations will be emitted by the critical devices, and the
query result will be updated accordingly in the query processing
module, which is detailed in Section 4.3.

The range of a CRMQ can be represented either symbolically
or geometrically. It is straightforward to use the device and cell
identifiers in the symbolic representation. Through the hash tables
DHT , CDHT and CNHT , the query result can be obtained di-
rectly. This arrangement is tightly integrated with the positioning
device deployment, which may not be available to query issuers.

Alg. 1
DHT, OHT

CDHT, CNHT

Detection Reading

Stream

Pre-processing

Module

DQHT, QHT

Query Result

Query Registration

Module

New Queries

Main Memory Index

Query Update

Module

Query Processing Module

Alg. 2

Alg. 2

Figure 4: Continuous Monitoring Query Processing
In the geometrical representation, the query range is represented

as a geometrical shape, e.g., a polygon or a circle. To enable such
queries, the floor plan, positioning device activation ranges, and
cells are indexed by spatial indexes, such as a 2-dimensional R-
tree, which enables easy retrieval of the corresponding symbolic
identifiers. We thus assume that a geometrical query range is not
fully contained in any single activation range.

4.2 Query Result Accuracy
In our setting, the position of an object is typically constrained

to be in one or several cells, as discussed in Section 3.1. Conse-
quently, the result of a CRMQ is divided into a certain and an
uncertain part. The certain result contains all objects that are defi-
nitely in the query range CRMQ .R, and the uncertain result con-
tains those objects that may be in the query range.

Specifically, if the query range CRMQ .R covers (intersects) the
whole activation range of a device, all active objects in the device’s
DHT are in the certain (uncertain) result the of CRMQ . For exam-
ple, the range of a CRMQ query1 is shown as a dashed rectangle
in Figure 5. The active objects in device13 (device16) are in the
certain (uncertain) result.

We say that region x covers region y if y is fully contained in
x. We say that x intersects with y if they overlap but do not cover
each other. Let u return the intersection of two argument regions.
If x u y 6=∅ and neither x u y 6=x nor x u y 6=y), we say that x
intersects with y; if x u y 6=∅ and x u y=y, we say that x covers y.

Furthermore, if the query range covers an entire cell, the deter-
ministic (nondeterministic) objects in the cell’s CDHT (CNHT)
are in the certain (uncertain) result. Refer again to the query1 in
Figure 5. The deterministic (nondeterministic) objects in c13 are

R4

R3

R1

13

11

12

14

10
11'

11

12

13

16

10

query1

R2

15

query2

1

1'

Figure 5: Query Examples

in the certain (uncertain) result. If
the query range intersects a cell,
all objects in the cell, determinis-
tic or nondeterministic, are in the
uncertain result of the query. The
deterministic and nondeterminis-
tic objects in c12 are in the uncer-
tain result of query1.

The situation is more compli-
cated when the query range cov-
ers more than one cell. Some
nondeterministic objects involved
can also be in the certain result.
Consider query2 whose range is
rooms 12 and 13. The query
range covers both c12 and c13. If

an object leaves device16, it becomes a nondeterministic object for
both c12 and c13. However, it is still definitely within the query
range and thus in the certain result. For a nondeterministic object,
if all its possible cells (can be obtained from OHT) are covered by

the query range, it is included in the certain result of the query.
We proceed to elaborate on the query processing, covering the

computation of the initial certain and uncertain results and their
incremental maintenance. A probabilistic accuracy analysis on the
uncertain result is given in Section 4.4.

4.3 Query Processing
When a new query arrives, the query registration module com-

putes the initial query result (both certain and uncertain), identifies
the critical devices, and registers the query into the system with the
corresponding information. The query update module is responsi-
ble for incrementally maintaining query results as new observations
are emitted by the pre-processing module. See Figure 4.

In Section 4.3.1, we identify for each query critical devices that
enable incremental query result update. In Section 4.3.2 we deter-
mine the initial result for a new coming query. In Section 4.3.3,
we propose the incremental query result update method. In Sec-
tion 4.3.4, we discuss how to improve query result when the maxi-
mum object speed is available.

4.3.1 Critical Devices
For a CRMQ query, a critical device is one from which a new

observation can potentially change the query result (either certain
or uncertain). In order to continuously update the query result, it
is crucial to know all such devices. This is achieved by means of
the deployment graph covered in Section 2.2. Clearly, the devices
whose activation ranges intersect with or are covered by the query
range CRMQ .R are critical.

A query range may also intersect with or cover a set of cells Cic

={c|c u R 6= ∅}. In order to guarantee the accuracy of the query
result, we introduce another extended set of cells Cex={c|{c, c′} ∈
G.E, c′ ∈ Cic}, which contains the neighbor cells of Cic. For ex-
ample, for query2 in Figure 5, Cic = {c12, c13}; and Cex = {c10}.
Taking the deployment graph into account, all edges whose vertices
contain one of the cells in set Cic or Cex indicate the positioning
devices whose future observations can potentially change the query
result. Critical devices cannot come from any further-away graph
edges because for any object to enter or leave the query range, it
must first be detected by devices whose corresponding graph edges
are closer to the query range.

Let R be the range of a CRMQ , d be a positioning device, and
d′ be the activation range of the device d. In other words, we have
d′=Devices(d).ActRange. To improve the query processing, we
categorize all critical devices into five classes.

CLASS1 = {d|d′ uR = d′; ∀c ∈ G.`−1
E (d)(c uR = c)}

CLASS2 = {d|d′ uR = d′; ∃c ∈ G.`−1
E (d)(c uR 6= c; c uR 6= ∅)}

CLASS3 = {d|d′ uR 6= d′; d′ uR 6= ∅}
CLASS4 = {d|d′ uR = ∅; ∃c ∈ G.`−1

E (d)(c ∈ Cic)}
CLASS5 = {d| d′ uR = ∅; ∀c ∈ G.`−1

E (d)(c /∈ Cic);

∃c ∈ G.`−1
E (d)(c ∈ Cex)}

The classes have the following pertinent properties. The activa-
tion range of a CLASS1 device is fully covered by the query range
R and all its corresponding cells are fully covered by the query
range R. For query2 in Figure 5, device16 is a CLASS1 device.

The activation range of a CLASS2 device is fully covered by the
query range R, and at least one of its corresponding cells is not
fully covered by the query range R. For example, device13 is a
CLASS2 devices of query1.

The activation range of a CLASS3 device intersects with the query
range R. For example, device16 is a CLASS3 devices of query1.

The activation range of a CLASS4 device is disjoint with the
query range R and at least one of its corresponding cells is in Cic.
For example, device1 is a CLASS4 device of query1.

Finally, the activation range of a CLASS5 critical device is dis-
joint with the query range R and at least one of its corresponding
cells is in Cex, but none of them are in Cic. For example, device10

is a CLASS5 critical device of query2.
As discussed, only new observations from the critical devices

can affect the result of a given query. The classification will be
helpful for the query result update (to be detailed in Section 4.3.3).
It is then beneficial if the relationships between a query and its
critical devices are recorded appropriately in the system. Therefore,
a Device Query Hash Table (DQHT) is defined:

DQHT [deviceID] = {(queryID ,CLASS)},
where deviceID indicates a device, queryID indicates a query that
has the device as a critical device, and CLASS indicates the class
of the critical device in the particular query.

During continuous query updating, as soon as a new observation
from a device is output by the pre-processing module, all queries
relevant to the device are determined through DQHT. This can
avoid unnecessary result updates on queries for which the device
is not critical.

4.3.2 Query Registration
In order to process multiple concurrent CRMQ efficiently, an

incremental query result update method is applied. In other words,
each update is based on the previous query result. A query index
Query Hash Table(QHT) is created in main memory. It maps a
query identifier to the query’s results:
QHT [queryID] = (CR,UR);CR ⊆ Oindoor,UR ⊆ Oindoor,

where CR is the certain result and UR is the uncertain result.
The registration procedure for a new query, detailed in Algo-

rithm 2, identifies the critical devices, obtains the initial query re-
sults, and registers the relevant information to facilitate future result
updates. First, a new identifier is generated for the query (line 5).
The covered devices/cell sets and intersected devices/cell sets are
determined through the predefined spatial index (lines 6–9). The
covered devices are then added to the critical devices set, and the
class is determined according to the relevant definitions (lines 10–
14). The intersected devices are added into the critical devices set
with CLASS3 (lines 15–16). After that, CLASS4 critical devices
are determined (lines 17–20). For each edge in the deployment
graph G, if one of its two vertices is in the covered or intersected
cell set and the edge’s corresponding device is not in critical de-
vices set, the device is a CLASS4 critical device. At the same
time, the extended cell set Cex is determined (line 21). For each
edge in G, if one of its two vertices is in the extent cell set Cex,
and the edge’s corresponding device is not in critical devices set,
the device is a CLASS5 critical device (lines 22–25).

For each device in the covered device set, all the corresponding
active objects from DHT are added to the certain result (lines 26–
27). For each device in the intersected device set, all the corre-
sponding active objects from DHT are added to the uncertain re-
sult (lines 28–29). For each cell in the covered cell set Cc, all the
corresponding deterministic objects from CDHT are added to the
certain result (lines 30–31). If the covered cell set has more than
one cells, each nondeterministic object in these cells is checked. If
all its possible cells OHT [o].IDSet are in Cc, the object is added
to the certain result. Otherwise, the object is added to the uncertain
result (lines 32–37). If Cc has only one cell, all the correspond-
ing nondeterministic objects from CNHT are added to the uncer-
tain result (lines 38–39). For each cell in the intersected cell set,
both deterministic objects from CDHT and nondeterministic ob-
jects from CNHT are added to the uncertain result (lines 40–41).
Then, the initial result sets are added to QHT (line 42). Finally,

the DQHT is updated for each critical device (line 43-44).

Algorithm 2 register (Range R, DeploymentGraph G)
1: deviceSet Dc←∅, Duc←∅;
2: cellSet Cc←∅, Cuc←∅, Cex ← ∅;
3: objectSet Rc←∅, Ruc←∅;
4: CriticalDeviceList(deviceID, CLASS) cd←∅;
5: Generate a new identifier queryID for the query;
6: Dc ← Devices that are covered by R;
7: Duc ← Devices that intersect with R;
8: Cc ← Cells which are covered by R;
9: Cuc ← Cells that intersect with R;

10: for each device d in Dc do
11: if all the cells in G.`−1

E (d) are in Cc then
12: Add (d, CLASS1) to cd ;
13: else if one of the cells in G.`−1

E (d) is in Cuc then
14: Add (d, CLASS2) to cd ;
15: for each device d in Duc do
16: Add (d, CLASS3) to cd ;
17: for each edge e in G do
18: if (Cc ∪ Cuc) ∩ e 6= ∅ AND (Cc ∪ Cuc) ∩ e 6= (Cc ∪ Cuc) then
19: if G.`E(e) /∈ cd .deviceID then
20: Add (G.`E(e), CLASS4) to cd ;
21: Cex ← Cex ∪ e \ (Cc ∪ Cuc);
22: for each edge e in G do
23: if Cex ∩ e 6= ∅ then
24: if G.`E(e) /∈ cd .deviceID then
25: Add (G.`E(e), CLASS5) to cd ;
26: for each device d in Dc do
27: Rc ← Rc ∪ DHT [d];
28: for each device d in Duc do
29: Ruc ← Ruc ∪ DHT [d];
30: for each cell c in Cc do
31: Rc ← Rc ∪ CDHT [c];
32: if |Cc| > 1 then
33: for each nondeterministic object o in Cc do
34: if OHT [o].IDSet ⊂ Cc then
35: Add o into Rc;
36: else
37: Add o into Ruc

38: else
39: Ruc ← Ruc ∪ CNHT [c];
40: for each cell c in Cuc do
41: Rc ← Rc ∪ CDHT [c]; Ruc ← Ruc ∪ CNHT [c];
42: QHT [queryID]← (Rc, Ruc);
43: for each item a in cd do
44: Add (queryID , a .CLASS) into DQHT [a .deviceID];

4.3.3 Query Result Updates
When the pre-processing module outputs a new observation

(deviceID , objectID , t, flag), the result of each query having
deviceID as a critical device needs updating. The query update
cases are summarized in Table 1, where CR (UR) is the certain
(uncertain) result and the query result after each update is described.
For simplicity, we use o to denote the moving object identified by
objectID .

Upon receipt of a new observation O, the query update module
only updates the results of those queries that O.deviceID maps
to in DQHT . For each such query, action is taken according to
Table 1.

If O is an ENTER observation, the observed object is enter-
ing the activation range of the corresponding critical device. For a
CLASS1 or CLASS2 critical device, whose range is covered by
the query range, the object is definitely in the query range, so the
object is added to the certain result of the query. If the object is
originally in the uncertain result set, it is deleted. For a CLASS3
critical device, whose range intersects with the query range, the ob-
ject is possibly in the query range. Therefore, the object is added

to the uncertain result of the query. If the object is already in the
certain result set, it is deleted. For a CLASS4 or CLASS5 critical
device, whose range is disjoint from the query range, the object is
definitely not in the query range. Therefore, the object is deleted
from the certain or uncertain result of the query as necessary.

Table 1: Query Updates w.r.t. Critical Devices
ENTER LEAVE

CLASS1 CR ∪ {o}, UR \ {o} CR,UR
CLASS2 CR ∪ {o}, UR \ {o} CR \ {o}, UR ∪ {o}
CLASS3 CR \ {o}, UR ∪ {o} CR,UR
CLASS4 CR \ {o}, UR \ {o} CR, UR ∪ {o}
CLASS5 CR \ {o}, UR \ {o} CR, UR

If O is a LEAVE observation, the observed object is leaving the
activation range of the corresponding critical device. After leaving
a CLASS1 critical device’s range, all the possible cells in which
the object can be are fully covered by the query range, so the object
is still definitely in the query range. Therefore, the object should
remain in the certain result, which means that the query result needs
not be updated. After leaving a CLASS2 critical device’s range,
the object may enter the adjacent cell that is not fully covered by
the query range. Thus the object may not be in the query range.
Therefore the object is added to the uncertain result and removed
from the certain result if necessary.

After leaving a CLASS3 critical device’s range, cells in which
the object may be intersect with the query range. The object should
be still in the uncertain result set. Therefore, the query result needs
no update. After leaving a CLASS4 critical device’s range, cells
in which the object may be intersect with the query range. The
object is therefore added to the uncertain result set. After leaving a
CLASS5 critical device’s range, the object must be still out of the
query range. Therefore, the query result needs no update.

4.3.4 Deferred Query Result Updates
If the maximum speed of a moving object is known, the query

result update can be deferred, which improves query accuracy.
Consider query1 in Figure 5. According to Table 1, after an

object o leaves a CLASS2 critical device device13 , o should be
moved from the certain to the uncertain result. Let object o’s maxi-
mum speed be Vmax, and let the time span from its latest LEAVE
observation on device13 to current time be ∆t. The longest possi-
ble distance o can move from the boundary of the device13 ’s activa-
tion range is R1=Vmax ·∆t. In other words, the possible region of
o is constrained by a circle with the deployed location of device13

as the center, and the radius of device13 plus R1 as the radius. If
this maximum speed constraint circle is still in the query range, the
moving object is still definitely in the query range and the certain
result. Consequently, we can maintain the certain result without
updating for an extra period of time ∆T .

Assuming that function minDist(deviceID , R) returns the min-
imum indoor walking distance from the boundary of a device’s ac-
tivation range to that of a given query range R, the aforementioned
∆T is determined as minDist(deviceID , R)/Vmax. After time
period ∆T , the moving object may leave the range, and we can-
not guarantee that it remains in the certain result. Notice that the
minimum indoor walking distance is different from the shortest Eu-
clidean distance, as we shall see later.

According to Table 1, if a moving object o leaves a CLASS4
critical device, e.g., device1 for query1 in Figure 5, o is added
to the uncertain result of the query. As a matter of fact, only af-
ter some time ∆T=minDist(device1, R)/Vmax, can the object o
possibly enter the query range. As shown in Figure 5, the func-
tion minDist(device1, range) returns the minimum indoor walk-
ing distance, which is R3 + R4 rather than the Euclidean distance

R2. Because the Euclidean distance line segment R2 is intersected
by room 14, it is impossible for an object to walk along R2. Con-
sequently, the uncertain query result can be maintained without up-
dating for a longer time.

However, deferred query result updates based on the maximum
speed constraint are only applied to LEAVE observations that are
from CLASS2 and CLASS4 critical devices. Let t be the time
when the latest LEAVE observation of o on deviceID is produced
and let ∆T = minDist(deviceID , R)/Vmax.

If deviceID is a CLASS2 critical device, object o is kept in the
certain result from time t until time t + ∆T when o will be moved
to the uncertain result. We call such an update a C2U deferred
update. If deviceID is a CLASS4 critical device, object o will not
be added to the uncertain result until time t +∆T . We call such an
update an N2U deferred update.

In order to execute deferred updates efficiently, each query main-
tains a deferred update table (DUT) which is a hash table defined
as follows:

DUT [queryID] = {(T, objectID , TYPE)},
where T indicates the time when the deferred update should be
executed, objectID indicates the object involved, and TYPE indi-
cates the type of the deferred update.

The elements in DUT are sorted non-decreasingly on the future
update time T . Each time when the query is to be updated, the
query processing module needs only to check the first record of
DUT to determine whether there is any deferred update to execute.
If the object in DUT enters the activation range of any critical
device before the deferred update time, the corresponding record
should be deleted from DUT .

To incorporate deferred query result updates, the query update
module needs slight changes as follows. For an ENTER obser-
vation, if the object is in DUT , the corresponding record should
be removed from DUT . For a LEAVE observation, if the critical
device is a CLASS2 device, a C2U update record is created and
inserted into DUT with the corresponding future update time. If
the device is a CLASS4 device, a N2U update record is created
and inserted into DUT .

4.4 Probabilistic Analysis of Uncertain Results
Given a range monitoring query and a moving object o in its

uncertain result, we intend to infer the probability that o is in the
query range R. We assume that the possible locations of an object
o in a given indoor space conform a uniform distribution within all
reachable regions constrained by o’s maximum speed. The binary
relationship oΘR denotes that the object o is in the range R.

4.4.1 Probabilities for Active Objects
Recall from Section 4.3.2 that all the objects in the activation

range of a CLASS3 device d form the uncertain result of the rel-
evant query. We first infer the probabilities for such objects based
on the areas of the regions in which objects can be. Formally, the
probability that an active object o is in the range R is defined as:

prob(oΘR) =
Area(Devices(d).ActRange uR)

Area(Devices(d).ActRange)
.

In Figure 5, device16 is a CLASS3 device for query1, and the
probability for an active object in device16 to be in the query range
is calculated as Area(Devices(device16).ActRangeuR)

Area(Devices(device16).ActRange)
.

4.4.2 Probabilities for Inactive Objects
As described in Section 4.3.3, after leaving a CLASS2 , CLASS3 ,

or CLASS4 critical device, an inactive object is added to or kept in
the uncertain result of the query. For such inactive objects, which

are currently in cells, the probabilities can be defined based on the
maximum speed constraint.

We use the binary relationship oΥd to indicate that the inactive
object o has most recently left critical device d. Let the set CD234
contain all the CLASS2 , CLASS3 , and CLASS4 critical devices
for a given query. The probability that an inactive object o is in
query range R is defined as:

prob(oΘR) =
∑

di∈CD234

prob(oΘR | oΥdi) · prob(oΥdi)

For each object o in the uncertain set, the positioning device d
which o has just left can be exactly determined through the query
update module. The probability prob(oΥd) equals 1 for this par-
ticular device d and equals 0 for all other devices in CD234 . LetH
be the assumption that indicates this fact. We then need to consider
the probability prob(oΘR,H), which indicates the probability that
object o is in the query range R given assumption H.

After leaving the positioning device d, the object should enter
one of the cells in the set Cd=G.`−1

E (d). Therefore, the probability
can be defined as follows:

prob(oΘR,H) =
∑

ci∈Cd

prob(oΘR | oΘci,H) · prob(oΘci,H)

If the device d is a DP or PR device, the object must enter
exactly one specific cell. The probability of the object being in this
cell is 1. If d is a UP device, the object may enter an arbitrary
cell in the cell set Cd. Assume that the function Bound (deviceID ,
cellID) returns the length of the boundary of the device’s activation
range that falls in the cell. The probability that an object enters a
cell ci ∈ Cd is defined as:

prob(oΘci,H) =





Bound(d, ci)

Bound(d)
if d is UP

1 otherwise

Let the maximum speed of object o be Vmax and assume that o
left critical device d at time t. Function Circle(time , deviceID ,
objectID) returns the maximum speed constraint circle with re-
spect to the parameters given. Binary relationship Λ indicates an
indoor accessible intersection, which returns the accessible inter-
section of two indoor regions. For simplicity, we use Circle for
Circle(t, d, o). We then have:

prob(oΘR|oΘci,H) =





Area(ciΛCircle uR)

Area(ciΛCircle)
, ciuR 6=∅

0, ciuR=∅

Refer to the example in Figure 6. Assume that the assumption
H indicates that object o most recently left device12 at time t. The
object o is constrained in its reachable region, i.e., the maximum
speed constraint circle, which is shown as the dashed circle R1 to
the left in Figure 6. Let the maximum speed be Vmax and let the
time span from the current time to t be ∆T . Then R1=∆T · Vmax.
Although the circle with radius R1 intersects with room 14, the
circle does not intersect with the door of room 14. This means that
the object cannot enter room 14 within time span ∆T .

Next, let the minimum indoor walking distance from the door
to the boundary of device12 be l=minDist(device12 , door). If
∆T < l/Vmax, the object cannot enter room 14. Here, c10ΛCircle
denotes the accessible intersection between the maximum speed
constraint circle R1 and the part of cell c10 within room 10. Con-
tinuing, c10ΛCircleuR is the intersection between the accessible
region c10ΛCircle and query range R, shown as the shaded region
to the left in Figure 6.

13

11

12

14

10 11'

11

12

13

16

10

15

l

Query

R1

13

11

12

14

10 11'

11

12

13

16

10

15

Query

l
R3

R2

1'

1

1'

1

Figure 6: Probabilistic Analysis of Uncertain Results

As time passes, if ∆T ≥ l/Vmax, the moving object can possibly
enter room 14. The reachable region in room 14 is the maximum
speed constraint circle with R2=Vmax · (∆T − l/Vmax) as radius
and the location of the door as center.

The region of c10ΛCircle is composed of two parts. The first
part is the intersection of the room 10 part of cell c10 and the max-
imum speed constraint circle R3=∆T · Vmax. The second part is
the intersection between the room 14 part of cell c10 and the circle
with radius R2. Similarly, c10ΛCircleuR is the intersection re-
gion between c10ΛCircle and query range R, shown as the shaded
region to the right in Figure 6.

Next, we define the relationship Λ. Given a cell c, we can ob-
tain all its rooms through the Cells mapping defined in Section 2.2.
For a cell with more than one room (indicated by |Cells(c)| > 1),
we partition it into a direct part and an indirect part. The direct
part is the region reachable without any constraint, e.g., room 10 in
cell c10 in Figure 6. The indirect part is the region only reachable
through some constraint, e.g., room 14 in cell c10 is only reachable
through the door.

Given a cell c and a device d, function DP(c, d) returns the di-
rect part of c for d, and IP(c, d) returns the indirect part. Note that
the same room in the same cell can be a direct or an indirect part
depending on the device assumed. Consider cell c30 in Figure 1:
for device30, room 30 is the direct part and room 34 is the indirect
part. The arrangement for device34 is the opposite.

After leaving a device at time t, the reachable region for object c
in a cell c is defined as follows:
cΛCircle = (DP(c, d) u Circle(t))

⋃
∪m∈IP(c,d)(m u Circle(t′))

The reachable region involves two parts. The first part is the inter-
section between the direct part of the cell and the maximum speed
constraint circle with time parameter t (that can be obtained from
the assumption H).

The second part is the intersection between the indirect part of
the cell and the maximum speed constraint circle with time param-
eter t′, the time when the object satisfies the constraint to enter the
indirect part. In the running example, t′ is the time when object o
reaches the door of room 14. This t′ is determined by the minimum
walking distance l and the maximum speed, i.e., t′=l/Vmax.

Note that the minimum walking distances from different devices
to the same indirect part are different. For example, in Figure 6,
the distances from devices device10 and device12 to the door of
room 14 are different. As a final remark, the minimum walking
distance from a device to a given indirect part is determined by the
floor plan and the positioning device deployment. Such distances
can be calculated by the query registration module and recorded in
the system for future use.

5. EXPERIMENTAL STUDY
We use both synthetic and real data in the experimental study.

We generate moving objects using a 3-floor building plan with 30

rooms and 3 staircases on each floor. All rooms and staircases are
connected by doors to a hallway in a star-like manner. An RFID
reader is deployed by the door of each room. In addition, readers
are deployed along the hallways and in the staircases. A total of
143 RFID readers are deployed. According to the definition of par-
titioning and presence devices in Section 2.2, the readers deployed
by doors are undirected partitioning devices; and those deployed
along the hallways and in the staircases are presence devices.

Three rules are used to generate movements: 1) an object in a
room can move to the hallway or move inside the room; 2) an object
in a staircase can move to the hallway or move in the staircase; 3)
an object in the hallway can move in the hallway, move to one of
the staircases, or move to one of the rooms. At each step, an object
randomly chooses a room as the destination. If the destination room
chosen is on the same floor as the object, it will move according to
the minimum indoor walking distance. Otherwise, it will use the
nearest staircase. After the object gets into the destination room,
it will move inside the room for a random time duration and then
start a new movement. All objects move with the constant speed of
4 km/hour. We vary the number of indoor moving objects and the
radius of the activation ranges of the positioning devices according
to Table 2, with default values shown in bold.

Table 2: Parameter Settings
Number of Objects 1K, 10K, 20K, 30K, 40K, 50K
Activation Range 100, 150, 200, 250 (cm)

Number of Queries 500, 1K, 2K, 3K, 4K, 5K

We use a real data set collected from Copenhagen Airport. More
than 1,000,000 tracking records from 25 Bluetooth hotspots are col-
lected each day. We extract the tracking data on the most active
day from April 2008 to October 2008. The total number of mov-
ing objects, i.e., those passengers with Bluetooth enabled devices
in Copenhagen Airport, is 9,638. More than 1.1M tracking obser-
vations are recorded in around 110K sampling units.

In the experimental study, we compare three methods: (1) Naive
Method (NM): When a new observation is produced by the pre-
processing module, every query is reevaluated. We use this naive
method as a baseline. (2) Periodical Method (PM): The query pro-
cessing module searches the index and updates the query results
periodically. The query result is obtained from the corresponding
hash tables in the same way as in query registration (Algorithm 2).
In the experiments, we set the period of PM to the sampling pe-
riod of the positioning devices. The number of positioning devices
is large, and they are usually not synchronized, which means that
the pre-processing module can produce more than one observation
within a sampling period. As a result, the reevaluation frequency of
NM is higher than that of PM. (3) Critical Devices Method (CDM):
The method we propose in the paper. A computer with Windows
XP professional, a 2.66GHz Core2 Duo CPU, and 3.25GB main
memory is used to run all experiments.

5.1 Memory Consumption
Since the QHT and DQHT are stored in the main memory, we

give a brief analysis on their worst-case memory consumption with
respect to the synthetic data.

Each key (query identifier) in QHT has two bitmaps, for certain
result and uncertain result respectively. We use an int value for
each query identifier, which occupies 4 bytes. A 6,250 byte bitmap
is enough for representing the 50K moving objects, which is the
largest number of objects in the experiment 2. As a result, each

250K also approximates to the peak population in the busiest station in
the London Underground motivating example. For continuous monitoring

entry in QHT is 12,504 bytes. For 5K queries, the total size of
QHT is 5K·12,504= 62.52M bytes.

The size of DQHT is related to the query range. A bigger query
range results in more corresponding critical devices. In the worst
case, the range can be the entire indoor space, which makes all
positioning devices critical. We use an int value for each device
identifier and a 1 byte byte value to indicate the class of each critical
device. If the 5K queries have the whole indoor space as their query
ranges, the largest size of each entry in DQHT is (4+5K·(4+1))=
25,004 bytes. For all the 143 devices, the size of DQHT is 143 ·
25,004≈3.5M bytes, a modest main memory consumption.

5.2 Workload Reduction
During continuous query updating, different methods use differ-

ent numbers of observations to update the query results. We quan-
tify a workload by the average number of observations used within
each sampling period to update the query results. We use synthetic
data in this experiment. Our CDM method is able to reduce the
workload significantly, as seen in Figure 7. For both NM and PM,
all the observations from the pre-processing are used to reevaluate
queries because they are query blind. For CDM, only the observa-
tions from critical devices are considered for a query.

0

100

200

300

400

500

1K 10K 20K 30K 40K 50K

N
um

be
r

of
 O

bs
er

va
tio

ns

Number of Moving Objects

NM, PM
CDM

0

25

50

75

100

125

100 150 200 250

N
um

be
r

of
 O

bs
er

va
tio

ns

Radius of Activation Range

NM, PM
CDM

(a) Effect of Object Number (b) Effect of Activation Range

Figure 7: Workload Reduction

In Figure 7(a), we fix the number of queries at 1K and vary the
number of objects from 1K to 50K. The workloads of NM and PM
increase markedly with increasing numbers of objects, while CDM
performs much more steadily.

To observe the effect of the activation range, we vary the radius
from 100cm to 250cm. The results are reported in Figure 7(b).
As the number of observations after pre-processing is affected only
little by the varying radius, the workload is also stable. Note that
CDM outperforms NM and PM significantly.

5.3 Query Result Update Efficiency
We proceed to compare PM and CDM in terms of the efficiency

of the continuous query result update. We consider the average
CPU time spent on query result update per sampling unit. We omit
NM because it incurs considerably more time by reevaluating each
query whenever a new observation arrives. In a real setting, the
indoor positioning devices can produce large numbers of raw read-
ings and pre-processing observations, rendering NM infeasible.

Using the synthetic data, we fix the number of queries at 1K and
vary the number of moving objects and the activation range. The
results are reported in Figure 8. It is seen that CDM is considerably
more efficient than PM. In PM, all queries are reevaluated every
sampling period. The query processing module fetches its results
from corresponding hash tables for all queries. The time used re-
mains constant for varying object counts and activation ranges, ap-
proaching 1.5 seconds per sampling period. This indicates that only
if the sampling period of positioning devices exceeds 1.5 seconds
can the system guarantee that all queries are always reevaluated on

purpose, only online data needs to be stored in the proposed structures.
Management of historical data is beyond the scope of this paper.

100

101

102

103

104

1K 10K 20K 30K 40K 50K

T
im

e
(m

ill
is

ec
on

ds
)

Number of Moving Objects

PM
CDM

101

102

103

104

100 150 200 250

T
im

e
(m

ill
is

ec
on

ds
)

Radius of Activation Range

PM
CDM

(a) Effect of Object Number (b) Effect of Activation Range

Figure 8: Query Result Update Efficiency

time. In a real setting, however, the sampling unit is usually smaller
than 1.5 second [19].

In CDM, query results are updated incrementally only when a
new observation comes from a critical device. As a result, contin-
uous query result update consumes much less time than does PM.
This indicates that CDM is a practical and efficient solution in a
real setting.

The cost of one-time query registration in CDM is almost the
same as that of a result update in PM. The cost of un-registering a
query is similar to that of a result update in CDM, as it only deletes
relevant items from the memory-resident DQHT and QHT.

To investigate the effect of the deferred query result updates that
exploit the maximum speed constraint (MSC), we compare the time
difference between CDM with MSC and CDM without MSC.

Since the maximum speed constraint only applies to observations
from CLASS2 and CLASS4 critical devices, we generate a set of
queries that concern only CLASS2 and CLASS4 critical devices.
The number of such queries is varied from 500 to 5K. The default
values are used for the object number and activation range.

For each query, the minimum indoor walking distance from the
query range to each critical device is calculated and recorded during
query registration. As these distances are constant, we do not need
to calculate them repeatedly during continuous query result update.

The relevant results are reported in Figure 9. The computation
cost increases as the number of queries grows for both methods.
Although the processing cost of CDM with MSC is higher than
that of the CDM without MSC, the total processing time is still
quite low, i.e., less than 0.2 seconds per sampling period, and it is
still much better than PM (around 1.5 seconds per sampling period;
see Figure 8).

0

50

100

150

200

500 1K 2K 3K 4K 5K

T
im

e
(m

ill
is

ec
on

ds
)

Number of Queries

CDM Without MSC
CDM with MSC

Figure 9: Deferred Query Re-
sult Update

0

2

4

6

8

10

1 2 3 4 5

T
im

e
(s

ec
on

ds
)

Current Time (Sampling Units)

5✕ 5
10✕ 10
20✕ 20

Figure 10: Probabilistic Analy-
sis

Next, we investigate the efficiency of the probabilistic analysis
proposed in Section 4.4. We generate a set of queries, each with a
room as its range. The Monte Carlo method is employed to com-
pute the relevant areas used in the definitions in Section 4.4. We
set the basic unit to 5cm×5cm, 10cm×10cm, and 20cm×20cm,
respectively, and the area is measured as the number of units. A
smaller unit produces more accurate results while also yielding a
higher computational cost, as shown in Figure 10. The probability
is reevaluated for every sampling unit. As time passes, the radius
of the maximum speed constraint circle increases and thus results

in higher computational cost. For the 20cm×20cm unit setting,
which is an acceptable accuracy level for indoor space, the pro-
cessing time is the lowest, and it remains largely constant.

5.4 Scalability
Finally, we investigate the scalability of PM and CDM by vary-

ing the query number from 500 to 5K. We use the real data set
in this experiment. We consider both the workload and query up-
date efficiency. The average numbers of used observations for each
query per sampling unit are reported in Figure 11(a). Both CDM
and PM exhibit near constant performance, with CDM using much
fewer observations.

0

5

10

500 1K 2K 3K 4K 5K

N
um

be
r

of
 O

bs
er

va
tio

ns

Number of Queries

PM
CDM

100

101

102

103

500 1K 2K 3K 4K 5K

T
im

e
(m

ill
is

ec
on

ds
)

Number of Queries

PM
CDM

(a) Workload (b) Efficiency

Figure 11: Scalability in Number of Queries

The results on average CPU time for updating the query results
per sampling period are reported in Figure 11(b). As the number of
queries increases, PM degrades markedly; in contrast, CDM per-
forms is almost unaffected, with only a slightly visible CPU cost
increase. The results indicate that CDM is scalable in terms of the
number of concurrent queries.

6. RELATED WORK
Various techniques have been proposed for continuous range mon-

itoring queries in the context of outdoor free-moving objects. The
basic method to process continuous queries involves periodic reeval-
uation [6, 15, 16]. The degree of accuracy is largely determined by
the reevaluation frequency, which is hard to optimize.

To facilitate query processing, indexes [17, 18] have been pro-
posed for the current locations of moving objects that are modeled
as linear functions of time. Alternatives [4, 11, 13] support frequent
location updates of moving objects. By differentiating positive and
negative updates on the query result, incremental processing re-
duces the workload in reevaluation [15]. These proposals are not
suited for indoor moving objects because they assume that the ob-
jects move in Euclidean spaces.

Querying imprecise outdoor location data has been studied re-
cently. Cheng et al. [5] propose a framework to process the prob-
abilistic range query and nearest neighbor query over moving ob-
jects. Ishikawa et al. [12] consider queries with imprecise query
locations against exact locations. Yiu et al. [14] study probabilis-
tic queries on existentially uncertain data. The techniques in these
works, however, are not directly applicable to our indoor setting.

7. CONCLUSION AND FUTURE WORK
This paper addresses incremental and query-aware processing

of continuous range monitoring queries against objects moving in
symbolic indoor spaces. Based on an indoor positioning device de-
ployment, states of the indoor moving objects are identified, which
in turn are utilized to design effective indexing structures for the in-
door moving objects. Given a continuous range monitoring query,
its critical devices are identified to obtain the initial query result and
significantly constrain the search space for future query result up-
dates. Due to the limitations of indoor positioning devices, query
results are partitioned into certain and uncertain parts. By taking

advantage of the categorization of critical devices, query results are
updated in an incremental manner. Exploiting a maximum speed
constraint for objects, the paper also offers a probabilistic analysis
of the uncertain query results. An experimental study is conducted
on both synthetic and real data. The results suggest that our pro-
posal is efficient and scalable.

Several interesting research directions exist. First, it is possi-
ble to share query processing cost among concurrent queries so as
to reduce the overall system overhead. Critical devices common
to multiple queries can be identified and exploited for that pur-
pose. Second, it is of interest to consider other types of monitoring
queries, e.g., range and kNN queries that are attached to moving
objects. Third, it is interesting to conduct probabilistic analysis on
other kinds of object distributions, e.g., Gaussian distribution.

Acknowledgments This research was partially supported by the
Indoor Spatial Awareness project of the Korean Land Spatialization
Group and BK21 program. C. S. Jensen’s work was done when he
was a Visiting Scientist at Google Inc.

8. REFERENCES
[1] Transport for London. http://www.tfl.gov.uk/.
[2] P. Bahl and V. Padmanabhan. RADAR: An In-Building RF-Based

User Location and Tracking System. In Proc. INFOCOM,
pp.775–784, 2000.

[3] C. Becker and F. Dürr. On Location Models for Ubiquitous
Computing. Personal Ubiquitous Computing, 9(1):20–31, 2005.

[4] L. Biveinis, S. Saltenis, C. S. Jensen. Main-Memory Operation
Buffering for Efficient R-Tree Update. In Proc. VLDB, pp. 591–602,
2007.

[5] R. Cheng, D. V. Kalashnikov, and S. Prabhakar, “Querying
imprecise data in moving object environments,” IEEE Trans. Knowl.
Data Eng., vol. 16, no. 9, pp. 1112–1127, 2004.

[6] C. S. Jensen, D. Lin, and B. C. Ooi. Query and Update Efficient
B+-tree Based Indexing of Moving Objects. In Proc. VLDB,
pp. 768–779, 2004.

[7] C .S. Jensen, H. Lu, and B. Yang. Graph Model Based Indoor
Tracking. In Proc. MDM, pp. 122–131, 2009.

[8] S. Feldmann, K. Kyamakya, A. Zapater and Z. Lue, An Indoor
Bluetooth-Based Positioning System: Concept, Implementation and
Experimental Evaluation, Proc. ICWN, pp. 109–113, 2003

[9] J. Hightower and G. Borriello. Location Systems for Ubiquitous
Computing. Computer, 34:57–66, 2001.

[10] H. Hu, J. Xu, and D. L. Lee. A Generic Framework for Monitoring
Continuous Spatial Queries over Moving Objects. In Proc.
SIGMOD, pp. 479–490, 2005.

[11] D. V. Kalashnikov, S. Prabhakar, and S. E. Hambrusch. Main
Memory Evaluation of Monitoring Queries over Moving Objects.
Distributed and Parallel Databases, 15(2):117–135, 2004.

[12] Y. Ishikawa, Y. Iijima and J. X. Yu, “Spatial Range Querying for
Gaussian-Based Imprecise Query Objects”, ICDE, pp. 676–687,
2009.

[13] M.-L. Lee, W. Hsu, C. S. Jensen, B. Cui, and K. L. Teo. Supporting
Frequent Updates in R-trees: A Bottom-up Approach. In Proc.
VLDB, pp. 608–619, 2003.

[14] M. L. Yiu, N. Mamoulis, X. Dai, Y. F. Tao and M. Vaitis, “Efficient
Evaluation of Probabilistic Advanced Spatial Queries on
Existentially Uncertain Data”, IEEE Trans. Knowl. Data
Eng.,vol. 16, no. 1, pp. 108-122, 2009.

[15] M. F. Mokbel, X. Xiong, and W. G. Aref. SINA: Scalable
Incremental Processing of Continuous Queries in Spatio-temporal
Databases. In Proc. SIGMOD, pp. 623–634, 2004.

[16] S. Prabhakar, Y. Xia, D. V. Kalashnikov, W. G. Aref, and S. E.
Hambrusch. Query Indexing and Velocity Constrained Indexing:
Scalable Techniques for Continuous Queries on Moving Objects.
IEEE Trans. Computers, 51(10):1124–1140, 2002.

[17] S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez.
Indexing the Positions of Continuously Moving Objects. In Proc.
SIGMOD, pp. 331–342, 2000.

[18] Y. Tao, D. Papadias, and J. Sun. The TPR*-tree: An Optimized
Spatio-temporal Access Method for Predictive Queries. In Proc.
VLDB, pp. 790–801, 2003.

[19] R. Want. RFID Explained: A Primer on Radio Frequency
Identification Technologies. Morgan and Claypool, 2006.

