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ABSTRACT

The concept omatching dependenci€siDs) is recently proposed
for specifying matching rules for object identification.nflar to

the functional dependencies (with conditiongys can also be ap-
plied to various data quality applications such as violaiiletec-
tion. In this paper, we first formally define the statisticaasures

to evaluatevDs in a given database instance. Then, we study the
problem of discoveringids with certainsimilarity thresholdset-
tings on attributes. Moreover, sinees might not be able to ex-
press many matching rules, we proposedkinded matching de-
pendenciegemDs) to capture the dependencies through a set of pat-
terns with matchingimilarity intervalsin a pattern tableau. Dur-
ing the discovery of @Ds, it is naturally desirable to find the most
concise pattern tableau that can still satisfy the userireqpents.
Unfortunately, as we proved, the minimal pattern tablealolem

is NP-complete. Therefore, we study the greedy algorithm to dis-
cover near optimal Ds and propose pruning techniques to fur-
ther improve the discovery performance. Finally, our ekpental
evaluation demonstrates the efficiency of the proposedadsth

1. INTRODUCTION

Recently, data quality has become a hot topic in database com
munity due to huge amount of “dirty” data originated fromfelif
ent resources (sekl[2] for a survey). These data are oftety™,di
including inconsistencies, conflicts, and errors, due tioua er-
roneous introduced by human and machines. In addition toofos
dealing the huge volume of data, manually detecting and vamgo
“dirty” data is definitely out of practice because human sgd
cleaning methods may introduce inconsistencies againteTfdre,
data dependencies, which have been widely used in thearmgéti
database design to set up the integrity constraints, hame tewis-
ited and revised to capture wider inconsistencies in tha.dgabr
example, consider Gontacts relation with the schema:

Contacts(SIN, Name, CC, ZIP, City, Street)

The following functional dependendy specifies a constraint that
for any two tuples inContacts, if they have the samg&IP code,
then these two tuples have the safiigy as well. Recentlyfunc-
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tional dependencie§Ds) have been extended¢onditional func-
tional dependenciegécrps) [4], i.e., Fbs with conditions, which
have more expressive power. The basic idea of these extesnisio
making therbps, originally hold for the whole table, valid only for
a set of tuples. For example, the followinfd specifies that only
in the condition of country cod€C = 44, if two tuples have the
sameZIP, then they must have sarBereet as well.

fd : [ZIP] — [City]
cfd [ZIP, CC = 44] — [Street]

These dependency constraints can be used to detect daga viol
tions [10]. For instance, we can use the abfaM® detect violations

in an instance o€ontacts in Table[1. For the tuples; andts with

the same values &IP = 021, they have different values dity,
which are then detected as violations of the akfdve

Although functional dependencies (and their extensioh wdn-
ditions) are very useful in determining data inconsisteaay re-
pairing the “dirty” datal[10], they check the specified dtitie value
agreement based @xact matchFor example, with the abowed,
tuples that hav€C = 44 and the same value &tP attribute will
be checked to see whether they have exactly matched values on
Street. Obviously, this strict exact match constraint limits usag
FDs andcFps, since real-world information often have various rep-
resentation formats. For example, the tugleandts in Contacts
table will be detected as “violations” of thed, since they have
“different” Street values but agree adlP andCC = 44. However,
“No.2, Central Rd.” and “#2, Central Rd.” are exactly therfs
street in the real-world with different representatiomfiats.

To make dependencies adapt to this real-world scenarig, i
same information have different representation formaasy 2]
proposed a new concept of data dependencies, aalching de-
pendenciegmbs). Informally, a matching dependency targets on
the fuzzy values like text attributes and defines the depasydiee-
tween two set of attributes according to their matchingityaiea-
sured by some matching operators ($€e [3] for a survey), asich
Euclidean distancendcosine similarity Again, in Contacts ex-
ample, we may havemb as

o

md; ([Street] — [City], < 0.8,0.7 >)

which states that for any two tuples froGontacts, if they agree
on attributeStreet (the matching similarity, e.gcosine similarity
on the attributeStreet is greater than a thresholil8), then the
correspondingCity attribute should match as well (i.e. similarity
on City is greater than the corresponding threshld.

Similar to theFrDs related techniquesybs can be applied in
many tasks as well. For example, diata cleaning we can also
usemMDs to detect the inconsistent data, that is, data do not follow
the constraint (rule) specified byps. For example, base on the
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Table 1: Example of Contacts relation R

SIN Name CC | ZIP City Street

584 | Claire Green| 44 | 606 | Chicago| No.2, Central Rd.| 1
584 | Claire Greem| 44 | 606 | Chicago| No.2, Central Rd.| to
584 | Claire Gree | 44 | 606 | Chicago| #2, CentralRd. | t3
265 | Jason Smith| 01 | 021 | Boston | No.3, Central Rd.| ¢4
265 J. Smith 01 | 021 | Boston #3, Central Rd. | t5
939 | W.J.Smith | 01 | 021 | Chicago| #3, CentralRd. | t¢

abovemd; example, we search the pairs of tuples whose similar-

ities onStreet are greater than.8 while the City similarities are
lower than0.7. In addition to locating the inconsistent daddject

identification, another important work for data cleaning, can also

employMDs as matching rules. For instance, according to

md, : ([Name, Street] — [SIN], < 0.9,0.9,1.0 >)

if two tuples have high similarities dName andStreet (both sim-
ilarities are greater than 0.9), then these two tuples figtzienote
the same person in the real world, i.e., having the séiNe

Though the concept of matching dependencies is given_in [12]

the authors did not discuss how to discover usefnk. In fact,
given a database instance, there are enormumssthat can be dis-
covered if we set different similarity thresholds on atttds. Note
that if all thresholds are set th0, MDs have the same semantics
as traditionaFDs, in other words, traditionalDs are special cases
of MDs. For instance, the abovd can be represented bynD
([ZIP] — [City],< 1.0,1.0 >). Clearly, not all the settings of
thresholds fombDs are useful.

Therefore, the first question that we have to address is how to

measure the “usefulness” of a deteckeml. In this work, we adopt
the widely used measuresnfidenceandsupport Specifically, we
consider auD of a relationR, denoted byp(X — Y, A), whereX
andY are the attribute sets &, )\ is a pattern specifying different
similarity thresholds on each attribute Xi andY. Let Ax and
Ay be the projections of thresholds in patterron the attributes
X andY respectively. Theupport(p) measures therobability
that the matching similarities of any pair of tuplesand ¢, on

attributesX andY satisfy the corresponding thresholds in pattern

A. Theconfidence(y) is the conditional probabilityof ¢; andt.

with matching similarity onY” satisfying\y given the condition
that¢; andt, are similar on attributeX (satisfying\x). Clearly,

in real applications, such as object identification, uséenoseek
useful matching rules with high support and confidence totifle
the duplicate objects. Therefore, in this work, we would ltio

discover proper settings of matching similarity threskdlat MDs,

which can satisfy users’ requirements (i.e. users specsfipgort
and confidence).

During the discovery ofubs, we also find that the expressive

power ofMDs by setting up single similarity thresholds is not enough
For example, we con-

to capture many useful matching rules.
sider the abovend, again, for the object identification problem
according toName and Street attributes. The matching similar-
ity of Jason Smith andJ.Smith is 0.6, which is lower than that of
J.Smith andW.J.Smith (i.e. 0.85). In fact, howeverJason Smith
andJ.Smith (low similarity) denote the same person, whil8mith
andW.J.Smith (high similarity) are not (i.e., having differe6tN).
Therefore, we cannot address all the mentioned matchieg hy
setting a single matching similarity threshold, such\8$ame] =
0.6 or 0.85.

To address this limited expressive issue, in this work, viein
duceextended matching dependendie®Ds), which specifies the
dependencies by matching similarity intervals, rathenthigle
similarity thresholds irMDs. For example, the intervd.6, 0.8)

describes the constraint of matching similarity betwé&rando.S.
Consequently, the followingmd; specifies the dependency that for
any two tuples, if their matching similarities are betwé@®, 0.8)

on attributeName, and betweef0.9, 1.0] on attributeStreet, then
they must have the san%N.

([Name, Street] — [SIN], < [0.6,0.8), [0.9, 1.0], 1.0 >)
([Name, Street] — [SIN], < [0.9, 1.0], [0.9, 1.0], 1.0 >)

More than one matching similarity intervals may be valid &or
attribute. For instancemd. specifies another interv.9, 1.0] on

emd; :

emd> :

Name for the dependencies on the same attributes. We use a tableau

to represent the patterns of intervals moes, instead of a single
threshold pattern imDs. An evD is denoted ag)(X — Y, T),
whereT is a pattern tabular which specifies a set of interval pastern
on X andY. For the abovéName, Street, andSIN dependency,
we can have anned: ([Name, Street] — [SIN], 7)), whereT is:

Name | Street || SIN
[0.6,0.8) | [0.9,1.0]
[0.9,1. 0] 0 9,1.0]

The same asIDs, evDs can also be applled in violation detec-
tion. Those pairs of tuples are detected as violations of\an e
where some of the interval patterns of thebeare violated. Thus,
the patterns of intervals in the tableau are frequentlyuatatd dur-
ing the violation detection. However, two patterns in anteaby
pattern tableau may cover the same semantics of intervalk,as
[0.6,0.7) and[0.6,0.8), i.e., redundancy. Thus, the more concise
the pattern tableau is, the better the detection efficiencyhis mo-
tivation introduces an interesting optimization probleéodiscover
concise &Ds with the minimum number of interval patterns.

Contributions. In this paper, given a relation instance, we study
the issues of discovering the matching dependencies. Oimr ma
contributions are summarized as follows:

First, we propose the formal definition ektended matching de-
pendenciegin Sectior8). The corresponding confidence and sup-
port evaluations ofeDs are developed as well. To the best of our
knowledge, this is the first paper to propose and evaluatese

Second, we study the discoverymbs (in Sectioli ¥4). Theibs
discovery problem is to find settings of matching similathyesh-
olds on the attributes fomDs that can satisfy the required confi-
dence and support. We first present an exact algorithm anlgf stu
pruning strategies by the minimum requirements of suppodt a
confidence. In addition, to avoid the traversal of all theadate
propose an approximate solution with bounded error.

Third, we study the discovery ofvids (in Sectior b). As we
proved, the problem of discovering optimahes with the mini-
mum number of interval patterns is>-complete. Therefore, we
introduce greedy algorithm to find approximate optimal sohs
with an error bound on tableau size. Moreover, to improveethe
ficiency, pruning strategies are proposed to filter out ulifie
candidate patterns, with a proved bound of the pruning rate.

Finally, we report an extensive experimental evaluatiorS@c-
tion[d). The proposed algorithms on discoverings and &Ds
are studied. Our pruning strategies can significantly imgrine
efficiency in discoveringiDs and @1Ds.

All the proofs can be found in the full versidn [15] of this gap
Table2 lists the frequently used notations in this paper.

2. RELATED WORK

Recently, traditional dependencies, such as functiorzggen-
cies EDs) and inclusion dependenciesi®s) for the schema de-
sign [1], are revisited for new applications like improvithg qual-
ity of data. The conditional functional dependenciesis) are first



Table 2: Notations

Symbol  Description
o) Matching dependencyD
P Extended matching dependencyie
A Threshold pattern, of matching similarity thresholds
1) Interval pattern, of matching similarity intervals
T Tableau, of interval patterns
Ct Candidate set, of threshold patterns
Ce Candidate set, of interval patterns
Ns Minimum requirement, of support
Ne Minimum requirement, of confidence
R Original relation, of N data tuples
D Statistical distribution, of: statistical tuples

proposed in[[4] for data cleaning. Cong et al.|[10] study tetedt-
ing and repairing methods of violation yrps. Fan et al.[[14]
investigate the propagation af-Ds for data integration. Bravo et
al. [5] propose an extension afbs by employing disjunction and
negation. Golab et al_ 17] define a range tableaucfens, where
each value is a range similar to the concept of matching aiityil
intervals in our study. In addition, Bravo et dl! [6] propasmdi-
tional inclusion dependency (NDs), which are useful not only in
data cleaning, but are also in contextual schema matching.
Inspired by the above interesting applications, the disppof

CFDs is studied as well. The confidence and support measures ar

widely used in evaluatingrps [17/7]13]. In addition, Chiang and
Miller [[7] also study some other measures such as convigtiwh
x2-test. When a candidat® — Y is suggested together with min-
imum support and confidence, Golab et[al][17] study the sEgo
of optimal cFbs with the minimum pattern tableau size. A con-
cise set of patterns are naturally desirable which may hawerl
cost during the applications such as violation detectiorcbys.

Our optimal e1D problem is based on the same principle. On the

other hand, Chiang and Miller][7] explo&Ds by considering all
the possible dependency candidates wiRen> Y is not specified.
In [13], Fan et al. also study the case when the embeddsdare
not given, and propose three algorithms for different sdesa
The concept of matching dependenciem§) is first proposed
in [12] for specifying matching rules for the object idertition

(see [11] for a survey). TheiDs can be regarded as a generaliza- having edit operations, 2, .. ..

€

fore, instead of Ds on identical values, thmatching dependencies
MDs [12] are proposed based on the matching quality. For téxt va
ues, we can adopt the similarity matching operators, dernte-,
such a=dit distancd21]], cosine similaritywith word tokens[[9] or
g-grams[18].

Consider arelatioR (A1, . . ., Aa) with M attributes. Follow-
ing similar syntax ofDs, we defineuDs as foIIowingEI

DEFINITION 1. Amatching dependencyf) ¢ is a pair(X —
Y,A), whereX C R, Y C R, and ) is athreshold patterrof
matching similarity thresholds on attributes i U Y, e.g., A[4]
denotes the matching similarity threshold on attribute

A MD ¢ specifies a constraint on the set of attribufégo Y.
Specifically, the constraint states that, for any two tupleand
to in a relation instance of R, if /\AieX 01[Ai] Rapa,) t2[Ad]
then/\AjeY t1[A;j] ~aa;) t2[A;], whereA[A;] andA[4;] are the
matching similarity thresholden the attributes ofA; and A; re-
spectively. In the above constraint, for each attribdifec X UY,
the similarity matching operator indicatestrue, if the similar-
ity betweent1[A;] andt2[A;] satisfies the corresponding threshold
A[A;]. For example, anD ¢ ([Street] — [City], < 0.8,0.7 >) in
the Contacts relation denotes that if two tuples has simifareet
(with matching similarity greater tham.8) then theirCity values
are probably similar as well (with similarity at leas®).

Like Fps andcFbs [17,[7], we adopsupportand confidence
measures to evaluate the matching dependencies. Accdadihg
above constraint afiDs, we need to consider the matching quality
(e.g., cosine similarity or edit distance) of any pair oflag#; and
to for R. Therefore, we compute a statistical distribution (dedote
by D) of the quality of pair-wised tuple matching f&. The sta-
tistical distribution has a schenfa(A1, ..., Aa, P), where each
attribute A; in D corresponds to the matching quality values on the
attribute A; of R, and P is the statistical value. Let be a statis-
tical tuple inD. The statistics[ P] denotes the probability that any
two tuplest; andt, of R have the matching quality valuegA;],
VA; € R. With a pair-wised evaluation of matching quality of
all the N tuples forR, we can easily comput& by <74,
wherecount(s) records the pairs of tuples having matching quality
s. Different matching operators have various spaces of nrajch
values, such as cosine similarity j0.0, 1.0] while edit distance
In order to evaluate in a consis-

tion of Fbs, which are based on identical values having matching tent environment, we map these matching quality vakjef to

similarity equal tol.0 exactly. ThusFDs can be represented by the
syntax ofMDs as well. For any two tuples, if theX values are
identical (with similarity> 1.0), then aFd (X — Y’) requires that
theirY” values are identical too, i.e.mD (X — Y, < 1.0,1.0 >).
Fan [12] gives the concept of matching dependencies witimut
troducing how to evaluate and discoweps.

3. STATISTICAL EVALUATION

In this section, we formally introduce the definitionsnabs and
emDs, respectively. Then, we develop statistical analysigvafu-
atingmDs and #1Ds over a given database instance.

3.1 Matching Dependencies

Traditional functional dependenciess and their extensions rely
on the exact matching operaterto identify dependency relation-
ships. However, in the real world application, it is not pbkesto
use exact matching operaterto identify matching over fuzzy data
values such as text values. For instanke@pn Smith andJ.Smith
of attributeName may refer to the same real world entity. There-

a unified space, saj), d — 1], which is represented byom(A)

with d elements. Tablgl3 shows an example of the statistical dis-
tribution D computed fromContacts in Table[1 by mappirjthe
cosine similarities if0.0, 1.0] to elements if0, d — 1] of dom(A)

with d = 10. According todom(A) in our example, the first tu-
ple (1,0,3,...,0.065) denotes that there are abdu§% match-

ing pairs in all pair-wised tuple matching, whose similagtare
1,0,3,... onthe attributed;, A2, As, ... respectively.

Table 3: Example of statistical distribution D
A1 A2 A3 A4 A5 A6 P

1 0 3 5 8 4 1 0.065] s1
7 4 0 0 4 1] 0.043| s2
0 4 8 1 6

2| 0.124 ] s3

The MDs syntax is described with two relation scheifia, R»
for object identification in[[12], which can also be represenin a
single relation schem® as therDs.

2E.g., cosine similarity value timesd — 1



Then, we can measure the support and confideneebst with
various attributes andY’, based on the statistical distributi@h
Let A\x and\y be the projections of matching similarity threshold
pattern\ on the attributes ofX’ andY" respectively in avb ¢,
which are also specified in terms of elementslam(A) of each
A € X UY. Let Z be the set of attributes not specified pyi.e.,
R\ (X UY). The definitions of support and confidence for the
»(X — Y, ) are presented as follows:

support(p) = P(XF Ax,Y E Ay)
= Y P(XEA,YFEA,Z)
z
confidence(p) = P(XEAx|Y E Ay)

S, P(XEAx,Y E )y, Z)
>y, P(XFAx,Y,Z)

whereF denotes thesatisfiability relationship, i.e..X F Ax de-
notes that the similarity values on all attributes Xh satisfy the
corresponding thresholds listed \x.. For example, we say that a
statistical tuples in D satisfies\x, i.e., s[X] E Ax, if s has sim-
ilarity values higher than the corresponding minimum thodg,
i.e.,s[A] > A\[A4], for each attributed in X.

Consider any two tuplels andt, from the original data relation
R, thesupport(p) estimates the probability that the matching sim-
ilarities of ¢; andt, on attributesX andY satisfy the thresholds
specified byA x and)\y, respectively. Similarly, theonfidence(p)
computes the conditional probability that the matchingilsirities
betweent; andt, onY satisfy the thresholds specified hy (i.e.,
Y E Ay) given the condition that; andt, are similar on attributes
X (i.e., X E Ax). Thus, highconfidence(¢) means few instances
of matching pairs that are similar on attribut&s(i.e., X F A\x)
but not similar on attribute¥ (i.e.,Y ¥ \y), where¥ denotes the
unsatisfiability relationship.

3.2 Extended Matching Dependencies

Given a database instance, the expressive powebsfmay not
strong enough to capture the minimum requiremgnand . of
support and confidence respectively. For example, aSsheacts
example shown in Tablg Tlaire Green have high similarities (al-
ways greater thaf.9) to the name of the same person with typo
such aClaire Greem. We have3 pairs of tuples to support @D
©([Name] — [SIN], < 0.9, 1.0 >) with 100% confidence accord-
ing to tuples inContacts table. On the other hand, we can ob-
serve that the matching similarity déson Smith and its abbrevi-
ation formatJ.Smith is low (say0.6), but these two tuples denote
the same person in the real world with a matcS&d. However,
J.Smith andW.J.Smith are two persons with differe®IN, their
similarity equals td).85 which is higher than the above6. As-
sume that users require thav@ havingn. = 1.0 andn, = 115
where15 is the total number of matching pairs of origirailtu-
ples according to the example in Table 1. If the matchinglsimi
ity threshold on attribut&dlame is high > 0.9), then the support
is 1—35 which is lower thanys. On the other hand, simply lower-
ing down the similarity threshold oName attribute from0.9 to
0.6 will increase the support, but the corresponding confidésice
decreased t(% < 7. due to the counting of false casé{mith
andW.J.Smith). In other words, we might not be able to capture
this dependency with desired support and confidence usnugesi
similarity thresholds inmbs. Thus, for the above example case,
instead of using single similarity threshold likame > 0.6, we
introduce the intervals of matching similarities on atitéName,
e.g.,Name F {[0.6,0.8),[0.9,1.0]}, to exclude the false cases.
Therefore, by using more expressive similarity intervalg, can

find [Name] — [SIN] with required support and confidence.
Formally, we define@Ds over a relation instance & by:

DEFINITION 2. Anextended matching dependencw(® v is
apair (X —Y,T),whereX — Y is the same as a standamb;
and 7 is a tableau of interval patterns with attributes & U Y.
Let A be an attribute in7” and leté be ainterval patterrin 7. The
value ofd[A] is a matching similarity intervaldenoted byjv, u),
specifying a set of matching similarity values frento v — 1 in
dom(A), wherev,u € dom(A),1 < v < u < d, andd is the size
of dom(A).

Table[4 shows an example of interval pattern tabl@afor an
emD ([A2, As, Ag] — [A1, A4], T). The semantics of an interval
patterné is similar to the similarity threshold pattern imbs. For
example, we consider the intervals specified by the firsepain
Table[4. For any pair of data tuples from the original relatfo, if
their matching similarities are if8, 10) of attribute A, in [1, 5) of
attribute A5, and([7, 8) of attribute A¢, then they should match on
A; and A4 with similarities in[8,10) and[9, 10), respectively.

Table 4: Example pattern tableau for evD

Az | As | A || As | Ay
[8,10) | [1,5) | [7,8) || [8,10) | [9,10)
[7,8) | [5,6) | [6,8) || [810) | [9,10)
[3,6) | [9,10) | [8,9) || [7,9) | [8,9)

When we have: = d, the semantics of the matching similarity
interval §[A] = [v,u) in a pattern tablead” is exactly the same
as the matching similarity threshoMA] = v in the standaraiDs.
That s, both of them denote the setdof v values indom(A) from
v to (d — 1). Therefore, as shown in Talilé 5, a standam e.g.,
([As, Ag] — [A1, A2], < 6,8,9,8 >) can also be represented by
an evD with pattern tableau.

Table 5: Example pattern tableau for representingmpd
As [ As || A1 | Ao
[6,10) | [8,10) || [9,10) | [8,10)

Next, we study the evaluation ofv®s with support and con-
fidence based on the statistical distributibnas well. Given an
emD ¥ (X — Y,7) and a statistical distributio®, let s be any
statistical tuple inD and§ be any interval pattern ifi. The sat-
isfiability relationshipF is defined as follows. Leix anddy be
the projections of similarity interval pattehon attributesX and
Y respectively. For all attributégA in X, if s[A] = ais in the
interval specified by[A] = [v, u), €.9.,2 E [1, 3), we say that the
similarity valuess[X] of s on attributesX cansatisfythe similar-
ity intervals specified by x, denoted as[X] F dx. We can also
develop the same relationship én.

Similar to the semantics of confidence foma, the confidence
of each pattera in the evD 1) can be computed by

confidence(d) = P(Y F oy | X E dx)

Often, users may expect that all the patterns in the @attern
tableau can be utilized with high confidence. Thus, we defiee t
minimum pattern confidence as the® confidence.

confidence(vy)) = min confidence(d)
The support is defined as the total proportion of matchingsghat
satisfy the intervals of patterns in the tabléawf emD.
support(¢)) = P([X,Y]F T)

where[X, Y] E T denotes that the similarity values 6 andY
can satisfy at least one pattefin 7. Both these two probabilities
can be calculated based on the statistical distribufion



4. DISCOVERING MDs

We now study the determination of matching similarity thres
old pattern fomDs based on the statistical distribution, which is a
new problem different frongDs. In fact, once th&X — Y is given
for aFD, it already implies the similarity threshold to he), that
is, (X — Y, < 1.0,1.0 >) if it is represented by theiD syntax.
Unlike FDs, we have various settings of matching similarity thresh-
olds formps. Therefore, in this section, we discuss how to find the
right similarity thresholds in order to discover ths satisfying
the required support and confidence.

4.1 Threshold Determination Problem

In order to discover a1D ¢ with the minimum requirements of
supportns and confidencey., the following preliminary should be
given first:(I) whatisY? and(ll) what is matching quality require-

ment\y. These two preliminary questions are usually addressed 4

by specific applications. For example, if we would like to dée
coveredMDs to guide objet identification in th€ontacts table,
thenY = SIN. The thresholds\y is often set to a high similarity
threshold by applications to ensure well matchyoattributes. For
example \y is set tol.0 for Y = SIN in the object identification
application. Note that without the preliminady-, the discovered
MDs will be meaningless. For examplepM® with Ay = 0 can
always satisfy any requirement gf, ns. Since all the statistical
tuples can satisfy the thresholds- = 0, the corresponding sup-
port and confidence will always be equalltd.

DEFINITION 3. The threshold determination problem ofbs

is: given the minimum requirements of support and confidence

1s,Me and the matching similarity threshold patten-, to find
all the MDs (X — Y, \) with threshold patterni\ x on attributes
X having confidence(¢) > n. and support(y¢) > ns, if exist;
otherwise to returrinfeasible

The attributesX can be initially assigned bR \ Y if no sug-
gestion is provided by specific applications, since our aliscy
process can automatically remove those attributes thatatree-
quired in X for ambp . Specifically, when a possible discovered
threshold\[A] on attributeA is 0 € dom(A), it means that any
matching similarity value of the attributé € X can satisfy the
threshold0 and will not affect thevD ¢ at all. In other words, the
attribute A can be removed fronX of thembD .

4.2 Exact Algorithm

Now, we present an algorithm to compute the matching similar
ity thresholds on attributeX for MmDs having support and confi-
dence greater tham, andr., respectively. Letd,,..., A, be
the mx attributes inX. For simplicity, we use\ to denote the
threshold pattern projecty with A[A1], ..., A[Am] on all the
mx attributes ofX. Since, each threshold[A] on attributeA is
avalue fromdom(A), i.e.,A\[A] € dom(A), we can investigate all
the possible candidates of threshold patteriLet C; be the set of
all the possible threshold pattern candidates, having

Cy = dom(A;) X -+ x dom(Ay, ) = dom(X).
The total number of candidatesds= |C;| = |dom(X)| = d™,
whered is the size otlom(A).

Let n be the number of statistical tuples in the input statistical
distributionD. We consider two statistical valug¥’ (X,Y") and
P/ (X), which recordP(X E Ax,Y £ \y)and P(X F Ax)
respectively for the candidate; € C; based on the information of
the first: tuples inD, initially having PJ(X,Y) = PJ(X) = 0.
The recursion is defined as follows, withncreasing froml to n

andj increasing froml to c.

PI(X)Y) = sz1(X: Y) + s;[P], if sZ[X]‘ EXj,si[Y]E Ay

P’ (X,Y), otherwise
PB(X) — PLil(X) +SL[P]7 lf SZ[X]. )\J

P! (X)), otherwise

Finally, those)\; can be returned ifupport = PJ > 5, and

. PI(X,Y)
confidence = 22— > 7).
Pp(X)

Algorithm 1 Exact algorithmEA(D, C;)
1. for each candidatg; € C;,j : 1 — cdo
L PJ(X,Y) = PJ(X) =0
3. for each statistical tuples € D,i: 1 — n do
computeP? (X,Y), P! (X)
5: return \; with confidence and support satisfying, ns

We can implement the exact algorithm (nameh) by consider-
ing all the statistical tuples; in D with 4 from 1 to n, whose time
complexity isO(nc).

4.3 Pruning Strategies

Since the original exact algorithm needs to traverse alhtbta-
tistical tuples inD andc candidate threshold patterns@p, which
is very costly. In fact, with the givens andr., we can investigate
the relationship between similarity thresholds and avéielcking
all candidate threshold patterns@nand all statistical tuples i®.
Therefore, in the following two subsections, we presennjul
techniques based on the given support and confidence, teshec

Pruning by support. We first study the relationships among dif-
ferent threshold patterns, based on which we then propose ta
filter out candidates that have supports lower than

DEFINITION 4. Given two similarity threshold patterns, and
Az, if A1[A] < A2[A] holds for all the attributesy A € X, then),
dominates\., denoted as\; < A\o.

Based on theominatedefinition, the following Lemma describes
the relationships of supports between similarity thredipaltterns.

LEMMA 1. Given twoMDSs, 1 = (X — Y, A1) and gz =
(X — Y, \2) over the same relation instance®f if A1 dominates
A2, A1 < A2, then we haveupport(p1) > support(p2).

According to Lemmall, given a candidate similarity threghol
pattern\; having support lower than the user specified requirement
s, .., P2(X,Y) < ns, all the candidates that are dominated by
A; should have support lower thap and can be safely pruned
without computing their associated support and confidence.

In order to maximize the pruning, we can heuristically setec
ordering of candidates i, that for anyj; < j2 having\;, < Aj,.
That is, we always first process the candidates that domiriages.

In fact, we can use a DAG (directed acyclic grapgh)to represent
candidate similarity patterns as vertices and dominaatiogiships

among the similarity patterns as edges. Thus, the domirrdet o
of candidate patterns can be obtained BFatraversal uporg.

Pruning by confidence. Other than pruning by support, we can
also utilize the given confidence requirement to avoid frrtx-
amining tuples that have no improvement of confidence when th
confidence is already lower thay for a candidate\;.

We first group the statistical tuples 1 into two parts based on
the preliminary\y as follows. Letk be a pivot between andn.



For the firstk tuples, we have;[Y] E Ay,1 < i < k. All the
remainingn — k tuples haves;[Y] ¥ Ay, k +1 < i < n. This
grouping of statistical tuples i can be done in linear time.

LEMMA 2. Consider a pre-grouped statistical distributidn.
Pl (X Pl (X,Y)

Foranyl <i; < iz < n,we always havaP] (X) AT

Therefore, according to the formula of confidence, with the i
crease of from 1 to n, the confidence of a specific candidateis
non-increasing. For a candidatg, when processing the statistical

J(X.Y)

tuple s;, if the current confldence— is lower thann., then

we can prune the candidaig Wlthout considering the remaining
statistical tuples fromi + 1 ton in D.

Algorithm 2 Pruning by support & confidendePSC(D, C¢)

1. for each candidaté; € Ct,j: 1 — cdo
PJ(X,Y)=P{(X)=0
for each tuples; € D,i: 1 — ndo
computeP/ (X,Y), P/ (X)
If P (X Y)
PJ(X)
remove\; from C;
if P/(X,Y) > nsthen
break
if PJ(X,Y) < nsthen
remove all the remaining candidatésdominated by}
from C; {Pruning by support)’ > A;}
11: return \; with confidence and support satisfying, 7,

< ne then
{Pruning by confidenge

CO®ND O AWM

Finally, both the pruning by support and the pruning by confi-
dence are cooperated together into a single thresholdhietion
algorithm as shown in Algorithid 2(namefypsq. We also demon-
strate the performance of the hybrid prunigscin Sectiori 6.

4.4 Approximation Algorithm

Though we have proposed pruning rules for exact method (Al-
gorithm[2), the whole evaluation space is still all theuples in sta-
tistical distributionD. Therefore, in this section, we present an ap-
proximate algorithm which only traverses the fikstk = 1,...n)
tuples inD, with bounded relative errors on support and confidence
of returnedvDs.

Let C™ andS™ be the confidence and support computed in the
exact solution with alln tuples. We study the approximate con-
fidence and suppor;* and S*, by ignoring the statistical tuples
from si41 t0 s,,. For a candidate threshold pattexp e Cs, let

B=Pl(X), B=PiX)-Pl(X)

where 3 denotesP(X E Ax) for the candidate\; based on the
first k tuples inD, and is P(X E \x) based on the remaining
n — k tuples. The following Lemma indicates the error bounds of
C* andS* when for a specifick is in a certain range.

LEMMA 3. If we haves < min(ens, Tokte-), then the error
of approximate confidenc€” compared to the exact confidence
C™ is bounded by-¢ < C C < ¢, and the error of approximate
supportS* compared to the exad"™ is bounded bySLn <e

PROOF SKETCH Let

a=Pl(X,Y), a=Pl(X,Y)-P(X,Y)

According to the computation of confidence, we hafe= < and
_ ata cr—ck _
cr =55 LetZ =1 =& _—n.Wecan provethat
B8 aB+B) o B+B
+E>z= = 1
B = ﬂ(a+a) B+ L @

Me

Referring to the minimum support requirement, for a valid we
have > « > ns. Moreover, sinced < min(ens, %) we

also have3 < en, andf3 < ; 7= Therefore,
1—nc
€ Nec +1

On the other hand, according to the computation of suppavt, h
ing S* = a andS™ = a 4 &, we can also prove
st —sk 1 1
St 14+2 141

<e€

That is, the worst-case relative error is bounded: igr both the
confidence and support.[]

Let B(k) = .1, s:[P], wheres;[P] is the probability as-
sociated to each statistical tupleth Referring to the definition
of 3, for any \;, we always haved < B(k). If there exists &
having B(k) < min(ens, T, thenB < min(ens, 5 ’f”j}c)
is satisfied for all the threshold candidates Since theB (k)
decreases with the increase /af to determine a minimunt is
to find a corresponding maximui (k). Therefore, according to
Lemma[3, given an error bound0 < ¢ < 1 — 7., we can com-

pute a minimum positiok = arg maxy_, B(k) having B(k) <

min(ens, T ”:”f]c)

THEOREM 1. Given an error bound, 0 < ¢ < 1 — ., we can
determine a minimurk, having B(k) < min(ens, ), 1 <
k < n. The approximation by considering flrlsltuples inD finds
approximateviDs with the error bound on both the confidence and

support compared with the exact one. The complexity(isc).

Finally, we present the approximation implementation iga\l
rithm 3. Let B denotesB(k) = Y., ., s:[P] for the current
k. With k decreasing fromm to 1, we can determine a minimum
k where B = B(k) < min(ens, 11=) is still satisfied. Af-
ter computingk, we process the tuples starting fromi = 1.
When the bound condition is first satisfied, i~ k with B =
B(k) < min(ens, 7oele-), the processing terminates. Here, the
error bounct is specmed by user requirement with< e < 1—1..

Algorithm 3 Approximation algorithmAP(D, C;)

1: for each tuplesy, € D,k : n — 1do
2. B+=s.[P]
if B> min(ens, 16’7:’7:]
k++; break
for each candidatg; € C;,j: 1 — cdo
PY(X,Y) = P{(X) = 0
for each tuples; € D,i: 1 — kdo
computeP? (X,Y), P! (X)
return \; with confidence and support satisfying, 7,

) then
{Computek}

3
4
5:
6:
7
8
9:

Given an error bound, the bound condition is then fixed. In
order to minimizek, we expect that thé’ values of the tuples from
k+1tonin B(k) = 1 s;[ ] are small. In other words, an
instance ofD with higher P in the tuples froml to & is preferred.
Therefore, we can reorganize the tuple®im the decreasing order



of P as the input of Algorithril3. The ordering of statistical &l
in D by the P values can be done in linear time by amortizing the
P values into a constant domain.

Approximation Individually. We study the approximation by each
individual candidate\; with a more efficient bound condition re-
spectively. Accordlng to formul&](1) in the proof of errondsal, we
find that for each specific candidakg if 3 < min(eg, fﬂ)
then the error bound is already satisfied and the procesann@@
terminated for this\;. Therefore, rather than one fixed bound con-
dition for all the candidates, the bound @fcan be determined dy-
namically for each candidate; respectively during the processing.
Algorithm[4 shows the implementation of approximation wajx
namic bound condition on each candidateindividually.

Algorithm 4 Approximation individuallyAPI (D, C;)
1: for each tuples; € D,i:n — 1do

2: B +=5; [P]

3: if B < min(ens, 12{’;) then

4: k=i {Computek}
5: for each candidate; € C:,j : 1 — cdo
6: PI(X,Y)=Pl(X)=0

7. B, =B

8: for eachtuples; € D,i: 1 — kdo
9: computeP! (X,Y), P/ (X)

10: B =P/ (X)

11: Bj —= 5[ P]

12: if B] < min(ef3, = ﬁnc -) then
13: break

14: return \; with confidence and support satisfying, 7.

COROLLARY 1. The worst case complexity of the approxima-
tion individually isO(kc)

PROOF. Note that with the increasing efrom 1 to &, for a spe-
cific A;, the valueg increases anaﬁj decreases. For any< k,
if B < ns, i.e., \;isinvalid currently, the bound condition cannot
be satisfied havmgrun(e@ 15‘”’37 ) < min(ens, 771) < B;j.
When \; hasg > ns as a valid"threshold, the bound condltlon
is relaxed frommin (ens, 1=+~ ) to min(ef, By Thereby,
the bound condition may be satisfied by a smaﬁfﬁnank: ie.,
min(ens, 7)< B; < min(ep, jfi‘; ). The worst case
is that all candidates do not achleve their bounds until EBee

ing the tuplesy, where B; = B(k) < min(ens, poete) <

min(ef, f%) must be satisfied. This is exact the Algorithin 3
without individual approximation. []

Finally, we cooperate the pruning by support together with t
approximation (namelaps) and the approximation individually
(namelyAPsi) respectively. As we presented in the experimental
evaluation, the approximation techniques can further avprthe
discovering efficiency with an approximate solution vergsde to
the exact one (bounded kY.

5. DISCOVERING eMDs

Rather than finding single matching similarity thresholddach
attribute of X for mDs, the discovery of @Ds is even more com-
plicated, where the pattern tableau specifies a set of patteith
various matching similarity intervals. Therefore, giveneguire-
ment of support and confidence, we have various intervaépatt
combinations to form a tableau. Itis naturally desirabldiszover
the most concise pattern tableau fores, that is, a minimum set

of patterns that can still meet users’ requirements. Ingbiion,
we first formalize the optimization problem of discoveringes,
then we present the algorithms to find desirembs efficiently.

5.1 Optimal Tableau Problem

As mentioned, the patterns in a tableau may cover the same se-
mantics of dependencies as redundancy. Real applicatimhses
violation detection are often interested in concisebs with the
minimum size of pattern rules in the pattern tabl&auro discover
such e1Ds, again, the preliminary specifies what thee constraint
of matching similarities is for attributes i, i.e., dy. The opti-
mization problem then targets to discover the optimabe) that
can infer this true constraint af.

DEFINITION 5. The problem of discovering the optimahie
is: given the minimum requirements of support and confidence
1s, N and the matching similarity interval patter#y-, to find the
optimal eud ¢(X — Y, T) that minimizesthe size of the pattern
tableau7 with discovered patterns of intervals: on attributesX,
if one satisfies)s, 7.; otherwise to returrinfeasible

For a certainy, to minimize the pattern tableau is equivalent to
minimize the pattern sets with intervals 6. To be convenient,
we use) to denote the pattern projectior on X. Since the distri-
butions of X are independent given differelt values, if there are
several differenty of Y in 7, we can consider the minimization
of each one individually. Thus, in the following work, we fecon
the optimization with an individualy .

THEOREM 2. The optimal @D generation problem with mini-
mum tableau size isP-complete.

PROOF SKkeTCH We can show that thd-partite graph vertex
cover problem [8], which isnP-complete, is polynomial-time re-
ducible to the optimal®D generation problem. []

5.2 Greedy Algorithm

Since discovering optimalvDs is NP-complete, motivated by
the greedy approximation for thgartial coveringproblems [[16,

[17], we also study the greedy algorithm for discovering rogsi-

mal eviDs in polynomial time. The greedy algorithm we proposed
below has two stepgl) generating a s&t. of all the possiblénter-

val pattern candidate$or tabular7, and(Il) selecting minimum
number of patterns fror@. to satisfy the given support and confi-
dence requirements. Before we illustrate the detailedsstéphe
algorithm, we first define some terms that will be used.

Consider a statistical tuple in D. For each attributed, we
defineint(s[A]) = {[v,u) | s[A] E [v, u)} to be all the similarity
intervals[v, u) that the values[A] can satisfy. For example, let
s[A] = « € dom(A), then we have

int(a) = {v,u)|0<v<a,a+1<u<d}
= {[0,a+1),...,[0,d),[1,a+1),...,[1,d),...,
[, +1),...,[a,d)}

whered be the domain size afom(A). The size ofint(s[A4]) in
worst case i€9(d?).

For themx attributes inX, let pat(s) be the set of all the pat-
ternsé thats can satisfy, that is, the set of pattern candidatean
be generated from.

pat(s) = {0 | s[X] E 0} = int(s[A1]) X -+ X int(s[Am])

Therefore, the size gfat(s) is O(d*™). Let c be the domain size
of dom(X), havingc = d™. Thus, we havépat(s)| = O(c?).



Given a patterry, let cover(d) record all the statistical tuples
s € D that satisfys, i.e.,
cover(§) = {s | s[X] E 0,s € D}

Generation step. We first generate the candidate Setof all the
possible patterns (nameBc in Algorithm[5) by considering the
pat(s) of each statistical tuplein D.

Algorithm 5 Pattern candidatd3C(D)
1:C.=0
2: for each statistical tuple € D do
3:  for each pattern candidadec pat(s) do
4 if 6 € Ce then
5 inserts to cover ()
6: updateconfidence andsupport of § to C.
7
8
9

else
cover(d) = {s}
: computeconfidence andsupport of ¢, insertd to C.
10: return C.

Elimination step. After we have the pattern candidate et the
next step is to generate a minimum set of patterns f€onas 7

of the evD. Specifically, the greedy algorithm removes a pattern
candidate) with maximum support frong. in each iteration, adds

it into 7 if valid, and does not stop until the minimum suppgst

is satisfied or all the valid pattern candidates are addé&d @iven

a statistical tuples, there may exist many patterfideing satisfied

by s. However, when we compute the support and confidence for

each &1D, s is only assigned to one pattern and count towards its
support. To follow this principle, we eliminate all the ssétal
tuples incover(§) from the remainingd’ € Ce, i.e., cover(d’) =
cover(d’) \ cover(§) in Algorithm[8.

Algorithm 6 Greedy algorithnGA(C.)
L.7=0
2: support(y) =0
3: while C. # 0 andsupport(y)) < ns do

4: ¢ = argmaxsec, support(d)

5. removed fromC.

6: if confidence(d) > 7. then

7: inserté to 7

8: support(y)) += support(d)

9: for each pattern candida#é € C. do
10: cover(§') = cover(8') \ cover(§)
11: updateconfidence andsupport of 6’ to Ce
12: return T

THEOREM 3. The greedy algorithm finds an approximately op-
timal evd with an error bound on the tableau siz&| compared
to an optimal @D tableau sizé7 |, having|7|/|7"| = Inn + 1.
The complexity i€ (nc?).

5.3 Pruning Strategies

As shown in Theorerl3, it is still very costly to compute the
pattern tabular for anned. This is because both generation and
elimination steps require scanning all the possible pattandi-
dates. In fact, not all patterns thasatisfies should be generated as
Algorithm[3 does. Moreover, in the elimination step, aftesving
a pattern td7, it is not necessary as well to update supports and
confidences of all the rest pattern candidateg€.in Therefore, in
the rest of this section, we propose pruning strategiesdioeation
and elimination steps, respectively.

Pruning during generation. We first study the relationship among
patterns, based on which, we can find out redundant pattedi-ca
dates during the generation.

DEFINITION 6. Forany two interval§v, w) and[g, h),ifv < g
andh < u, then[v, ) dominatedg, ), denoted byv, u) < [g, h).

Then, the relationships among the intervals on an attritanebe
represented by a directed acyclic graph. For example, agnsim
Figure[d (a), each black node denotes a possible intervarrsmy
from nodex to b denotes: < b. For each attributel, there is a trian-
gle structure that specifies all the possible intervalsesponding
to this attribute, e.g., Figufd 1 (b) for attribute, Figure[d (c) for
attribute A, etc. Each patterd, thereby, consists of exact one
node (interval) from each triangle (attribute).

DEFINITION 7. Consider any two patterng and .. For all
attribute VA € X, if the intervals satisfy, [A] < §2[A], then we
sayd; dominates),, denoted by, < ds.

If there exists an attributdd A € X, having intervalsi; [A] <
d2| 4], then we say, partiallydominatesy., denoted by; <? d.

LEMMA 4. For any two patterng; andd., if §; dominates),,
i.e.,01<d2, then we haveover(d2) C cover(d:1) andsupport(d1) >
support(d2). Whencover(d1) = cover(dz2), we say that patterns
01 andd, are equivalent, havingupport(d1) = support(dz).

Now, we study the pruning technique for generating pattam c
didates as less as possible. Note that some of the instasmes (
«) in dom(A) of an attributeA may not appear in a certain distri-
bution D. However, according to the pattern candidate generation
algorithm, these instances € dom(A) are still considered as the
bounds of intervals in candidate patterns. We first studpthring
strategies based on these non-appearing instances.

Intuitively, since the valuex does not appear in attributé in
D, all the patterns) containing the intervab[A] = [o, « + 1)
on A should have an emptgover set and can be ignored directly.
Moreover, consider some other pattesngith intervals likes[A] =
[a, 0 + 2) on A. We can prove that there always exists another
patternd’ (such agy’[A] = [a+ 1, a+2) on A) havingcover(§) =
cover(§’). According to Lemm&l4, the pattedris equivalent tay’
and can be pruned as well. We formally define these candidate
patterns with certain pruning intervals as follows.

THEOREM 4. Consider any value: € dom(A). If this value
« does not appear in the attributé in D, then all the pattern can-
didates that contain the following intervals on attributecan be
pruned in the candidate sét: I = {[e, a+u) |u=1,2,...}
andl; ={la—u+1l,a+1)|u=1,2,... }.

PROOF SKETCH For any patterd havingd[A] € I1, we can
always find &2, havingdz [A] = [a+1, a+u), which is equivalent
to d, i.e.,cover(d) = cover(d2). Thus, the pattera can be pruned
as redundancy. Similarly, for any pattefrhavingd[A] € I, we
can also find @1, havingd: [4] = [«—u+1, «), as the redundancy
of6. O

For example, in FigurEl1 (a), suppose that the itedoes not
appear in attributed; in D. Then, the sets of intervald; =
{[47 5), [47 6), [47 7), [47 8), [47 9), [47 10)} and/l> = {[47 5), [37 5),
[2,5),[1,5),[0,5)} marked by shade area in Figlde 1 (a), can be
ignored in attributed, during the candidate generation. In other
words, the pattern candidate generation with pruning (amep)
removes all the patterns with intervals framor I in A; fromCe..



Figure 1: Domination relationship among intervals

Pruning during elimination . Next, we study the pruning of can-
didate patterns during the greedy computation. The majsir @b
elimination step ordinates from the updatiagyer(d’) after mov-
ing the patterd with highest support tg". Thus, we propose prun-
ing rules to reduce the number of updates and remove thedadtin
patterns based on tld®minaterelationship among patterns.

Let 6 be the current pattern in the greedy algorithm. |ets)
denote the interval of on attributeA, i.e.,6[A] = [v, u). In order
to develop the pruning technique, for each attribdifeve group all
the intervals into 6 blocks according to the dominationtrefeship
on [v, u) as follows.

Bi[A] = {[g,h) | [9,h) < [v,u)}

Bo[A] ={[g,h) | [0,v +u) <[g,h) < [v,v+1)}
Bs[A]f{[,h)l[ )<[ h) < [v+u— 1,0+ u))
Bs[A] ,{[97 )I[O v)<[g, h)}

Bs[A] = {lg,h) | [v+u,d) <[g,h)}

Among the 6 blocks defined abovB; [A] represents all the in-
tervals onA that dominate[A], B4[A] denotes all the intervals on
A that are dominated b§[A], Bs[A] and Bgs[A] are the intervals
that have no overlapping witf{ A], and B2[A] and Bs[A] are the
intervals that have overlapping withA]. For example, in Figurg 1
(b), we illustrate thes blocks of all the intervals in attributel,
based on the interval A2] of the current.

Based on these six partitioned blocks of intervals, we fitshi
tify the set of patterng’ that are not updated by the elimination
operationcover(§’) = cover(§’) \ cover(d) even in the original
greedy algorithm (Algorithril6).

LEMMA 5. Consider the curren$ with the maximum support
in C.. After insertingd as a pattern in7, the following sets of
candidate patterns’ are not updated:

Cs ={6' | 3A,8'[A] € Bs[A]}

Ces = {0' | 3A,8'[A] € Bs[A]}
PROOF SKETCH For any patterd’ € Cs or §' € Cg, we can
prove that the intersection of cover setssaindd’ is cover(d’) N

cover(d) = (0. In other words, the operatiaover(§’) = cover(d')\
cover(d) takes no effect on patted. Thusé’ is not updated. [

According to Lemma&ls, all the patterns with intervals frdss

or Bg on any attribute will not be updated in the current itera-

tion. In other words, only the patterns with all the intesv&lom
Bi, Bz, Bs, B4 will be updated, i.eC. \ (C5 U Cs).

Now, we study the pruning rules féf € C. \ (C5 UCs) to avoid
updates. Based on the dominate relationship, we proposketo fi
out the foIIowing two types of patternd) those patterns pattetii
havingcover(§') = 0 after thecover(d’) = cover(d’) \ cover(d)
operation. Thus, these patterns can be pruned without ctindu
the updating operation(ll) those patterns’ that always have an-
other patterny; in Cs or Cs havingcover(§’) = cover(d1), i.e.,
equivalent, after theover(5’) = cover(d’) \ cover(§) operation.
Since this patterq; is reserved irC. without updating in the cur-
rent iteration, the equivalent odé can be pruned as redundancy.

Formally, we define the patterns that can be directly prunam f
the candidate set. as follows.

THEOREM 5. Consider the current with the maximum sup-
port in C.. After insertingd as a pattern ir7, the following set of
candidate patterng’, can be pruned frorg.:

Cp = {0 | VA, §'[A] € (B2[A] U Bs[A] U B4[A))}

PROOF SKETCH For a patterny € C), the intervald’'[A] of
any attributedA comes either fronB2[A], B3[A] or B4[A]. Let

Cy = {8 | 3A,8'[A] € Ba[A]}
Cs = {8 | 3A,8'[A] € Bs[A]}
Ca = {0 | VA, 8'[A] € BaA]}

havingC, = C> U C3 U C4.

For any patterns’ € C2 or 8’ € C3, we can prove that there
always exists a pattern in the remaining candidate pateten(say
51 € Cs or§2 € Cg) which is equivalent t@’ after the current
elimination step. Thus, the pattefhcan be pruned as duplicates.

For any patterd’ € C4, we can prove thatover(§’) = () after
the current elimination step, therebycan be pruned. (]

According to the above definition @f,, a patterns’ € C,, only
contains intervals fronB2, Bs, B4 on all the attributed. In other
words, eacld’ € C,, does not contain any interval froBy , Bs, Be
on all the attributes. Let

Cy = {§' | 3A,8'[A] € Bi[A]}

Then, we can also represeti by C, = Ce \ (C1 U C5 U Cs).

Now, for each attributed, let §5[A] = [0,v) andds[A] = [v +
u,d), whered§[A] = [v,u). According to the partial domination
<” in Definition[d, we can rewrite’s = {§' | d5 < ¢’} and
Cs = {0’ | ¢ <P &'}. Moreover, the set of patterrfs; can also
be rewritten by{4’ | §’ <” 6}. Consequently, the pruned candidate
setCp = Ce \ (C1 U C5 U Cs) can be specified by

Cp={8"] (8 <P Sor s <P ¢ or s <P §') = false}

For example, supposgA:] = [2,7) in Figure[1 (a), then we
haveds[Ai] = [0,2),06[A1] = [7,10). We can also compute
the intervals obs, ds on the other attributed. According to Theo-
remB, those remaining patterns can be safely pruned ifdheyot
satisfy the above partial domination relationships0fs andé.

Finally, we present the greedy algorithm with pruning (nbme
GAP) in Algorithm[7. Note that calculating the boundary pattern
05, d6 IS in constant time and the pruning can be applied recussivel
in the next elimination iteration.

In Algorithm[7, rather than removing each statistical tujpten
possible patterns exactly once in the original greedy élyor, we
prune the patterns which are not necessary to conduct thetape
cover(d’) = cover(d') \ cover(§). Lety(0 < v < 1) be the
pruning rate on average, that ispercentage of candidate patterns
can be avoided to perform th@ver(6’) = cover(d’) \ cover(d)
operation. Then, the complexity of AlgoritHth 7d%((1 — v)nc?).



Algorithm 7 Greedy algorithm pruninGAP(C.)
1L.T7T=0
2: support(y) =0
3: while C. # (0 andsupport (1)) < ns do

4: = arg maxsec, support(d)
5. removed fromC.
6: if confidence(d) > 7. then
7: inserto to 7
8: support(¢)) += support(d)
9: calculateds, 6 from &
10: for each pattern candida#é € C. do
11: if (6’ <P ords5 <” ¢ or §g <’ §') = false then
12: remove’’ from C.
13: else
14: cover(8') = cover(d') \ cover(9)
15: updateconfidence andsupport of 6’ to C.
16: return T

As illustrated in the experiments, tle P can always improve the
discovering efficiency. In fact, we can develop a minimumrxbu
of the pruning ratey on average as follows.

COROLLARY 2. The pruning rate on averagehas a minimum
boundy > 0.754™, wherem is the number of attributes iX .

PROOF. First, we consider the intervals in one single attribute
A. According to Lemmals, the patterns with intervals fr@m or
Bs will not be affected in the current iteration. Thereforeg tigi-
nal greedy algorithm only updates the patterns with all titervals
from By, B2, Bs andB,. Letd[A] = [v, u) for the current pattern
6 on attributeA. The total number of intervals iB1, B2, Bs, By
willbe 2(d(d+1) —v(v+1) = (d— v —u)(d — v —u+ 1)).
Next, for the greedy algorithm with pruning, as we proved ireT
orem[®, we can avoiding the update of patterns with all therint
vals in Bz, Bs and B4, and remove them directly. Thus, we ob-
serve the number of intervals i, i.e., 3((d — u)(d —u+1) —
v(v+1) = (d—v —u)(d—v—u+1)). Then, we consider the
percentage of intervals inB; compared taB:, Bs, Bs, Ba, i.e.,

_ (d=u)(d—u+1)—v(v+1)—(d—v—u)(d—v—u+1) :
p = AT = (o)~ (A= —a) (dv—u i T) for each possible

v,u. Letx = d — u,y = v, then we have the percentagen
average as follows.

d—1 Zx zz+D)—y(y+)—(z—y)(z—y+1)
> ( y=0 d<d+1>—y<y+1)—<z—y><z—y+1>)
=0

r+1

Ul

p:

- O

14L&

=0

T d?>—z’4+d—=a
z+1- Z:y:0 d2—z24+d—x+2y(z—y)
z+1

Note that we havg(z — y) < x*/4 for y € [0, z], thus
p <

RIS o S N S

V2 = Vod—z V2d+zx

Since the harmonic numbéf(n) = ;| + =Inn+ O(1),
1

(H(V2d) — H(V2d — d) +

p <

\/5
H(V2d+d) — H(vV2d)) — 1
_ L 2 g

NV

Next, we consider all the: attributes ind. According to Theo-
rem[3, the pruned patterns should have intervals fi&mBs, Ba
for all the m attributes. Thus, the pruning rate= (1 — p)™ >
0.754™ . Finally, we prove that is bounded by.754™. [

6. EXPERIMENTAL EVALUATION

Data sets. The Cord] data set, prepared by McCallum et al.][20],
consists of 12 attributes includingthor, volume, title, institution,
venue, eftc. TheCiteSed] data set is selected with attributes in-
cludingtitle, author, address, affiliation, subject, description, etc.
We use thecosinesimilarity to evaluate the matching quality of
the tuples in the original data. By applying them(A) mapping

in Section[ B, we can obtain statistical distributions withneost
186, 031 statistical tuples itCoraand314, 382 statistical tuples in
CiteSeer Our experimental evaluation is then conducted in several
pre-processed statistical distributions with variougsiaf statisti-
cal tuplesn from 10, 000 to 150, 000 respectively.

We mainly observes the efficiency of proposed algorithmscei
our main task is to discovenbs and @Ds under the required;
andr., we study the runtime performance in various distributions
with different ns andn. settings. The discovery algorithms de-
termine the matching similarity settings of attributes favs and
emMDs. Suppose that users want to discover the matching sityilari
settings for the dependenciesthor, volume, title — venue with
the preliminary requirement of minimum similariéy6 on venue
in Cora, andaddress, affiliation, description — subject with pre-
liminary 0.1 onsubject in CiteSeerespectively. A returned result
is either infeasible, or a threshold pattern fop or a tableau of
interval patterns formbD.

All the algorithms are implemented by Java. The experiment
evaluates on a machine with Intel Core 2 CPU (2.13 GHz) and 2 GB
of memory. The programs run entirely in main memory.

6.1 Evaluation on MDs

First, we evaluate the performance of pruning by suppers(
compared with the original exact algorithmA). As shown in (a)
and (b) in Figurd R and] 3, thea, which verifies all the possible
candidates, should have the same cost no mattemb@mdr). set.
The EPsachieves low time cost in all the statistical distributipns
which is only aboutl /10 of that of theEA. To observe more accu-
rately, we also plot thepstime cost in Figurgl2 (c) and (d) with
the same settings respectively. According to the prunirefesy,
theepsperformance is only affected by support requiremegntit
is natural that a highet; turns to the better pruning performance.
Therefore,EPswith ns = 0.04 in Figure[2 (c) shows lower time
cost, e.g., aboud.4s for 150k, than that ofp; = 0.01 in (d), e.g.,
0.6s for the samd50k. Similar results with different)s are also
observed oiCora, which are not presented due to the limit of space.

More pruning and approximation results are reported in iic) a
(d) in Figurel2 and13, including the pruning by both suppord an
confidence £PsQ, the approximation together with pruning by
support APS), and the approximation individually together with
pruning by supportApsi). When the confidence requiremept
is high, e.g., in Figurgl3 (d), thepsccan remove those low con-
fidence candidates and shows better time performance than ot
approaches. On the other hand, whens small, e.g.n. = 0.15,
we can have larger choices ofc (0,1 — 7.) such ax = 0.8 in
Figurel3 (c). Thus, the approximation approaches have ltmer
cost, especially thapsi. According to the definition of the bound
condition of approximation approaches, not only ¢hbut alson,

Shttp://www.cs.utexas.edu/users/ml/riddle/data.html
“http://citeseer.ist.psu.edu/
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affects the performance. As presented in Fiddre 2 (c), aghigh
contributes a larger bound condition, which means the darly
mination of the program. Thus, approximation approachesvsh
better performance in Figuré 2 (c) compared with Fididre 2 (d)
Finally, we evaluate the approximate confidence and sugmfort
the returnedips withe = 0.8 on both two datasets in Figurk 4 and
Bl. As we proved in Lemmi 3, the error introduced in approxima-
tion approaches is bounded byn both confidence and support.
Therefore, in FigurEl4 arid 5, the approximate confidence apd s
port of ApsandAPsi are very close to those of exact algorithms.

6.2 Evaluation on eMDs

We first evaluate the influence of varioys and. settings on
the optimal tableau sizes in Figdke 6. With the increase ehtin-
imum support requirements, we need to add more patterns into
the tableal” of emDs, and thus th& size increases as well. When
the minimum confidence. is high at the same time, there might be
not enough patterns to add infothat can achieve thes require-
ment. Therefore, the returned result will be infeasililes(ze is0),
for example, in Figurgl6 (b) withs = 0.03 andn. = 0.54.

Next, we study the time performance of proposed algorithms,
including the original pattern candidate generatieq)( the pat-
tern candidate generation with prunirgc@), the original greedy
algorithm GA), and the greedy algorithm with pruning4P). As
shown in Figurd]7 anfl8, both thecp and GAP techniques can
improve the time performance compared with the origimaknd
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GA respectively. Especially, theap works well (together with ei-
therpcor PcP and keeps low time cost even when therequires
about30 times larger cost in the same environment. These results
also verify our conclusion in Corollafy 2 of the pruning ratund
on average. Moreover, thecPis pruning based on the values that
do not appear in the current distribution. When all the pmesial-
ues appear, e.g., tH&ok distribution of CiteSeelin Figurel8, the
pcpdoes not work (either together witha or GAP). Nevertheless,
the PCP+GAP approach always achieve the best time performance.
The time performance of these greedy algorithm based tech-
niques is also affected by different andn. requirements. When
both the support and confidence requirements are high,g.g-,
0.007 andn. = 0.4 in Figure[T (b), the algorithm needs to seek
a large number of candidate patterns in order to satisfy)thend
1. requirements. The correspondifigsizes are large, as shown
in (d). Consequently, theA has high time cost when boty and
7. are high in (b). Next, if the minimum support is smaller, e.g.
ns = 0.005 in (a), theGA can terminate early, and thus has lower
time cost. On the other hand, if the minimum confidence is Emal
e.g.,n. = 0.2in (c), there are more candidate patterns that can be
considered, some of which may have high supports. Sincethe
greedily select the candidates with the largest suppoat Tntin
each iteration, the number of patternsjirof n. = 0.2 should not
be larger than a higher. = 0.4. In fact, as shown in (d), thg size
of n. = 0.2 is quite small in all distributions, and the corresponding
time cost in (c) is much lower than that of (b). Finally, altigh the
GAPis affect byn, andn. as well, it can achieve significantly lower
time cost tharGA by avoiding unnecessary elimination operations.
We can observe similar conclusions in Figlife 8 and also one
more interesting result, i.e., the infeasible case. Thevani 120k
is infeasiblewith 7 size0 in Figure[8 (d) under the highs = 0.01
andn. = 0.55 requirement. Recall that ainfeasibleanswer is
returned when the algorithm cannot achieneafter checking and
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100k 150k

adding all possible candidate patterns ifitoIn other words, it is
the worst case to traverse all the candidates whenfeasiblean-
swer returns. Therefore, as shown in Fidure 8 (b), the coored:
ing time cost of120k is the highest. Finally, due to the greedy
strategy, theJ™ sizes are various under different statistical distribu-
tions, e.g., foms = 0.005, n. = 0.55 in Figure[8 (d), theT size of
120k is large while that ofl 50k is small. As shown in Figuild 8 (a),
the corresponding time cost for generating a lafge high.

7. CONCLUSIONS

In this paper, we study the discovery of matching dependsnci
First, we formally define the evaluation of matching depemiks
by using support and confidence. Then, we introduce the prob-
lem of discovering theabs with minimum confidence and support
requirements. Both pruning strategies and approximati¢imeoex-
act algorithm are studied. The pruning by support can filteitioe
candidate patterns with low supports. In addition, if the@imium
confidence requirement is high, the pruning by confidenceksvor
well; otherwise, we can employ the approximation approadbe
achieve low time cost. Moreover, sine®s might not be able to
express many matching rules by similarity thresholds, veppse
the extended matching dependencies with similarity irtervThe
emDs discovery problem is to find a concise tableau of intervil pa
terns with the minimum size. Due to the>-completeness of the
problem, we study the greedy algorithms. Advanced prurecg-t

niques are also proposed to improve the efficiency, togetiitér
a proved bound of the pruning rate on average. The experahent
evaluation demonstrates the performance of proposed agetho
Since this is the first work on discovering the matching depen
dencies, there are many aspects of work to develop in theefutu
For example, although the current approach can excludetthe a
tributes that are not necessary tea, another issue is to minimize
the number of attributes in thed. However, the problem of deter-
mining attributes folFps is already hard [19], where the matching
similarity thresholds are not necessary to be considerentedVer,
the minimization problem of attributes can be introduceénims
as well, which is even more complicated with a pattern tablea
stead of a single pattern of thresholds. Finally, and mogoim
tantly, more exiting applications aibs and #Ds are expected to
be explored in the future work.
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APPENDIX
A. PROOF

A.1 Proof for Discovering MDs

PROOF OFLEMMA [Tl

Let cover(\1) andcover(A2) denote the set of statistical tuples

that satisfy the thresholdl; and\. respectively, e.ggover(Az2) =
{s | s|X] E X2,s € D}. According to the minimum similarity
thresholds, for each attributé, we havels[A] < s[A]. In addi-
tion, sinceA; < Az, for any tuples € cover(Xz2), we also have
A [4] < X2[A] < s[A] on all the attributesd. In other words,
the set of statistical tuples covered by also satisfy the threshold
of A1, i.e.,cover(A2) C cover(A1). Referring to the definition of
support, we havesupport(¢1) > support(p2). [

PROOF OFLEMMA 2L

Since the firsk tuples haves;[Y] E Ay, according to the com-
putation of P(X,Y) andP(X), we have% =1.0,1<:¢<
k. Moreover, for the remaining — k tuples withs;[Y] # Ay,
the P(X,Y’) value will not change any more, i.el/(X,Y) =
P/(X,Y),k+ 1 < i < n. Meanwhile, the corresponding(X)

is non-decreasing, that i®/ (X) < P/ (X) < P/ (X) for any
.7
E+1 <4 < iz < n. Consequently, we have% >
PI (X,Y)
io
B D

PrRoOF oFLEMMA[3.
Let

a = P/(X,Y)
a = PIX,Y)-Pl(X,Y)

According to the computation of confldence we hafe= < and

Cr=cota LetZ=1- C"cnck = &5, thatis,
aB+B) ., B
o<14L
~ Blata) B

First, we haves = o+ 3% s[P(X E A, Y £ Ay)] > a
Note thato is the approximate support of thed ¢ with matching
similarity threshold pattert\; on the attributesX. According to
the minimum support constraint, for a val\d, we haveg > a >
ns. Thereby,

Z <1+ B

s

Moreover, according to the conditigh < min(ens, 1“7;”;] ), that
is B < ens, we have
Z<l+e

Second, similar tg@ > «, we also havey < § for the tuples
from k + 1 ton. Therefore,

aB+B) _ B+B

- ﬂ(a +8) g8

According to the minimum confidencg > Nes
B + /3 _ B~ 773)
B + = 71 Bne + B

Recall that3 > 7, and the confidence should be lower than or
equal tol, i.e.,n. < 1. Thus,

Z>1- PA—=mne) nln—nc
NsNe + ﬂ % +1
Since we have the conditioh < et
Z>1 1717—”6 —1—e
56 Ne + 1
Finally, based on the above two conditions, we conclude that
Cn _ Ck Ck
1 >7Z=1-—=—2>1-
te — Cn On — €
_ k
DLy

On the other hand, according to the computation of suppat, w
haveS* = o andS™ = a + a. Therefore,

sm—sk 1

ST 14+

QI

Recall that we have: > 7, anda < 8 < ens.

S”—Sk< [
Sn —1+% 1+¢

That is, the worst-case relative error is bounded ligr both the
confidence and support.[]

A.2 Proof of Discovering eMDs

PROOF OFTHEOREM[ZL.

To prove that the optimaleDd generation problem belongsnte,
we can show that a pattern tableAwf any size can be verified in
polynomial time, such that the support and confidengce). are
satisfied. Let be the number of statistical tuplesn and letw
be the number patterns ifi. According to the formuld{3]2) and
(82), we can compute the confidence and support of O(nw)
time.

To prove that the optimalneD generation problem isiP-hard,
we can show that the BARTITE GRAPH VERTEX COVERprob-
lem [8], which is NP-complete, is polynomial-time reducible to
the optimal 1D generation problem. /-partite graph is also
known as3-colorablegraph, where the vertices are partitioned into
3 groups and each edge has two vertices from two differertit par
tions. LetG be a 3-partite graph with 3 partitionisl, B, C') andm
edges among the partitions. L&t b;, ¢, denote the vertices from
partitionsA, B, C respectively. Th&ERTEX COVERproblem is to
find a minimum set of vertices that covers all theedges in the
graphG.

We construct a distributio® with attributesA, B, C, D, having
X = [A,B,C]andY = [D] for emD. Letdom(D) = {0,1}
anddy = [1,2). The values of each vertex is assigned from
the domain of the corresponding partition (attribute),.,eag €
dom(A). We assume that for any two vertices_1, a;, we have
ai—1 + 1 < a;. In other words, there is no continues values of
intervals. Leta, b, ¢ be the values having < a;,b < bj,c < ¢k
for all 4, j, k. The statistical tuples i are built as follows. For
each edgga;,b;), we construct two data tuple;, b;,c, 1,1}
and{a; + 1,b; + 1,¢,0,1)} in D, wherec € dom(C'). Similarly,
we also add tuplega, b;, ¢k, 1,1}, {a,b; + 1,¢, + 1,0,1} and
{ai,b,c, 1,1}, {a;i + 1,b,cr + 1,0, 1} for the edgegb;, cx) and
(as, cr) respectively, withu € dom(A) andb € dom(B). Finally,
we have totalm statistical tuples irD for them edges inG.

<e€



Letn, = m andn. = 1. A feasible solution always exists,
that is, the tablead™ with patterns{[a;,a; + 1), [b,d), [c,d)},
{[a7 d)7 [bj7 bj + 1)7 [C7 d)} and{[a7 d)7 [b7 d)7 [Ck7 Cr + 1)} for all
1,7, k, whered is the domain size of attributes and each pattern
tableau corresponds to a vertex. The pattern®’ircovers exact
the m data tuples ifD with D = 1. By the relaxation of inter-
vals in patterns, e.g., frofa;, a; + 1) to [as, a; + 2) or higher, the
tuple (a; + 1,b; + 1,¢,0, 1) will be included and the confidence
turns to be less than 1, which is not valid. Moreover, thexaian
of minimum threshold in a pattern, e.g., frdind) to [b — 1,d),
will still cover the samen statistical tuples, that is, equivalent to
the original pattern. On the other hand, a tighten matchimgas-
ity threshold such a@ + 1, d) will exclude some data tuples like
(as, b, cx, 1,1) and reduce the support to be lower thanwhich
is also invalid. The relaxation or tightening the patteunss to be
either invalid or equivalent, therefore, we can always amsthat
the feasible solutions consist of patterns7ih The vertex cover
problem transforms to find a minimum subset of patternsicas}
T C T’ that covers at least: statistical tuples (edges) . The
reduction can be conducted in polynomial time.

To conclude, the optimalned generation problem with mini-
mum tableau size isp-complete. [

PROOF OFTHEOREM[3.

The k-partial set coverproblem is: given a set of elements
E = {E\, FE,,...,E,}, a collectionS of subsets ofE, S =
{51, S2,...,Sm}, acostfunction of, and ak, to find a minimum
cost sub-collection of, say7, that covers at leadt elements of
E. Here, eact¥; denotes a statistical tupkeand eacht; denotes
a patternd in our problem. Thek corresponds to the minimum

supportns, and the cost function counts the number of subsets, i.e.,

|T|. According to thepartial coveringproblem [16], the greedy
algorithm has dn n + 1 approximation.

The arg max operation can be implemented in a constant time
by amortizing the support values into a constant domaine it
the for statement in line 2 of Algorithri]5 adds a specifito a
certaind exactly once, i.e(’)(ncz), and thewhile statement in line
3 of Algorithm[@ removes a specificfrom a certainy at most once.
Thereby, thesA complexity is alsad(nc?). O

A.3 Proof of Pruning for eMDs

PROOF OFLEMMA[4].

Let s be any tuple incover(d2) with s[X] F d2[X]. For any
attribute A, let 62[A] = [g,h) andd:1[A] = [v,u). According to
s[A] E 62]A] anddy <2, we havey < g < s[A] < g+h < v+,
that is,s[A] E 61[A] for each attributed as well. In other words,
all the statistical tuplesin cover(d2) are also contained in thie's,
i.e., cover(d2) C cover(d1). Recalling the support definition, we
havesupport(d1) > support(d2).

Moreover, sinceover(d2) C cover(d1), we havesupport(d1) =
support(d2) if and only if cover(d2) = cover(d1). Thatis, the pat-
ternsd; andd. cover exact the same statistical tuples. According
to the greedy algorithm, there is no difference between #teem
01 andd, i.e., equivalent. ]

PROOF OFTHEOREMI.
Let

tup(d) {s | s[X]F &}
0[A1] X -+ X §[A] X dom(D \ X)
define all the possible statistical tuples (may not appeatinent
D) that can be covered by Since, the set ofover(¢) for pattern

d records all the statistical tuplese D thats[X] F §, we have
cover(9) C tup(9).

We first prove the pruning of;. Letd be the pattern with the
interval [, a+u) on attribute4, i.e.,6[A] = [«, a+u). Moreover,
foru = 2,3,..., letd; andd. have the same interval withon
all the attributes exceph; [A] = [o, o + 1) andd2[4] = [o +
1, + ), havingd < 1 andd < d2. According to the definition
of §[A], we haved[A] = §1[A] U d2[A] andd1[A] N §2[A] = 0.
Sinced; andd, share the same intervals withon all the other
attributes, we also hawep(d) = tup(d:) Utup(d2) andtup(di) N
tup(d2) = (0. Therefore, for theover(d) C tup(d), we can split
it into cover(d) = cover(d1) U cover(d2) as well. Sincex does
not appear irD, we havecover(d1) = 0, i.e.,u = 1 of I1. In
addition, we also haveover(§) = @ U cover(d2) = cover(d2)
andé < d>. According to Lemmdl4, the pattedmwith interval
[a, o + u) on A is equivalent tod; with [« + 1, + u) having
support(d) = support(d2). In other words, the patternswith
interval (o,  + ) are duplicates and can be pruned. Thys=
{[a, o +u) | uw=1,2,...} can be pruned.

We then prove the pruning aof,. Similarly, for a patternd
with the intervallo — u + 1, a + 1) on attributeA, let 6;[A] =
[a—u+1, ) anddz[A] = [a, a+1). We can also haveover(§) =
cover(d1) U cover(d2). Recall thatover(d2) = () due to the inter-
val [o, « + 1) on attributeA of §s, i.e.,u = 1 of I,. Moreover,
according to Lemmial4, the pattefmith interval[c —u+1, a+1)
is equivalent tay; with [« — u + 1, ), foru = 2,3,..., and can
be pruned as duplicates. Consequenty= {[a —u+1,a+1) |
uw=1,2,...} can be pruned. I

PROOF OFLEMMA B

We first prove no updates ofis. Let A be the attribute hav-
ing [0,v) < §'[A] in Bs[A]. Since[0,v) = {0,1,...,v — 1} and
[v,u) = {v,v+1,...,0v 4+ u— 1}, we havel0,v) N [v,u) = 0,
that is,8’[A] N §[A] = 0 as well. Referring to the product oper-
ator in thetup(4) definition, we can infetup(8’) N tup(d) = 0.
Also, for cover sets of the patterisver(d) C tup(d), the inter-
section iscover(§") N cover(§) = 0. In other words, the operation
cover(8') = cover(8') \ cover(4) takes no effect on pattet. The
patterns inC's are not updated.

Similarly, we havdv + u,d) = {v + uw,v+u+1,...,d — 1}
for Bs[A]. According to[v + u, d) N [v,u) = @, we can also infer
cover(d”") Ncover(d) = O for 8’ € Cs. Thus, the patterns i@s are
not updated. [

PROOF OFTHEOREM[].
For a patterd’ € C,, the intervald’[A] of any attributeA can
either come fromB[A], Bs[A] or B4[A]. Let

Cy = {6 | 3A,8'[A] € Ba[A], 8 € C,}
C3 = {5/ | E|A,5/[A] € B:;[A],(S/ S Cp}
Cu = {0 | VA, 8'[A] € B4[A], 8 € C,}

havingC,, =CoUC3UCy,.

We first prove the pruning of’ € C with §'[A] = [g,h) €
B>[A]. Letd; andd- have the same intervals witf on all the
attributes excepé,[A] = [g,v) andd2[A] = [v, g + h), having
8’ < &1, 0’ < ;. According to the definition of’[A], we have
8'[A] = 61[A]Ud2[A] anddy [A]Nd2[A] = 0. Sinced; andd; share
the same intervals with’ on all the other attributes, we also have
tup(8’) = tup(d1) U tup(d2) andtup(d1) N tup(d2) = O. There-
fore, for thecover(6") C tup(d’), we can split it intacover(§') =
cover(d1) U cover(dz2) as well. Sincez € C)p, we can pruné-
with cover(d2) = (). Thereby, according to Lemna 4, the pattern
§’ is equivalent tay; with cover(d") = cover(d) after the current



elimination step. Moreover, we haj@ v) <d:1[A] = [g,v), thatis,
81[A] € Bs[A] andé; € Cs. According to Lemmé&ls§: already
exists inC. without updates in the current iteration. Therefore, the
patternd’ can be pruned as duplicates after the current elimination
step inCe.

Next, we prove the pruning of € Cs with §'[A] = [g,h) €
Bs[A]. Let 1 andd. have the same intervals with on all the
attributes excepti [A] = [g,v + u) andd2[A] = [v + u, g + h).
Similarly, we can also split the cover set &f into cover(§’) =
cover(d1)Ucover(d2). Sinced, € C, can be pruned withover(d1) =
(0, 8" is equivalent taj>. In addition,é> € Cs already exists in cur-
rent C. without update. Therefore, the patteih € C3 can be
pruned as duplicates as well.

Finally, we prove the pruning of’ € C,. For any attribute
A, according to the definition oB4[A], we haved[A] < §'[A],
that is,d < ¢’ for eachd’ € C4. Referring to Lemmé&l4, we have
cover(8’) C cover(d). After the elimination stegover(§’) =
cover(d’) \ cover(d), cover(d’) = () andd’ can be pruned. [

B. TABLE
Table 6: Reference of cosine similarity of names il€ontacts
[ No. | namel | name2 | sim(namel, name2)

1 Claire Green| Claire Gree 0.95
2 | Claire Greem| Claire Gree 0.95
3 Claire Green | Claire Greem 0.90
4 J. Smith W. J. Smith 0.85
5 Jason Smith J. Smith 0.60
6 Jason Smith| W. J. Smith 0.50
7 Claire Green| W.J. Smith 0

15 | Claire Gree | Jason Smith 0
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