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ABSTRACT
The concept ofmatching dependencies(MDs) is recently proposed
for specifying matching rules for object identification. Similar to
the functional dependencies (with conditions),MDs can also be ap-
plied to various data quality applications such as violation detec-
tion. In this paper, we first formally define the statistical measures
to evaluateMDs in a given database instance. Then, we study the
problem of discoveringMDs with certainsimilarity thresholdset-
tings on attributes. Moreover, sinceMDs might not be able to ex-
press many matching rules, we propose theextended matching de-
pendencies(eMDs) to capture the dependencies through a set of pat-
terns with matchingsimilarity intervalsin a pattern tableau. Dur-
ing the discovery of eMDs, it is naturally desirable to find the most
concise pattern tableau that can still satisfy the user requirements.
Unfortunately, as we proved, the minimal pattern tableau problem
is NP-complete. Therefore, we study the greedy algorithm to dis-
cover near optimal eMDs and propose pruning techniques to fur-
ther improve the discovery performance. Finally, our experimental
evaluation demonstrates the efficiency of the proposed methods.

1. INTRODUCTION
Recently, data quality has become a hot topic in database com-

munity due to huge amount of “dirty” data originated from differ-
ent resources (see [2] for a survey). These data are often “dirty”,
including inconsistencies, conflicts, and errors, due to various er-
roneous introduced by human and machines. In addition to cost of
dealing the huge volume of data, manually detecting and removing
“dirty” data is definitely out of practice because human proposed
cleaning methods may introduce inconsistencies again. Therefore,
data dependencies, which have been widely used in the relational
database design to set up the integrity constraints, have been revis-
ited and revised to capture wider inconsistencies in the data. For
example, consider aContacts relation with the schema:

Contacts(SIN,Name,CC,ZIP,City, Street)

The following functional dependencyfd specifies a constraint that
for any two tuples inContacts, if they have the sameZIP code,
then these two tuples have the sameCity as well. Recently,func-
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tional dependencies(FDs) have been extended toconditional func-
tional dependencies(CFDs) [4], i.e., FDs with conditions, which
have more expressive power. The basic idea of these extensions is
making theFDs, originally hold for the whole table, valid only for
a set of tuples. For example, the followingcfd specifies that only
in the condition of country codeCC = 44, if two tuples have the
sameZIP, then they must have sameStreet as well.

fd : [ZIP] → [City]

cfd : [ZIP,CC = 44] → [Street]

These dependency constraints can be used to detect data viola-
tions [10]. For instance, we can use the abovefd to detect violations
in an instance ofContacts in Table 1. For the tuplest5 andt6 with
the same values ofZIP = 021, they have different values ofCity,
which are then detected as violations of the abovefd.

Although functional dependencies (and their extension with con-
ditions) are very useful in determining data inconsistencyand re-
pairing the “dirty” data [10], they check the specified attribute value
agreement based onexact match. For example, with the abovecfd,
tuples that haveCC = 44 and the same value onZIP attribute will
be checked to see whether they have exactly matched values on
Street. Obviously, this strict exact match constraint limits usage of
FDs andCFDs, since real-world information often have various rep-
resentation formats. For example, the tuplest2 andt3 in Contacts

table will be detected as “violations” of thecfd, since they have
“different” Street values but agree onZIP andCC = 44. However,
“No.2, Central Rd.” and “#2, Central Rd.” are exactly the “same”
street in the real-world with different representation formats.

To make dependencies adapt to this real-world scenario, i.e.,
same information have different representation formats, Fan [12]
proposed a new concept of data dependencies, calledmatching de-
pendencies(MDs). Informally, a matching dependency targets on
the fuzzy values like text attributes and defines the dependency be-
tween two set of attributes according to their matching quality mea-
sured by some matching operators (see [3] for a survey), suchas
Euclidean distanceandcosine similarity. Again, inContacts ex-
ample, we may have aMD as

md1 : ([Street] → [City], < 0.8, 0.7 >)

which states that for any two tuples fromContacts, if they agree
on attributeStreet (the matching similarity, e.g.cosine similarity,
on the attributeStreet is greater than a threshold0.8), then the
correspondingCity attribute should match as well (i.e. similarity
onCity is greater than the corresponding threshold0.7).

Similar to theFDs related techniques,MDs can be applied in
many tasks as well. For example, indata cleaning, we can also
useMDs to detect the inconsistent data, that is, data do not follow
the constraint (rule) specified byMDs. For example, base on the
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Table 1: Example ofContacts relation R
SIN Name CC ZIP City Street
584 Claire Green 44 606 Chicago No.2, Central Rd. t1
584 Claire Greem 44 606 Chicago No.2, Central Rd. t2
584 Claire Gree 44 606 Chicago #2, Central Rd. t3
265 Jason Smith 01 021 Boston No.3, Central Rd. t4
265 J. Smith 01 021 Boston #3, Central Rd. t5
939 W. J. Smith 01 021 Chicago #3, Central Rd. t6

abovemd1 example, we search the pairs of tuples whose similar-
ities onStreet are greater than0.8 while theCity similarities are
lower than0.7. In addition to locating the inconsistent data,object
identification, another important work for data cleaning, can also
employMDs as matching rules. For instance, according to

md2 : ([Name,Street] → [SIN], < 0.9, 0.9, 1.0 >)

if two tuples have high similarities onName andStreet (both sim-
ilarities are greater than 0.9), then these two tuples probably denote
the same person in the real world, i.e., having the sameSIN.

Though the concept of matching dependencies is given in [12],
the authors did not discuss how to discover usefulMDs. In fact,
given a database instance, there are enormousMDs that can be dis-
covered if we set different similarity thresholds on attributes. Note
that if all thresholds are set to1.0, MDs have the same semantics
as traditionalFDs, in other words, traditionalFDs are special cases
of MDs. For instance, the abovefd can be represented by aMD

([ZIP] → [City], < 1.0, 1.0 >). Clearly, not all the settings of
thresholds forMDs are useful.

Therefore, the first question that we have to address is how to
measure the “usefulness” of a detectedMD. In this work, we adopt
the widely used measuresconfidenceandsupport. Specifically, we
consider aMD of a relationR, denoted byϕ(X → Y, λ), whereX
andY are the attribute sets ofR, λ is a pattern specifying different
similarity thresholds on each attribute inX andY . Let λX and
λY be the projections of thresholds in patternλ on the attributes
X andY respectively. Thesupport(ϕ) measures theprobability
that the matching similarities of any pair of tuplest1 and t2 on
attributesX andY satisfy the corresponding thresholds in pattern
λ. Theconfidence(ϕ) is theconditional probabilityof t1 and t2
with matching similarity onY satisfyingλY given the condition
that t1 andt2 are similar on attributesX (satisfyingλX ). Clearly,
in real applications, such as object identification, users often seek
useful matching rules with high support and confidence to identify
the duplicate objects. Therefore, in this work, we would like to
discover proper settings of matching similarity thresholds for MDs,
which can satisfy users’ requirements (i.e. users specifiedsupport
and confidence).

During the discovery ofMDs, we also find that the expressive
power ofMDs by setting up single similarity thresholds is not enough
to capture many useful matching rules. For example, we con-
sider the abovemd2 again, for the object identification problem
according toName andStreet attributes. The matching similar-
ity of Jason Smith andJ.Smith is 0.6, which is lower than that of
J.Smith andW.J.Smith (i.e. 0.85). In fact, however,Jason Smith

andJ.Smith (low similarity) denote the same person, whileJ.Smith

andW.J.Smith (high similarity) are not (i.e., having differentSIN).
Therefore, we cannot address all the mentioned matching rules by
setting a single matching similarity threshold, such asλ[Name] =
0.6 or 0.85.

To address this limited expressive issue, in this work, we intro-
duceextended matching dependencies(eMDs), which specifies the
dependencies by matching similarity intervals, rather than single
similarity thresholds inMDs. For example, the interval[0.6, 0.8)

describes the constraint of matching similarity between0.6 and0.8.
Consequently, the followingemd1 specifies the dependency that for
any two tuples, if their matching similarities are between[0.6, 0.8)
on attributeName, and between[0.9, 1.0] on attributeStreet, then
they must have the sameSIN.

emd1 : ([Name,Street] → [SIN], < [0.6, 0.8), [0.9, 1.0], 1.0 >)

emd2 : ([Name,Street] → [SIN], < [0.9, 1.0], [0.9, 1.0], 1.0 >)

More than one matching similarity intervals may be valid foran
attribute. For instance,emd2 specifies another interval[0.9, 1.0] on
Name for the dependencies on the same attributes. We use a tableau
to represent the patterns of intervals in eMDs, instead of a single
threshold pattern inMDs. An eMD is denoted asψ(X → Y, T ),
whereT is a pattern tabular which specifies a set of interval patterns
onX andY . For the aboveName, Street, andSIN dependency,
we can have an eMD: ([Name,Street] → [SIN], T ), whereT is:

Name Street SIN
[0.6, 0.8) [0.9, 1.0] 1.0
[0.9, 1.0] [0.9, 1.0] 1.0

The same asMDs, eMDs can also be applied in violation detec-
tion. Those pairs of tuples are detected as violations of an eMD

where some of the interval patterns of the eMD are violated. Thus,
the patterns of intervals in the tableau are frequently evaluated dur-
ing the violation detection. However, two patterns in an arbitrary
pattern tableau may cover the same semantics of intervals, such as
[0.6, 0.7) and[0.6, 0.8), i.e., redundancy. Thus, the more concise
the pattern tableau is, the better the detection efficiency is. This mo-
tivation introduces an interesting optimization problem,to discover
concise eMDs with the minimum number of interval patterns.

Contributions. In this paper, given a relation instance, we study
the issues of discovering the matching dependencies. Our main
contributions are summarized as follows:

First, we propose the formal definition ofextended matching de-
pendencies(in Section 3). The corresponding confidence and sup-
port evaluations of eMDs are developed as well. To the best of our
knowledge, this is the first paper to propose and evaluate eMDs.

Second, we study the discovery ofMDs (in Section 4). TheMDs
discovery problem is to find settings of matching similaritythresh-
olds on the attributes forMDs that can satisfy the required confi-
dence and support. We first present an exact algorithm and study
pruning strategies by the minimum requirements of support and
confidence. In addition, to avoid the traversal of all the data, we
propose an approximate solution with bounded error.

Third, we study the discovery of eMDs (in Section 5). As we
proved, the problem of discovering optimal eMDs with the mini-
mum number of interval patterns isNP-complete. Therefore, we
introduce greedy algorithm to find approximate optimal solutions
with an error bound on tableau size. Moreover, to improve theef-
ficiency, pruning strategies are proposed to filter out unqualified
candidate patterns, with a proved bound of the pruning rate.

Finally, we report an extensive experimental evaluation (in Sec-
tion 6). The proposed algorithms on discoveringMDs and eMDs
are studied. Our pruning strategies can significantly improve the
efficiency in discoveringMDs and eMDs.

All the proofs can be found in the full version [15] of this paper.
Table 2 lists the frequently used notations in this paper.

2. RELATED WORK
Recently, traditional dependencies, such as functional dependen-

cies (FDs) and inclusion dependencies (INDs) for the schema de-
sign [1], are revisited for new applications like improvingthe qual-
ity of data. The conditional functional dependencies (CFDs) are first



Table 2: Notations
Symbol Description

ϕ Matching dependency,MD

ψ Extended matching dependency, eMD

λ Threshold pattern, of matching similarity thresholds

δ Interval pattern, of matching similarity intervals

T Tableau, of interval patterns

Ct Candidate set, of threshold patterns

Ce Candidate set, of interval patterns

ηs Minimum requirement, of support

ηc Minimum requirement, of confidence

R Original relation, ofN data tuplest

D Statistical distribution, ofn statistical tupless

proposed in [4] for data cleaning. Cong et al. [10] study the detect-
ing and repairing methods of violation byCFDs. Fan et al. [14]
investigate the propagation ofCFDs for data integration. Bravo et
al. [5] propose an extension ofCFDs by employing disjunction and
negation. Golab et al. [17] define a range tableau forCFDs, where
each value is a range similar to the concept of matching similarity
intervals in our study. In addition, Bravo et al. [6] proposecondi-
tional inclusion dependency (CINDs), which are useful not only in
data cleaning, but are also in contextual schema matching.

Inspired by the above interesting applications, the discovery of
CFDs is studied as well. The confidence and support measures are
widely used in evaluatingCFDs [17, 7, 13]. In addition, Chiang and
Miller [7] also study some other measures such as convictionand
χ2-test. When a candidateX → Y is suggested together with min-
imum support and confidence, Golab et al. [17] study the discovery
of optimal CFDs with the minimum pattern tableau size. A con-
cise set of patterns are naturally desirable which may have lower
cost during the applications such as violation detection byCFDs.
Our optimal eMD problem is based on the same principle. On the
other hand, Chiang and Miller [7] exploreCFDs by considering all
the possible dependency candidates whenX → Y is not specified.
In [13], Fan et al. also study the case when the embeddedFDs are
not given, and propose three algorithms for different scenarios.

The concept of matching dependencies (MDs) is first proposed
in [12] for specifying matching rules for the object identification
(see [11] for a survey). TheMDs can be regarded as a generaliza-
tion of FDs, which are based on identical values having matching
similarity equal to1.0 exactly. Thus,FDs can be represented by the
syntax ofMDs as well. For any two tuples, if theirX values are
identical (with similarity≥ 1.0), then aFD (X → Y ) requires that
theirY values are identical too, i.e., aMD (X → Y,< 1.0, 1.0 >).
Fan [12] gives the concept of matching dependencies withoutin-
troducing how to evaluate and discoverMDs.

3. STATISTICAL EVALUATION
In this section, we formally introduce the definitions ofMDs and

eMDs, respectively. Then, we develop statistical analysis forevalu-
atingMDs and eMDs over a given database instance.

3.1 Matching Dependencies
Traditional functional dependenciesFDs and their extensions rely

on the exact matching operator= to identify dependency relation-
ships. However, in the real world application, it is not possible to
use exact matching operator= to identify matching over fuzzy data
values such as text values. For instance,Jason Smith andJ.Smith

of attributeName may refer to the same real world entity. There-

fore, instead ofFDs on identical values, thematching dependencies
MDs [12] are proposed based on the matching quality. For text val-
ues, we can adopt the similarity matching operators, denoted by≈,
such asedit distance[21], cosine similaritywith word tokens [9] or
q-grams[18].

Consider a relationR(A1, . . . , AM ) withM attributes. Follow-
ing similar syntax ofFDs, we defineMDs as following:1

DEFINITION 1. Amatching dependency (MD)ϕ is a pair(X →
Y, λ), whereX ⊆ R, Y ⊆ R, and λ is a threshold patternof
matching similarity thresholds on attributes inX ∪ Y , e.g.,λ[A]
denotes the matching similarity threshold on attributeA.

A MD ϕ specifies a constraint on the set of attributesX to Y .
Specifically, the constraint states that, for any two tuplest1 and
t2 in a relation instancer of R, if

V

Ai∈X t1[Ai] ≈λ[Ai] t2[Ai],
then

V

Aj∈Y t1[Aj ] ≈λ[Aj ] t2[Aj ], whereλ[Ai] andλ[Aj ] are the
matching similarity thresholdson the attributes ofAi andAj re-
spectively. In the above constraint, for each attributeAi ∈ X ∪ Y ,
the similarity matching operator≈ indicatestrue, if the similar-
ity betweent1[Ai] andt2[Ai] satisfies the corresponding threshold
λ[Ai]. For example, aMD ϕ([Street] → [City], < 0.8, 0.7 >) in
theContacts relation denotes that if two tuples has similarStreet

(with matching similarity greater than0.8) then theirCity values
are probably similar as well (with similarity at least0.7).

Like FDs andCFDs [17, 7], we adoptsupportand confidence
measures to evaluate the matching dependencies. Accordingto the
above constraint ofMDs, we need to consider the matching quality
(e.g., cosine similarity or edit distance) of any pair of tuplest1 and
t2 for R. Therefore, we compute a statistical distribution (denoted
by D) of the quality of pair-wised tuple matching forR. The sta-
tistical distribution has a schemaD(A1, . . . , AM , P ), where each
attributeAi in D corresponds to the matching quality values on the
attributeAi of R, andP is the statistical value. Lets be a statis-
tical tuple inD. The statistics[P ] denotes the probability that any
two tuplest1 andt2 of R have the matching quality valuess[Ai],
∀Ai ∈ R. With a pair-wised evaluation of matching quality of
all theN tuples forR, we can easily computeP by count(s)

N∗(N−1)/2
,

wherecount(s) records the pairs of tuples having matching quality
s. Different matching operators have various spaces of matching
values, such as cosine similarity in[0.0, 1.0] while edit distance
having edit operations1, 2, . . . . In order to evaluate in a consis-
tent environment, we map these matching quality valuess[A] to
a unified space, say[0, d − 1], which is represented bydom(A)
with d elements. Table 3 shows an example of the statistical dis-
tribution D computed fromContacts in Table 1 by mapping2 the
cosine similarities in[0.0, 1.0] to elements in[0, d− 1] of dom(A)
with d = 10. According todom(A) in our example, the first tu-
ple (1, 0, 3, . . . , 0.065) denotes that there are about6.5% match-
ing pairs in all pair-wised tuple matching, whose similarities are
1, 0, 3, . . . on the attributeA1, A2, A3, . . . respectively.

Table 3: Example of statistical distribution D
A1 A2 A3 A4 A5 A6 P
1 0 3 5 8 4 0.065 s1
7 4 0 0 4 1 0.043 s2
0 4 8 1 6 2 0.124 s3
...

...
...

...
...

...
...

...

1The MDs syntax is described with two relation schemaR1, R2

for object identification in [12], which can also be represented in a
single relation schemaR as theFDs.
2E.g., cosine similarity values timesd− 1



Then, we can measure the support and confidence ofMDs, with
various attributesX andY , based on the statistical distributionD.
Let λX andλY be the projections of matching similarity threshold
patternλ on the attributes ofX andY respectively in aMD ϕ,
which are also specified in terms of elements indom(A) of each
A ∈ X ∪ Y . LetZ be the set of attributes not specified byϕ, i.e.,
R\ (X ∪Y ). The definitions of support and confidence for theMD

ϕ(X → Y, λ) are presented as follows:

support(ϕ) = P (X � λX , Y � λY )

=
X

Z

P (X � λX , Y � λY , Z)

confidence(ϕ) = P (X � λX | Y � λY )

=

P

Z P (X � λX , Y � λY , Z)
P

Y,Z P (X � λX , Y, Z)

where� denotes thesatisfiability relationship, i.e.,X � λX de-
notes that the similarity values on all attributes inX satisfy the
corresponding thresholds listed inλX . For example, we say that a
statistical tuples in D satisfiesλX , i.e.,s[X] � λX , if s has sim-
ilarity values higher than the corresponding minimum threshold,
i.e.,s[A] ≥ λ[A], for each attributeA inX.

Consider any two tuplest1 andt2 from the original data relation
R, thesupport(ϕ) estimates the probability that the matching sim-
ilarities of t1 andt2 on attributesX andY satisfy the thresholds
specified byλX andλY , respectively. Similarly, theconfidence(ϕ)
computes the conditional probability that the matching similarities
betweent1 andt2 onY satisfy the thresholds specified byλY (i.e.,
Y � λY ) given the condition thatt1 andt2 are similar on attributes
X (i.e.,X � λX ). Thus, highconfidence(ϕ) means few instances
of matching pairs that are similar on attributesX (i.e.,X � λX )
but not similar on attributesY (i.e.,Y 2 λY ), where2 denotes the
unsatisfiability relationship.

3.2 Extended Matching Dependencies
Given a database instance, the expressive power ofMDs may not

strong enough to capture the minimum requirementηs andηc of
support and confidence respectively. For example, as theContacts

example shown in Table 1,Claire Green have high similarities (al-
ways greater than0.9) to the name of the same person with typo
such asClaire Greem. We have3 pairs of tuples to support aMD

ϕ([Name] → [SIN], < 0.9, 1.0 >) with 100% confidence accord-
ing to tuples inContacts table. On the other hand, we can ob-
serve that the matching similarity ofJason Smith and its abbrevi-
ation formatJ.Smith is low (say0.6), but these two tuples denote
the same person in the real world with a matchedSIN. However,
J.Smith andW.J.Smith are two persons with differentSIN, their
similarity equals to0.85 which is higher than the above0.6. As-
sume that users require that aMD havingηc = 1.0 andηs = 4

15
,

where15 is the total number of matching pairs of original6 tu-
ples according to the example in Table 1. If the matching similar-
ity threshold on attributeName is high (≥ 0.9), then the support
is 3

15
which is lower thanηs. On the other hand, simply lower-

ing down the similarity threshold onName attribute from0.9 to
0.6 will increase the support, but the corresponding confidenceis
decreased to4

5
< ηc due to the counting of false case (J.Smith

andW.J.Smith). In other words, we might not be able to capture
this dependency with desired support and confidence using single
similarity thresholds inMDs. Thus, for the above example case,
instead of using single similarity threshold likeName ≥ 0.6, we
introduce the intervals of matching similarities on attributeName,
e.g.,Name � {[0.6, 0.8), [0.9, 1.0]}, to exclude the false cases.
Therefore, by using more expressive similarity intervals,we can

find [Name] → [SIN] with required support and confidence.
Formally, we define eMDs over a relation instance ofR by:

DEFINITION 2. Anextended matching dependency (eMD) ψ is
a pair (X → Y, T ), whereX → Y is the same as a standardMD;
andT is a tableau of interval patterns with attributes ofX ∪ Y .
LetA be an attribute inT and letδ be ainterval patternin T . The
value ofδ[A] is a matching similarity interval, denoted by[v, u),
specifying a set of matching similarity values fromv to u − 1 in
dom(A), wherev, u ∈ dom(A), 1 ≤ v < u ≤ d, andd is the size
of dom(A).

Table 4 shows an example of interval pattern tableauT for an
eMD ([A2, A5, A6] → [A1, A4], T ). The semantics of an interval
patternδ is similar to the similarity threshold pattern inMDs. For
example, we consider the intervals specified by the first pattern in
Table 4. For any pair of data tuples from the original relation R, if
their matching similarities are in[8, 10) of attributeA2, in [1, 5) of
attributeA5, and[7, 8) of attributeA6, then they should match on
A1 andA4 with similarities in[8, 10) and[9, 10), respectively.

Table 4: Example pattern tableau for eMD
A2 A5 A6 A1 A4

[8, 10) [1, 5) [7, 8) [8, 10) [9, 10)
[7, 8) [5, 6) [6, 8) [8, 10) [9, 10)
[3, 6) [9, 10) [8, 9) [7, 9) [8, 9)

When we haveu = d, the semantics of the matching similarity
interval δ[A] = [v, u) in a pattern tableauT is exactly the same
as the matching similarity thresholdλ[A] = v in the standardMDs.
That is, both of them denote the set ofd−v values indom(A) from
v to (d − 1). Therefore, as shown in Table 5, a standardMD, e.g.,
([A5, A6] → [A1, A2], < 6, 8, 9, 8 >) can also be represented by
an eMD with pattern tableau.

Table 5: Example pattern tableau for representingMD
A5 A6 A1 A2

[6, 10) [8, 10) [9, 10) [8, 10)

Next, we study the evaluation of eMDs with support and con-
fidence based on the statistical distributionD as well. Given an
eMD ψ(X → Y, T ) and a statistical distributionD, let s be any
statistical tuple inD andδ be any interval pattern inT . Thesat-
isfiability relationship� is defined as follows. LetδX andδY be
the projections of similarity interval patternδ on attributesX and
Y respectively. For all attributes∀A in X, if s[A] = a is in the
interval specified byδ[A] = [v, u), e.g.,2 � [1, 3), we say that the
similarity valuess[X] of s on attributesX cansatisfythe similar-
ity intervals specified byδX , denoted ass[X] � δX . We can also
develop the same relationship onδY .

Similar to the semantics of confidence for aMD, the confidence
of each patternδ in the eMD ψ can be computed by

confidence(δ) = P (Y � δY | X � δX)

Often, users may expect that all the patterns in the eMD pattern
tableau can be utilized with high confidence. Thus, we define the
minimum pattern confidence as the eMD confidence.

confidence(ψ) = min
δ∈T

confidence(δ)

The support is defined as the total proportion of matching pairs that
satisfy the intervals of patterns in the tableauT of eMD.

support(ψ) = P ([X,Y ] � T )

where[X,Y ] � T denotes that the similarity values onX andY
can satisfy at least one patternδ in T . Both these two probabilities
can be calculated based on the statistical distributionD.



4. DISCOVERING MDs
We now study the determination of matching similarity thresh-

old pattern forMDs based on the statistical distribution, which is a
new problem different fromFDs. In fact, once theX → Y is given
for a FD, it already implies the similarity threshold to be1.0, that
is, (X → Y,< 1.0, 1.0 >) if it is represented by theMD syntax.
Unlike FDs, we have various settings of matching similarity thresh-
olds forMDs. Therefore, in this section, we discuss how to find the
right similarity thresholds in order to discover theMDs satisfying
the required support and confidence.

4.1 Threshold Determination Problem
In order to discover aMD ϕ with the minimum requirements of

supportηs and confidenceηc, the following preliminary should be
given first:(I) what isY ? and(II) what is matching quality require-
mentλY . These two preliminary questions are usually addressed
by specific applications. For example, if we would like to usedis-
coveredMDs to guide objet identification in theContacts table,
thenY = SIN. The thresholdsλY is often set to a high similarity
threshold by applications to ensure well match onY attributes. For
example,λY is set to1.0 for Y = SIN in the object identification
application. Note that without the preliminaryλY , the discovered
MDs will be meaningless. For example, aMD with λY = 0 can
always satisfy any requirement ofηc, ηs. Since all the statistical
tuples can satisfy the thresholdsλY = 0, the corresponding sup-
port and confidence will always be equal to1.0.

DEFINITION 3. The threshold determination problem ofMDs
is: given the minimum requirements of support and confidence
ηs, ηc and the matching similarity threshold patternλY , to find
all the MDsϕ(X → Y, λ) with threshold patternλX on attributes
X having confidence(ϕ) ≥ ηc and support(ϕ) ≥ ηs, if exist;
otherwise to returninfeasible.

The attributesX can be initially assigned byR \ Y if no sug-
gestion is provided by specific applications, since our discovery
process can automatically remove those attributes that arenot re-
quired inX for a MD ϕ. Specifically, when a possible discovered
thresholdλ[A] on attributeA is 0 ∈ dom(A), it means that any
matching similarity value of the attributeA ∈ X can satisfy the
threshold0 and will not affect theMD ϕ at all. In other words, the
attributeA can be removed fromX of theMD ϕ.

4.2 Exact Algorithm
Now, we present an algorithm to compute the matching similar-

ity thresholds on attributesX for MDs having support and confi-
dence greater thanηs andηc, respectively. LetA1, . . . , AmX

be
themX attributes inX. For simplicity, we useλ to denote the
threshold pattern projectλX with λ[A1], . . . , λ[AmX

] on all the
mX attributes ofX. Since, each thresholdλ[A] on attributeA is
a value fromdom(A), i.e.,λ[A] ∈ dom(A), we can investigate all
the possible candidates of threshold patternλ. Let Ct be the set of
all the possible threshold pattern candidates, having

Ct = dom(A1)× · · · × dom(AmX
) = dom(X).

The total number of candidates isc = |Ct| = |dom(X)| = dm,
whered is the size ofdom(A).

Let n be the number of statistical tuples in the input statistical
distributionD. We consider two statistical valuesP j

i (X,Y ) and
P j
i (X), which recordP (X � λX , Y � λY ) andP (X � λX)

respectively for the candidateλj ∈ Ct based on the information of
the firsti tuples inD, initially havingP j

0 (X,Y ) = P j
0 (X) = 0.

The recursion is defined as follows, withi increasing from1 to n

andj increasing from1 to c.

P j
i (X,Y ) =

(

P j
i−1(X,Y ) + si[P ], if si[X] � λj , si[Y ] � λY

P j
i−1(X,Y ), otherwise

P j
i (X) =

(

P j
i−1(X) + si[P ], if si[X] � λj

P j
i−1(X), otherwise

Finally, thoseλj can be returned ifsupport = P j
n ≥ ηs and

confidence =
P j
n(X,Y )

P
j
n(X)

≥ ηc.

Algorithm 1 Exact algorithmEA(D, Ct)

1: for each candidateλj ∈ Ct, j : 1 → c do
2: P j

0 (X,Y ) = P j
0 (X) = 0

3: for each statistical tuplessi ∈ D, i : 1 → n do
4: computeP j

i (X,Y ), P j
i (X)

5: return λj with confidence and support satisfyingηc, ηs

We can implement the exact algorithm (namelyEA) by consider-
ing all the statistical tuplessi in D with i from 1 to n, whose time
complexity isO(nc).

4.3 Pruning Strategies
Since the original exact algorithm needs to traverse all then sta-

tistical tuples inD andc candidate threshold patterns inCt, which
is very costly. In fact, with the givenηs andηc, we can investigate
the relationship between similarity thresholds and avoid checking
all candidate threshold patterns inCt and all statistical tuples inD.
Therefore, in the following two subsections, we present pruning
techniques based on the given support and confidence, respectively.

Pruning by support. We first study the relationships among dif-
ferent threshold patterns, based on which we then propose rules to
filter out candidates that have supports lower thanηs.

DEFINITION 4. Given two similarity threshold patternsλ1 and
λ2, if λ1[A] ≤ λ2[A] holds for all the attributes,∀A ∈ X, thenλ1

dominatesλ2, denoted asλ1 ⋖ λ2.

Based on thedominatedefinition, the following Lemma describes
the relationships of supports between similarity threshold patterns.

LEMMA 1. Given twoMDs, ϕ1 = (X → Y, λ1) and ϕ2 =
(X → Y, λ2) over the same relation instance ofR, if λ1 dominates
λ2, λ1 ⋖ λ2, then we havesupport(ϕ1) ≥ support(ϕ2).

According to Lemma 1, given a candidate similarity threshold
patternλj having support lower than the user specified requirement
ηs, i.e.,P j

n(X,Y ) < ηs, all the candidates that are dominated by
λj should have support lower thanηs and can be safely pruned
without computing their associated support and confidence.

In order to maximize the pruning, we can heuristically select an
ordering of candidates inCt that for anyj1 < j2 havingλj1 ⋖ λj2 .
That is, we always first process the candidates that dominateothers.
In fact, we can use a DAG (directed acyclic graph),G, to represent
candidate similarity patterns as vertices and dominant relationships
among the similarity patterns as edges. Thus, the dominant order
of candidate patterns can be obtained by aBFS traversal uponG.

Pruning by confidence. Other than pruning by support, we can
also utilize the given confidence requirement to avoid further ex-
amining tuples that have no improvement of confidence when the
confidence is already lower thanηc for a candidateλj .

We first group the statistical tuples inD into two parts based on
the preliminaryλY as follows. Letk be a pivot between1 andn.



For the firstk tuples, we havesi[Y ] � λY , 1 ≤ i ≤ k. All the
remainingn − k tuples havesi[Y ] 2 λY , k + 1 ≤ i ≤ n. This
grouping of statistical tuples inD can be done in linear time.

LEMMA 2. Consider a pre-grouped statistical distributionD.

For any1 ≤ i1 < i2 ≤ n, we always have
P

j
i1

(X,Y )

P
j
i1

(X)
≥ P

j
i2

(X,Y )

P
j
i2

(X)
.

Therefore, according to the formula of confidence, with the in-
crease ofi from 1 to n, the confidence of a specific candidateλj is
non-increasing. For a candidateλj , when processing the statistical

tuple si, if the current confidence
P

j
i
(X,Y )

P
j
i
(X)

is lower thanηc, then

we can prune the candidateλj without considering the remaining
statistical tuples fromi+ 1 ton in D.

Algorithm 2 Pruning by support & confidenceEPSC(D,Ct)

1: for each candidateλj ∈ Ct, j : 1 → c do
2: P j

0 (X,Y ) = P j
0 (X) = 0

3: for each tuplesi ∈ D, i : 1 → n do
4: computeP j

i (X,Y ), P j
i (X)

5: if P
j
i
(X,Y )

P
j
i
(X)

< ηc then

6: removeλj from Ct {Pruning by confidence}
7: if P j

i (X,Y ) ≥ ηs then
8: break
9: if P j

n(X,Y ) < ηs then
10: remove all the remaining candidatesλ′ dominated byλj

from Ct {Pruning by support,λ′
⋗ λj}

11: return λj with confidence and support satisfyingηc, ηs

Finally, both the pruning by support and the pruning by confi-
dence are cooperated together into a single threshold determination
algorithm as shown in Algorithm 2(namelyEPSC). We also demon-
strate the performance of the hybrid pruningEPSCin Section 6.

4.4 Approximation Algorithm
Though we have proposed pruning rules for exact method (Al-

gorithm 2), the whole evaluation space is still all then tuples in sta-
tistical distributionD. Therefore, in this section, we present an ap-
proximate algorithm which only traverses the firstk (k = 1, . . . n)
tuples inD, with bounded relative errors on support and confidence
of returnedMDs.

Let Cn andSn be the confidence and support computed in the
exact solution with alln tuples. We study the approximate con-
fidence and support,Ck andSk, by ignoring the statistical tuples
from sk+1 to sn. For a candidate threshold patternλj ∈ Ct, let

β = P j
k (X), β̄ = P j

n(X)− P j
k (X)

whereβ denotesP (X � λX) for the candidateλj based on the
first k tuples inD, andβ̄ is P (X � λX) based on the remaining
n − k tuples. The following Lemma indicates the error bounds of
Ck andSk whenβ̄ for a specifick is in a certain range.

LEMMA 3. If we haveβ̄ ≤ min(ǫηs,
ǫηsηc

1−ǫ−ηc
), then the error

of approximate confidenceCk compared to the exact confidence

Cn is bounded by−ǫ ≤ Cn
−Ck

Cn ≤ ǫ, and the error of approximate

supportSk compared to the exactSn is bounded byS
n
−Sk

Sn ≤ ǫ.

PROOF SKETCH. Let

α = P j
k (X,Y ), ᾱ = P j

n(X,Y )− P j
k (X,Y )

According to the computation of confidence, we haveCk = α
β

and

Cn = α+ᾱ
β+β̄

. LetZ = 1− Cn−Ck

Cn = Ck

Cn . We can prove that

1 +
β̄

β
≥ Z =

α(β + β̄)

β(α+ ᾱ)
≥ β + β̄

β + β̄
ηc

(1)

Referring to the minimum support requirement, for a validλj , we
haveβ ≥ α ≥ ηs. Moreover, sincēβ ≤ min(ǫηs,

ǫηsηc
1−ǫ−ηc

), we

also havēβ ≤ ǫηs andβ̄ ≤ ǫηsηc
1−ǫ−ηc

. Therefore,

1 + ǫ ≥ Z ≥ 1− 1− ηc
1−ǫ−ηc

ǫ
+ 1

= 1− ǫ

On the other hand, according to the computation of support, hav-
ing Sk = α andSn = α+ ᾱ, we can also prove

Sn − Sk

Sn
=

1

1 + α
ᾱ

≤ 1

1 + 1
ǫ

< ǫ

That is, the worst-case relative error is bounded byǫ for both the
confidence and support.

Let B̄(k) =
Pn

i=k+1 si[P ], wheresi[P ] is the probability as-
sociated to each statistical tuple inD. Referring to the definition
of β̄, for anyλj , we always havēβ ≤ B̄(k). If there exists ak
havingB̄(k) ≤ min(ǫηs,

ǫηsηc
1−ǫ−ηc

), thenβ̄ ≤ min(ǫηs,
ǫηsηc

1−ǫ−ηc
)

is satisfied for all the threshold candidatesλj . Since theB̄(k)
decreases with the increase ofk, to determine a minimumk is
to find a corresponding maximum̄B(k). Therefore, according to
Lemma 3, given an error boundǫ, 0 < ǫ < 1 − ηc, we can com-
pute a minimum positionk = argmaxn

k=1 B̄(k) havingB̄(k) ≤
min(ǫηs,

ǫηsηc
1−ǫ−ηc

).

THEOREM 1. Given an error boundǫ, 0 < ǫ < 1− ηc, we can
determine a minimumk, havingB̄(k) ≤ min(ǫηs,

ǫηsηc
1−ǫ−ηc

), 1 ≤
k ≤ n. The approximation by considering firstk tuples inD finds
approximateMDs with the error boundǫ on both the confidence and
support compared with the exact one. The complexity isO(kc).

Finally, we present the approximation implementation in Algo-
rithm 3. Let B̄ denotesB̄(k) =

Pn
i=k+1 si[P ] for the current

k. With k decreasing fromn to 1, we can determine a minimum
k whereB̄ = B̄(k) ≤ min(ǫηs,

ǫηsηc
1−ǫ−ηc

) is still satisfied. Af-
ter computingk, we process the tuplessi starting fromi = 1.
When the bound condition is first satisfied, i.e.,i = k with B̄ =
B̄(k) ≤ min(ǫηs,

ǫηsηc
1−ǫ−ηc

), the processing terminates. Here, the
error boundǫ is specified by user requirement with0 < ǫ < 1−ηc.

Algorithm 3 Approximation algorithmAP(D, Ct)

1: for each tuplesk ∈ D, k : n→ 1 do
2: B̄ += sk[P ]
3: if B̄ > min(ǫηs,

ǫηsηc
1−ǫ−ηc

) then
4: k++; break {Computek}
5: for each candidateλj ∈ Ct, j : 1 → c do
6: P j

0 (X,Y ) = P j
0 (X) = 0

7: for each tuplesi ∈ D, i : 1 → k do
8: computeP j

i (X,Y ), P j
i (X)

9: return λj with confidence and support satisfyingηc, ηs

Given an error boundǫ, the bound condition is then fixed. In
order to minimizek, we expect that theP values of the tuples from
k+1 ton in B̄(k) =

Pn
j=k+1 sj [P ] are small. In other words, an

instance ofD with higherP in the tuples from1 to k is preferred.
Therefore, we can reorganize the tuples inD in the decreasing order



of P as the input of Algorithm 3. The ordering of statistical tuples
in D by theP values can be done in linear time by amortizing the
P values into a constant domain.

Approximation Individually. We study the approximation by each
individual candidateλj with a more efficient bound condition re-
spectively. According to formula (1) in the proof of error bound, we
find that for each specific candidateλj if β̄ ≤ min(ǫβ, ǫβηc

1−ǫ−ηc
),

then the error bound is already satisfied and the processing can be
terminated for thisλj . Therefore, rather than one fixed bound con-
dition for all the candidates, the bound ofβ̄ can be determined dy-
namically for each candidateλj respectively during the processing.
Algorithm 4 shows the implementation of approximation withdy-
namic bound condition on each candidateλj individually.

Algorithm 4 Approximation individuallyAPI (D, Ct)
1: for each tuplesi ∈ D, i : n→ 1 do
2: B̄ += si[P ]
3: if B̄ ≤ min(ǫηs,

ǫηsηc
1−ǫ−ηc

) then
4: k = i {Computek}
5: for each candidateλj ∈ Ct, j : 1 → c do
6: P j

0 (X,Y ) = P j
0 (X) = 0

7: B̄j = B̄
8: for each tuplesi ∈ D, i : 1 → k do
9: computeP j

i (X,Y ), P j
i (X)

10: β = P j
i (X)

11: B̄j -= si[P ]
12: if B̄j ≤ min(ǫβ, ǫβηc

1−ǫ−ηc
) then

13: break
14: return λj with confidence and support satisfyingηc, ηs

COROLLARY 1. The worst case complexity of the approxima-
tion individually isO(kc)

PROOF. Note that with the increasing ofi from 1 to k, for a spe-
cific λj , the valueβ increases and̄Bj decreases. For anyi < k,
if β < ηs, i.e.,λj is invalid currently, the bound condition cannot
be satisfied havingmin(ǫβ, ǫβηc

1−ǫ−ηc
) < min(ǫηs,

ǫηsηc
1−ǫ−ηc

) < B̄j .
Whenλj hasβ ≥ ηs as a valid threshold, the bound condition
is relaxed frommin(ǫηs,

ǫηsηc
1−ǫ−ηc

) to min(ǫβ, ǫβηc
1−ǫ−ηc

). Thereby,
the bound condition may be satisfied by a smalleri thank, i.e.,
min(ǫηs,

ǫηsηc
1−ǫ−ηc

) < B̄j ≤ min(ǫβ, ǫβηc
1−ǫ−ηc

). The worst case
is that all candidates do not achieve their bounds until process-
ing the tuplesk, where B̄j = B̄(k) ≤ min(ǫηs,

ǫηsηc
1−ǫ−ηc

) ≤
min(ǫβ, ǫβηc

1−ǫ−ηc
) must be satisfied. This is exact the Algorithm 3

without individual approximation.

Finally, we cooperate the pruning by support together with the
approximation (namelyAPS) and the approximation individually
(namelyAPSI) respectively. As we presented in the experimental
evaluation, the approximation techniques can further improve the
discovering efficiency with an approximate solution very close to
the exact one (bounded byǫ).

5. DISCOVERING eMDs
Rather than finding single matching similarity threshold for each

attribute ofX for MDs, the discovery of eMDs is even more com-
plicated, where the pattern tableau specifies a set of patterns with
various matching similarity intervals. Therefore, given arequire-
ment of support and confidence, we have various interval pattern
combinations to form a tableau. It is naturally desirable todiscover
the most concise pattern tableau for eMDs, that is, a minimum set

of patterns that can still meet users’ requirements. In thissection,
we first formalize the optimization problem of discovering eMDs,
then we present the algorithms to find desired eMDs efficiently.

5.1 Optimal Tableau Problem
As mentioned, the patterns in a tableau may cover the same se-

mantics of dependencies as redundancy. Real applications such as
violation detection are often interested in concise eMDs with the
minimum size of pattern rules in the pattern tableauT . To discover
such eMDs, again, the preliminary specifies what thetrueconstraint
of matching similarities is for attributes inY , i.e., δY . The opti-
mization problem then targets to discover the optimal eMD ψ that
can infer this true constraint ofY .

DEFINITION 5. The problem of discovering the optimal eMD

is: given the minimum requirements of support and confidence
ηs, ηc and the matching similarity interval patternδY , to find the
optimal eMD ψ(X → Y, T ) that minimizesthe size of the pattern
tableauT with discovered patterns of intervalsδX on attributesX,
if one satisfiesηs, ηc; otherwise to returninfeasible.

For a certainδY , to minimize the pattern tableau is equivalent to
minimize the pattern sets with intervals onX. To be convenient,
we useδ to denote the pattern projectionδX onX. Since the distri-
butions ofX are independent given differentY values, if there are
several differentδY of Y in T , we can consider the minimization
of each one individually. Thus, in the following work, we focus on
the optimization with an individualδY .

THEOREM 2. The optimal eMD generation problem with mini-
mum tableau size isNP-complete.

PROOF SKETCH. We can show that the3-partite graph vertex
cover problem [8], which isNP-complete, is polynomial-time re-
ducible to the optimal eMD generation problem.

5.2 Greedy Algorithm
Since discovering optimal eMDs is NP-complete, motivated by

the greedy approximation for thepartial coveringproblems [16,
17], we also study the greedy algorithm for discovering nearopti-
mal eMDs in polynomial time. The greedy algorithm we proposed
below has two steps:(I) generating a setCe of all the possibleinter-
val pattern candidatesfor tabularT , and(II) selecting minimum
number of patterns fromCe to satisfy the given support and confi-
dence requirements. Before we illustrate the detailed steps of the
algorithm, we first define some terms that will be used.

Consider a statistical tuples in D. For each attributeA, we
defineint(s[A]) = {[v, u) | s[A] � [v, u)} to be all the similarity
intervals [v, u) that the values[A] can satisfy. For example, let
s[A] = α ∈ dom(A), then we have

int(α) = {[v, u) | 0 ≤ v ≤ α, α+ 1 ≤ u ≤ d}
= {[0, α+ 1), . . . , [0, d), [1, α+ 1), . . . , [1, d), . . . ,

[α, α+ 1), . . . , [α, d)}
whered be the domain size ofdom(A). The size ofint(s[A]) in
worst case isO(d2).

For themX attributes inX, let pat(s) be the set of all the pat-
ternsδ thats can satisfy, that is, the set of pattern candidatesδ can
be generated froms.

pat(s) = {δ | s[X] � δ} = int(s[A1])× · · · × int(s[AmX
])

Therefore, the size ofpat(s) is O(d2m). Let c be the domain size
of dom(X), havingc = dm. Thus, we have|pat(s)| = O(c2).



Given a patternδ, let cover(δ) record all the statistical tuples
s ∈ D that satisfyδ, i.e.,

cover(δ) = {s | s[X] � δ, s ∈ D}
Generation step. We first generate the candidate setCe of all the
possible patterns (namelyPC in Algorithm 5) by considering the
pat(s) of each statistical tuples in D.

Algorithm 5 Pattern candidatesPC(D)

1: Ce = ∅
2: for each statistical tuples ∈ D do
3: for each pattern candidateδ ∈ pat(s) do
4: if δ ∈ Ce then
5: inserts to cover(δ)
6: updateconfidence andsupport of δ to Ce

7: else
8: cover(δ) = {s}
9: computeconfidence andsupport of δ, insertδ to Ce

10: return Ce

Elimination step. After we have the pattern candidate setCe, the
next step is to generate a minimum set of patterns fromCe asT
of the eMD. Specifically, the greedy algorithm removes a pattern
candidateδ with maximum support fromCe in each iteration, adds
it into T if valid, and does not stop until the minimum supportηs
is satisfied or all the valid pattern candidates are added toT . Given
a statistical tuples, there may exist many patternsδ being satisfied
by s. However, when we compute the support and confidence for
each eMD, s is only assigned to one pattern and count towards its
support. To follow this principle, we eliminate all the statistical
tuples incover(δ) from the remainingδ′ ∈ Ce, i.e., cover(δ′) =
cover(δ′) \ cover(δ) in Algorithm 6.

Algorithm 6 Greedy algorithmGA(Ce)

1: T = ∅
2: support(ψ) = 0
3: while Ce 6= ∅ andsupport(ψ) < ηs do
4: δ = argmaxδ∈Ce support(δ)
5: removeδ from Ce

6: if confidence(δ) ≥ ηc then
7: insertδ to T
8: support(ψ) += support(δ)
9: for each pattern candidateδ′ ∈ Ce do

10: cover(δ′) = cover(δ′) \ cover(δ)
11: updateconfidence andsupport of δ′ to Ce

12: return T

THEOREM 3. The greedy algorithm finds an approximately op-
timal eMD with an error bound on the tableau size|T | compared
to an optimal eMD tableau size|T ∗|, having|T |/|T ∗| = lnn+1.
The complexity isO(nc2).

5.3 Pruning Strategies
As shown in Theorem 3, it is still very costly to compute the

pattern tabular for an eMD. This is because both generation and
elimination steps require scanning all the possible pattern candi-
dates. In fact, not all patterns thats satisfies should be generated as
Algorithm 5 does. Moreover, in the elimination step, after moving
a pattern toT , it is not necessary as well to update supports and
confidences of all the rest pattern candidates inCe. Therefore, in
the rest of this section, we propose pruning strategies for generation
and elimination steps, respectively.

Pruning during generation. We first study the relationship among
patterns, based on which, we can find out redundant pattern candi-
dates during the generation.

DEFINITION 6. For any two intervals[v, u) and[g, h), if v ≤ g
andh ≤ u, then[v, u) dominates[g, h), denoted by[v, u)⋖ [g, h).

Then, the relationships among the intervals on an attributecan be
represented by a directed acyclic graph. For example, as shown in
Figure 1 (a), each black node denotes a possible interval. Anarrow
from nodea to b denotesa⋖b. For each attributeA, there is a trian-
gle structure that specifies all the possible intervals corresponding
to this attribute, e.g., Figure 1 (b) for attributeA2, Figure 1 (c) for
attributeA3, etc. Each patternδ, thereby, consists of exact one
node (interval) from each triangle (attribute).

DEFINITION 7. Consider any two patternsδ1 and δ2. For all
attribute∀A ∈ X, if the intervals satisfyδ1[A] ⋖ δ2[A], then we
sayδ1 dominatesδ2, denoted byδ1 ⋖ δ2.

If there exists an attribute∃A ∈ X, having intervalsδ1[A] ⋖
δ2[A], then we sayδ1 partiallydominatesδ2, denoted byδ1 ⋖p δ2.

LEMMA 4. For any two patternsδ1 andδ2, if δ1 dominatesδ2,
i.e.,δ1⋖δ2, then we havecover(δ2) ⊆ cover(δ1) andsupport(δ1) ≥
support(δ2). Whencover(δ1) = cover(δ2), we say that patterns
δ1 andδ2 are equivalent, havingsupport(δ1) = support(δ2).

Now, we study the pruning technique for generating pattern can-
didates as less as possible. Note that some of the instances (say
α) in dom(A) of an attributeA may not appear in a certain distri-
butionD. However, according to the pattern candidate generation
algorithm, these instancesα ∈ dom(A) are still considered as the
bounds of intervals in candidate patterns. We first study thepruning
strategies based on these non-appearing instances.

Intuitively, since the valueα does not appear in attributeA in
D, all the patternsδ containing the intervalδ[A] = [α, α + 1)
onA should have an emptycover set and can be ignored directly.
Moreover, consider some other patternsδ with intervals likeδ[A] =
[α, α + 2) on A. We can prove that there always exists another
patternδ′ (such asδ′[A] = [α+1, α+2) onA) havingcover(δ) =
cover(δ′). According to Lemma 4, the patternδ is equivalent toδ′

and can be pruned as well. We formally define these candidate
patterns with certain pruning intervals as follows.

THEOREM 4. Consider any valueα ∈ dom(A). If this value
α does not appear in the attributeA in D, then all the pattern can-
didates that contain the following intervals on attributeA can be
pruned in the candidate setCe: I1 = {[α, α+ u) | u = 1, 2, . . . }
andI2 = {[α− u+ 1, α+ 1) | u = 1, 2, . . . }.

PROOF SKETCH. For any patternδ havingδ[A] ∈ I1, we can
always find aδ2, havingδ2[A] = [α+1, α+u), which is equivalent
to δ, i.e.,cover(δ) = cover(δ2). Thus, the patternδ can be pruned
as redundancy. Similarly, for any patternδ havingδ[A] ∈ I2, we
can also find aδ1, havingδ1[A] = [α−u+1, α), as the redundancy
of δ.

For example, in Figure 1 (a), suppose that the item4 does not
appear in attributeA1 in D. Then, the sets of intervals,I1 =
{[4, 5), [4, 6), [4, 7), [4, 8), [4, 9), [4, 10)} andI2 = {[4, 5), [3, 5),
[2, 5), [1, 5), [0, 5)} marked by shade area in Figure 1 (a), can be
ignored in attributeA1 during the candidate generation. In other
words, the pattern candidate generation with pruning (namely PCP)
removes all the patterns with intervals fromI1 or I2 inA1 from Ce.



Figure 1: Domination relationship among intervals

Pruning during elimination . Next, we study the pruning of can-
didate patterns during the greedy computation. The major cost of
elimination step ordinates from the updatingcover(δ′) after mov-
ing the patternδ with highest support toT . Thus, we propose prun-
ing rules to reduce the number of updates and remove the redundant
patterns based on thedominaterelationship among patterns.

Let δ be the current pattern in the greedy algorithm. Let[v, u)
denote the interval ofδ on attributeA, i.e.,δ[A] = [v, u). In order
to develop the pruning technique, for each attributeA, we group all
the intervals into 6 blocks according to the domination relationship
on [v, u) as follows.

B1[A] = {[g, h) | [g, h)⋖ [v, u)}
B2[A] = {[g, h) | [0, v + u)⋖ [g, h) ⋖ [v, v + 1)}
B3[A] = {[g, h) | [v, d)⋖ [g, h)⋖ [v + u− 1, v + u)}
B4[A] = {[g, h) | [v, u) ⋖ [g, h)}
B5[A] = {[g, h) | [0, v)⋖ [g, h)}
B6[A] = {[g, h) | [v + u, d)⋖ [g, h)}

Among the 6 blocks defined above,B1[A] represents all the in-
tervals onA that dominateδ[A],B4[A] denotes all the intervals on
A that are dominated byδ[A], B5[A] andB6[A] are the intervals
that have no overlapping withδ[A], andB2[A] andB3[A] are the
intervals that have overlapping withδ[A]. For example, in Figure 1
(b), we illustrate the6 blocks of all the intervals in attributeA2

based on the intervalδ[A2] of the currentδ.
Based on these six partitioned blocks of intervals, we first iden-

tify the set of patternsδ′ that are not updated by the elimination
operationcover(δ′) = cover(δ′) \ cover(δ) even in the original
greedy algorithm (Algorithm 6).

LEMMA 5. Consider the currentδ with the maximum support
in Ce. After insertingδ as a pattern inT , the following sets of
candidate patternsδ′ are not updated:

C5 = {δ′ | ∃A, δ′[A] ∈ B5[A]}
C6 = {δ′ | ∃A, δ′[A] ∈ B6[A]}

PROOF SKETCH. For any patternδ′ ∈ C5 or δ′ ∈ C6, we can
prove that the intersection of cover sets ofδ andδ′ is cover(δ′) ∩
cover(δ) = ∅. In other words, the operationcover(δ′) = cover(δ′)\
cover(δ) takes no effect on patternδ′. Thusδ′ is not updated.

According to Lemma 5, all the patterns with intervals fromB5

or B6 on any attribute will not be updated in the current itera-
tion. In other words, only the patterns with all the intervals from
B1, B2, B3, B4 will be updated, i.e.,Ce \ (C5 ∪ C6).

Now, we study the pruning rules forδ′ ∈ Ce \(C5∪C6) to avoid
updates. Based on the dominate relationship, we propose to filter
out the following two types of patterns:(I) those patterns patternδ′

havingcover(δ′) = ∅ after thecover(δ′) = cover(δ′) \ cover(δ)
operation. Thus, these patterns can be pruned without conducting
the updating operation.(II) those patternsδ′ that always have an-
other patternδ1 in C5 or C6 havingcover(δ′) = cover(δ1), i.e.,
equivalent, after thecover(δ′) = cover(δ′) \ cover(δ) operation.
Since this patternδ1 is reserved inCe without updating in the cur-
rent iteration, the equivalent oneδ′ can be pruned as redundancy.

Formally, we define the patterns that can be directly pruned from
the candidate setCe as follows.

THEOREM 5. Consider the currentδ with the maximum sup-
port in Ce. After insertingδ as a pattern inT , the following set of
candidate patternsCp can be pruned fromCe:

Cp = {δ′ | ∀A, δ′[A] ∈ (B2[A] ∪B3[A] ∪B4[A])}
PROOF SKETCH. For a patternδ′ ∈ Cp, the intervalδ′[A] of

any attributeA comes either fromB2[A],B3[A] orB4[A]. Let

C2 = {δ′ | ∃A, δ′[A] ∈ B2[A]}
C3 = {δ′ | ∃A, δ′[A] ∈ B3[A]}
C4 = {δ′ | ∀A, δ′[A] ∈ B4[A]}

havingCp = C2 ∪ C3 ∪ C4.
For any patternδ′ ∈ C2 or δ′ ∈ C3, we can prove that there

always exists a pattern in the remaining candidate pattern sets (say
δ1 ∈ C5 or δ2 ∈ C6) which is equivalent toδ′ after the current
elimination step. Thus, the patternδ′ can be pruned as duplicates.

For any patternδ′ ∈ C4, we can prove thatcover(δ′) = ∅ after
the current elimination step, therebyδ′ can be pruned.

According to the above definition ofCp, a patternδ′ ∈ Cp only
contains intervals fromB2, B3, B4 on all the attributeA. In other
words, eachδ′ ∈ Cp does not contain any interval fromB1, B5, B6

on all the attributes. Let

C1 = {δ′ | ∃A, δ′[A] ∈ B1[A]}
Then, we can also representCp byCp = Ce \ (C1 ∪ C5 ∪ C6).

Now, for each attributeA, let δ5[A] = [0, v) andδ6[A] = [v +
u, d), whereδ[A] = [v, u). According to the partial domination
⋖

p in Definition 7, we can rewriteC5 = {δ′ | δ5 ⋖
p δ′} and

C6 = {δ′ | δ6 ⋖
p δ′}. Moreover, the set of patternsC1 can also

be rewritten by{δ′ | δ′ ⋖p δ}. Consequently, the pruned candidate
setCp = Ce \ (C1 ∪ C5 ∪ C6) can be specified by

Cp = {δ′ | (δ′ ⋖p δ or δ5 ⋖
p δ′ or δ6 ⋖

p δ′) = false}
For example, supposeδ[A1] = [2, 7) in Figure 1 (a), then we

haveδ5[A1] = [0, 2), δ6[A1] = [7, 10). We can also compute
the intervals ofδ5, δ6 on the other attributesA. According to Theo-
rem 5, those remaining patterns can be safely pruned if theycannot
satisfy the above partial domination relationships ofδ5, δ6 andδ.

Finally, we present the greedy algorithm with pruning (namely
GAP) in Algorithm 7. Note that calculating the boundary patterns
δ5, δ6 is in constant time and the pruning can be applied recursively
in the next elimination iteration.

In Algorithm 7, rather than removing each statistical tuplefrom
possible patterns exactly once in the original greedy algorithm, we
prune the patterns which are not necessary to conduct the operation
cover(δ′) = cover(δ′) \ cover(δ). Let γ(0 ≤ γ ≤ 1) be the
pruning rate on average, that is,γ percentage of candidate patterns
can be avoided to perform thecover(δ′) = cover(δ′) \ cover(δ)
operation. Then, the complexity of Algorithm 7 isO((1− γ)nc2).



Algorithm 7 Greedy algorithm pruningGAP(Ce)

1: T = ∅
2: support(ψ) = 0
3: while Ce 6= ∅ andsupport(ψ) < ηs do
4: δ = argmaxδ∈Ce support(δ)
5: removeδ from Ce

6: if confidence(δ) ≥ ηc then
7: insertδ to T
8: support(ψ) += support(δ)
9: calculateδ5, δ6 from δ

10: for each pattern candidateδ′ ∈ Ce do
11: if (δ′ ⋖p δ or δ5 ⋖

p δ′ or δ6 ⋖
p δ′) = false then

12: removeδ′ from Ce

13: else
14: cover(δ′) = cover(δ′) \ cover(δ)
15: updateconfidence andsupport of δ′ to Ce

16: return T

As illustrated in the experiments, theGAP can always improve the
discovering efficiency. In fact, we can develop a minimum bound
of the pruning rateγ on average as follows.

COROLLARY 2. The pruning rate on averageγ has a minimum
boundγ ≥ 0.754m , wherem is the number of attributes inX.

PROOF. First, we consider the intervals in one single attribute
A. According to Lemma 5, the patterns with intervals fromB5 or
B6 will not be affected in the current iteration. Therefore, the origi-
nal greedy algorithm only updates the patterns with all the intervals
fromB1, B2, B3 andB4. Let δ[A] = [v, u) for the current pattern
δ on attributeA. The total number of intervals inB1, B2, B3, B4

will be 1
2
(d(d + 1) − v(v + 1) − (d − v − u)(d − v − u + 1)).

Next, for the greedy algorithm with pruning, as we proved in The-
orem 5, we can avoiding the update of patterns with all the inter-
vals inB2, B3 andB4, and remove them directly. Thus, we ob-
serve the number of intervals inB1, i.e., 1

2
((d− u)(d− u+ 1) −

v(v + 1) − (d− v − u)(d− v − u+ 1)). Then, we consider the
percentagep of intervals inB1 compared toB1, B2, B3, B4, i.e.,
p = (d−u)(d−u+1)−v(v+1)−(d−v−u)(d−v−u+1)

d(d+1)−v(v+1)−(d−v−u)(d−v−u+1)
for each possible

v, u. Let x = d − u, y = v, then we have the percentagep on
average as follows.

p =
1

d

d−1
X

x=0

„

Px
y=0

x(x+1)−y(y+1)−(x−y)(x−y+1)
d(d+1)−y(y+1)−(x−y)(x−y+1)

x+ 1

«

=
1

d

d−1
X

x=0

„x+ 1− Px
y=0

d2−x2+d−x
d2−x2+d−x+2y(x−y)

x+ 1

«

Note that we havey(x− y) ≤ x2/4 for y ∈ [0, x], thus

p ≤ 1

d

d−1
X

x=0

„

1− d2 − x2 + d− x

d2 − x2/2 + d− x

«

≤ 1

d

d
X

x=1

x2

2d2 − x2

=
1√
2

d
X

x=1

` 1√
2d− x

+
1√

2d+ x

´

− 1

Since the harmonic numberH(n) =
Pn

k=1
1
k
= lnn+O(1),

p ≤ 1√
2

`

H(
√
2d)−H(

√
2d− d) +

H(
√
2d+ d)−H(

√
2d)

´

− 1

=
1√
2
ln

√
2 + 1√
2− 1

− 1 = 0.246

Next, we consider all them attributes inδ. According to Theo-
rem 5, the pruned patterns should have intervals fromB2, B3, B4

for all them attributes. Thus, the pruning rateγ = (1 − p)m ≥
0.754m . Finally, we prove thatγ is bounded by0.754m .

6. EXPERIMENTAL EVALUATION
Data sets. TheCora3 data set, prepared by McCallum et al. [20],
consists of 12 attributes includingauthor, volume, title, institution,
venue, etc. TheCiteSeer4 data set is selected with attributes in-
cludingtitle, author, address, affiliation, subject, description, etc.
We use thecosinesimilarity to evaluate the matching quality of
the tuples in the original data. By applying thedom(A) mapping
in Section 3, we can obtain statistical distributions with at most
186, 031 statistical tuples inCoraand314, 382 statistical tuples in
CiteSeer. Our experimental evaluation is then conducted in several
pre-processed statistical distributions with various sizes of statisti-
cal tuplesn from 10, 000 to 150, 000 respectively.

We mainly observes the efficiency of proposed algorithms. Since
our main task is to discoverMDs and eMDs under the requiredηs
andηc, we study the runtime performance in various distributions
with different ηs and ηc settings. The discovery algorithms de-
termine the matching similarity settings of attributes forMDs and
eMDs. Suppose that users want to discover the matching similarity
settings for the dependenciesauthor, volume, title → venue with
the preliminary requirement of minimum similarity0.6 on venue

in Cora, andaddress, affiliation, description → subject with pre-
liminary 0.1 on subject in CiteSeerrespectively. A returned result
is either infeasible, or a threshold pattern forMD or a tableau of
interval patterns for eMD.

All the algorithms are implemented by Java. The experiment
evaluates on a machine with Intel Core 2 CPU (2.13 GHz) and 2 GB
of memory. The programs run entirely in main memory.

6.1 Evaluation on MDs
First, we evaluate the performance of pruning by support (EPS)

compared with the original exact algorithm (EA). As shown in (a)
and (b) in Figure 2 and 3, theEA, which verifies all the possible
candidates, should have the same cost no matter howηs andηc set.
The EPSachieves low time cost in all the statistical distributions,
which is only about1/10 of that of theEA. To observe more accu-
rately, we also plot theEPS time cost in Figure 2 (c) and (d) with
the same settings respectively. According to the pruning strategy,
theEPSperformance is only affected by support requirementηs. It
is natural that a higherηs turns to the better pruning performance.
Therefore,EPSwith ηs = 0.04 in Figure 2 (c) shows lower time
cost, e.g., about0.4s for 150k, than that ofηs = 0.01 in (d), e.g.,
0.6s for the same150k. Similar results with differentηs are also
observed onCora, which are not presented due to the limit of space.

More pruning and approximation results are reported in (c) and
(d) in Figure 2 and 3, including the pruning by both support and
confidence (EPSC), the approximation together with pruning by
support (APS), and the approximation individually together with
pruning by support (APSI). When the confidence requirementηc
is high, e.g., in Figure 3 (d), theEPSCcan remove those low con-
fidence candidates and shows better time performance than other
approaches. On the other hand, whenηc is small, e.g.,ηc = 0.15,
we can have larger choices ofǫ ∈ (0, 1 − ηc) such asǫ = 0.8 in
Figure 3 (c). Thus, the approximation approaches have lowertime
cost, especially theAPSI. According to the definition of the bound
condition of approximation approaches, not only theǫ, but alsoηs
3http://www.cs.utexas.edu/users/ml/riddle/data.html
4http://citeseer.ist.psu.edu/
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(d) ηs = 0.01, ηc = 0.19
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Figure 2: Approaches for MDs onCiteSeer
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(a) ηs = 0.02, ηc = 0.15
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(b) ηs = 0.02, ηc = 0.40
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(c) ηs = 0.02, ηc = 0.15
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(d) ηs = 0.02, ηc = 0.40
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Figure 3: Approaches for MDs onCora

affects the performance. As presented in Figure 2 (c), a higher ηs
contributes a larger bound condition, which means the earlyter-
mination of the program. Thus, approximation approaches show
better performance in Figure 2 (c) compared with Figure 2 (d).

Finally, we evaluate the approximate confidence and supportof
the returnedMDs withǫ = 0.8 on both two datasets in Figure 4 and
5. As we proved in Lemma 3, the error introduced in approxima-
tion approaches is bounded byǫ on both confidence and support.
Therefore, in Figure 4 and 5, the approximate confidence and sup-
port of APS andAPSI are very close to those of exact algorithms.

6.2 Evaluation on eMDs
We first evaluate the influence of variousηs andηc settings on

the optimal tableau sizes in Figure 6. With the increase of the min-
imum support requirementηs, we need to add more patterns into
the tableauT of eMDs, and thus theT size increases as well. When
the minimum confidenceηc is high at the same time, there might be
not enough patterns to add intoT that can achieve theηs require-
ment. Therefore, the returned result will be infeasible (T size is0),
for example, in Figure 6 (b) withηs = 0.03 andηc = 0.54.

Next, we study the time performance of proposed algorithms,
including the original pattern candidate generation (PC), the pat-
tern candidate generation with pruning (PCP), the original greedy
algorithm (GA), and the greedy algorithm with pruning (GAP). As
shown in Figure 7 and 8, both thePCP and GAP techniques can
improve the time performance compared with the originalPC and
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Figure 4: Approximate confidence ofMDs
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Figure 5: Approximate support of MDs
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Figure 6: Various ηs and ηc for eMDs

GA respectively. Especially, theGAP works well (together with ei-
therPCor PCP) and keeps low time cost even when theGA requires
about30 times larger cost in the same environment. These results
also verify our conclusion in Corollary 2 of the pruning ratebound
on average. Moreover, thePCPis pruning based on the values that
do not appear in the current distribution. When all the possible val-
ues appear, e.g., the150k distribution ofCiteSeerin Figure 8, the
PCPdoes not work (either together withGA or GAP). Nevertheless,
thePCP+GAP approach always achieve the best time performance.

The time performance of these greedy algorithm based tech-
niques is also affected by differentηs andηc requirements. When
both the support and confidence requirements are high, e.g.,ηs =
0.007 andηc = 0.4 in Figure 7 (b), the algorithm needs to seek
a large number of candidate patterns in order to satisfy theηs and
ηc requirements. The correspondingT sizes are large, as shown
in (d). Consequently, theGA has high time cost when bothηs and
ηc are high in (b). Next, if the minimum support is smaller, e.g.,
ηs = 0.005 in (a), theGA can terminate early, and thus has lower
time cost. On the other hand, if the minimum confidence is smaller,
e.g.,ηc = 0.2 in (c), there are more candidate patterns that can be
considered, some of which may have high supports. Since theGA

greedily select the candidates with the largest support into T in
each iteration, the number of patterns inT of ηc = 0.2 should not
be larger than a higherηc = 0.4. In fact, as shown in (d), theT size
of ηc = 0.2 is quite small in all distributions, and the corresponding
time cost in (c) is much lower than that of (b). Finally, although the
GAP is affect byηs andηc as well, it can achieve significantly lower
time cost thanGA by avoiding unnecessary elimination operations.

We can observe similar conclusions in Figure 8 and also one
more interesting result, i.e., the infeasible case. The answer in120k
is infeasiblewith T size0 in Figure 8 (d) under the highηs = 0.01
andηc = 0.55 requirement. Recall that aninfeasibleanswer is
returned when the algorithm cannot achieveηs after checking and
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(b) ηs = 0.007, ηc = 0.4
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(c) ηs = 0.007, ηc = 0.2
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Figure 7: Approaches for eMDs onCora
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(a) ηs = 0.005, ηc = 0.55
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(b) ηs = 0.010, ηc = 0.55
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(c) ηs = 0.010, ηc = 0.50
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(d) Optimal Tableau
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Figure 8: Approaches for eMDs onCiteSeer

adding all possible candidate patterns intoT . In other words, it is
the worst case to traverse all the candidates when aninfeasiblean-
swer returns. Therefore, as shown in Figure 8 (b), the correspond-
ing time cost of120k is the highest. Finally, due to the greedy
strategy, theT sizes are various under different statistical distribu-
tions, e.g., forηs = 0.005, ηc = 0.55 in Figure 8 (d), theT size of
120k is large while that of150k is small. As shown in Figure 8 (a),
the corresponding time cost for generating a largeT is high.

7. CONCLUSIONS
In this paper, we study the discovery of matching dependencies.

First, we formally define the evaluation of matching dependencies
by using support and confidence. Then, we introduce the prob-
lem of discovering theMDs with minimum confidence and support
requirements. Both pruning strategies and approximation of the ex-
act algorithm are studied. The pruning by support can filter out the
candidate patterns with low supports. In addition, if the minimum
confidence requirement is high, the pruning by confidence works
well; otherwise, we can employ the approximation approaches to
achieve low time cost. Moreover, sinceMDs might not be able to
express many matching rules by similarity thresholds, we propose
the extended matching dependencies with similarity intervals. The
eMDs discovery problem is to find a concise tableau of interval pat-
terns with the minimum size. Due to theNP-completeness of the
problem, we study the greedy algorithms. Advanced pruning tech-

niques are also proposed to improve the efficiency, togetherwith
a proved bound of the pruning rate on average. The experimental
evaluation demonstrates the performance of proposed methods.

Since this is the first work on discovering the matching depen-
dencies, there are many aspects of work to develop in the future.
For example, although the current approach can exclude the at-
tributes that are not necessary to aMD, another issue is to minimize
the number of attributes in theMD. However, the problem of deter-
mining attributes forFDs is already hard [19], where the matching
similarity thresholds are not necessary to be considered. Moreover,
the minimization problem of attributes can be introduced ineMDs
as well, which is even more complicated with a pattern tableau in-
stead of a single pattern of thresholds. Finally, and most impor-
tantly, more exiting applications ofMDs and eMDs are expected to
be explored in the future work.
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APPENDIX

A. PROOF

A.1 Proof for Discovering MDs

PROOF OFLEMMA 1.
Let cover(λ1) andcover(λ2) denote the set of statistical tuples

that satisfy the thresholdλ1 andλ2 respectively, e.g.,cover(λ2) =
{s | s[X] � λ2, s ∈ D}. According to the minimum similarity
thresholds, for each attributeA, we haveλ2[A] ≤ s[A]. In addi-
tion, sinceλ1 ⋖ λ2, for any tuples ∈ cover(λ2), we also have
λ1[A] ≤ λ2[A] ≤ s[A] on all the attributesA. In other words,
the set of statistical tuples covered byλ2 also satisfy the threshold
of λ1, i.e.,cover(λ2) ⊆ cover(λ1). Referring to the definition of
support, we havesupport(ϕ1) ≥ support(ϕ2).

PROOF OFLEMMA 2.
Since the firstk tuples havesi[Y ] � λY , according to the com-

putation ofP (X,Y ) andP (X), we have
P

j
i
(X,Y )

P
j
i
(X)

= 1.0, 1 ≤ i ≤
k. Moreover, for the remainingn − k tuples withsi[Y ] 2 λY ,
theP (X,Y ) value will not change any more, i.e.,P j

i (X,Y ) =

P j
k (X,Y ), k + 1 ≤ i ≤ n. Meanwhile, the correspondingP (X)

is non-decreasing, that is,P j
k (X) ≤ P j

i1
(X) ≤ P j

i2
(X) for any

k + 1 ≤ i1 < i2 ≤ n. Consequently, we have
P

j
i1

(X,Y )

P
j
i1

(X)
≥

P
j
i2

(X,Y )

P
j
i2

(X)
.

PROOF OFLEMMA 3.
Let

α = P j
k (X,Y )

ᾱ = P j
n(X,Y )− P j

k (X,Y )

According to the computation of confidence, we haveCk = α
β

and

Cn = α+ᾱ
β+β̄

. LetZ = 1− Cn
−Ck

Cn = Ck

Cn , that is,

Z =
α(β + β̄)

β(α+ ᾱ)
≤ 1 +

β̄

β

First, we haveβ = α +
Pk

i=1 si[P (X � λj , Y 2 λY )] ≥ α.
Note thatα is the approximate support of theMD ϕ with matching
similarity threshold patternλj on the attributesX. According to
the minimum support constraint, for a validλj , we haveβ ≥ α ≥
ηs. Thereby,

Z ≤ 1 +
β̄

ηs

Moreover, according to the condition̄β ≤ min(ǫηs,
ǫηsηc

1−ǫ−ηc
), that

is β̄ ≤ ǫηs, we have

Z ≤ 1 + ǫ

Second, similar toβ ≥ α, we also havēα ≤ β̄ for the tuples
from k + 1 to n. Therefore,

Z ≥ α(β + β̄)

β(α+ β̄)
=

β + β̄

β + ββ̄
α

According to the minimum confidenceα
β
≥ ηc,

Z ≥ β + β̄

β + β̄
ηc

= 1− β̄(1− ηc)

βηc + β̄

Recall thatβ ≥ ηs and the confidence should be lower than or
equal to1, i.e.,ηc ≤ 1. Thus,

Z ≥ 1− β̄(1− ηc)

ηsηc + β̄
= 1− 1− ηc

ηcηs
β̄

+ 1

Since we have the condition̄β ≤ ǫηsηc
1−ǫ−ηc

,

Z ≥ 1− 1− ηc
1−ǫ−ηc

ǫ
+ 1

= 1− ǫ

Finally, based on the above two conditions, we conclude that

1 + ǫ ≥ Z = 1− Cn − Ck

Cn
=
Ck

Cn
≥ 1− ǫ

−ǫ ≤ Cn −Ck

Cn
≤ ǫ

On the other hand, according to the computation of support, we
haveSk = α andSn = α+ ᾱ. Therefore,

Sn − Sk

Sn
=

1

1 + α
ᾱ

Recall that we haveα ≥ ηs andᾱ ≤ β̄ ≤ ǫηs.

Sn − Sk

Sn
≤ 1

1 + 1
ǫ

=
ǫ

1 + ǫ
< ǫ

That is, the worst-case relative error is bounded byǫ for both the
confidence and support.

A.2 Proof of Discovering eMDs
PROOF OFTHEOREM 2.
To prove that the optimal eMD generation problem belongs toNP,

we can show that a pattern tableauT of any size can be verified in
polynomial time, such that the support and confidenceηs, ηc are
satisfied. Letn be the number of statistical tuples inD, and letw
be the number patterns inT . According to the formula (3.2) and
(3.2), we can compute the confidence and support ofψ in O(nw)
time.

To prove that the optimal eMD generation problem isNP-hard,
we can show that the 3-PARTITE GRAPH VERTEX COVERprob-
lem [8], which is NP-complete, is polynomial-time reducible to
the optimal eMD generation problem. A3-partite graph is also
known as3-colorablegraph, where the vertices are partitioned into
3 groups and each edge has two vertices from two different parti-
tions. LetG be a 3-partite graph with 3 partitions(A,B,C) andm
edges among the partitions. Letai, bj , ck denote the vertices from
partitionsA,B,C respectively. TheVERTEX COVERproblem is to
find a minimum set of vertices that covers all them edges in the
graphG.

We construct a distributionD with attributesA,B,C,D, having
X = [A,B,C] andY = [D] for eMD. Let dom(D) = {0, 1}
and δY = [1, 2). The values of each vertex is assigned from
the domain of the corresponding partition (attribute), e.g., ai ∈
dom(A). We assume that for any two verticesai−1, ai, we have
ai−1 + 1 < ai. In other words, there is no continues values of
intervals. Leta, b, c be the values havinga < ai, b < bj , c < ck
for all i, j, k. The statistical tuples inD are built as follows. For
each edge(ai, bj), we construct two data tuples{ai, bj , c, 1, 1}
and{ai + 1, bj + 1, c, 0, 1)} in D, wherec ∈ dom(C). Similarly,
we also add tuples{a, bj , ck, 1, 1}, {a, bj + 1, ck + 1, 0, 1} and
{ai, b, ck, 1, 1}, {ai +1, b, ck +1, 0, 1} for the edges(bj , ck) and
(ai, ck) respectively, witha ∈ dom(A) andb ∈ dom(B). Finally,
we have total2m statistical tuples inD for them edges inG.



Let ηs = m and ηc = 1. A feasible solution always exists,
that is, the tableauT ′ with patterns{[ai, ai + 1), [b, d), [c, d)},
{[a, d), [bj , bj + 1), [c, d)} and{[a, d), [b, d), [ck, ck + 1)} for all
i, j, k, whered is the domain size of attributes and each pattern
tableau corresponds to a vertex. The patterns inT ′ covers exact
them data tuples inD with D = 1. By the relaxation of inter-
vals in patterns, e.g., from[ai, ai +1) to [ai, ai +2) or higher, the
tuple (ai + 1, bj + 1, c, 0, 1) will be included and the confidence
turns to be less than 1, which is not valid. Moreover, the relaxation
of minimum threshold in a pattern, e.g., from[b, d) to [b − 1, d),
will still cover the samem statistical tuples, that is, equivalent to
the original pattern. On the other hand, a tighten matching similar-
ity threshold such as[b + 1, d) will exclude some data tuples like
(ai, b, ck, 1, 1) and reduce the support to be lower thanm, which
is also invalid. The relaxation or tightening the patterns turns to be
either invalid or equivalent, therefore, we can always assume that
the feasible solutions consist of patterns inT ′. The vertex cover
problem transforms to find a minimum subset of patterns (vertices)
T ⊆ T ′ that covers at leastm statistical tuples (edges) inD. The
reduction can be conducted in polynomial time.

To conclude, the optimal eMD generation problem with mini-
mum tableau size isNP-complete.

PROOF OFTHEOREM3.
The k-partial set coverproblem is: given a set ofn elements

E = {E1, E2, . . . , En}, a collectionS of subsets ofE, S =
{S1, S2, . . . , Sm}, a cost function ofS, and ak, to find a minimum
cost sub-collection ofS, sayT , that covers at leastk elements of
E. Here, eachEi denotes a statistical tuples and eachSj denotes
a patternδ in our problem. Thek corresponds to the minimum
supportηs, and the cost function counts the number of subsets, i.e.,
|T |. According to thepartial coveringproblem [16], the greedy
algorithm has alnn+ 1 approximation.

Theargmax operation can be implemented in a constant time
by amortizing the support values into a constant domain. Note that
the for statement in line 2 of Algorithm 5 adds a specifics to a
certainδ exactly once, i.e.,O(nc2), and thewhile statement in line
3 of Algorithm 6 removes a specifics from a certainδ at most once.
Thereby, theGA complexity is alsoO(nc2).

A.3 Proof of Pruning for eMDs

PROOF OFLEMMA 4.
Let s be any tuple incover(δ2) with s[X] � δ2[X]. For any

attributeA, let δ2[A] = [g, h) andδ1[A] = [v, u). According to
s[A] � δ2[A] andδ1⋖δ2, we havev ≤ g ≤ s[A] < g+h ≤ v+u,
that is,s[A] � δ1[A] for each attributeA as well. In other words,
all the statistical tupless in cover(δ2) are also contained in theδ1’s,
i.e., cover(δ2) ⊆ cover(δ1). Recalling the support definition, we
havesupport(δ1) ≥ support(δ2).

Moreover, sincecover(δ2) ⊆ cover(δ1), we havesupport(δ1) =
support(δ2) if and only if cover(δ2) = cover(δ1). That is, the pat-
ternsδ1 andδ2 cover exact the same statistical tuples. According
to the greedy algorithm, there is no difference between the pattern
δ1 andδ2, i.e., equivalent.

PROOF OFTHEOREM4.
Let

tup(δ) = {s | s[X] � δ}
= δ[A1]× · · · × δ[Am]× dom(D \X)

define all the possible statistical tuples (may not appear incurrent
D) that can be covered byδ. Since, the set ofcover(δ) for pattern

δ records all the statistical tupless ∈ D that s[X] � δ, we have
cover(δ) ⊆ tup(δ).

We first prove the pruning ofI1. Let δ be the pattern with the
interval[α, α+u) on attributeA, i.e.,δ[A] = [α, α+u). Moreover,
for u = 2, 3, . . . , let δ1 andδ2 have the same interval withδ on
all the attributes exceptδ1[A] = [α, α + 1) and δ2[A] = [α +
1, α + u), havingδ ⋖ δ1 andδ ⋖ δ2. According to the definition
of δ[A], we haveδ[A] = δ1[A] ∪ δ2[A] andδ1[A] ∩ δ2[A] = ∅.
Sinceδ1 and δ2 share the same intervals withδ on all the other
attributes, we also havetup(δ) = tup(δ1)∪ tup(δ2) andtup(δ1)∩
tup(δ2) = ∅. Therefore, for thecover(δ) ⊆ tup(δ), we can split
it into cover(δ) = cover(δ1) ∪ cover(δ2) as well. Sinceα does
not appear inD, we havecover(δ1) = ∅, i.e., u = 1 of I1. In
addition, we also havecover(δ) = ∅ ∪ cover(δ2) = cover(δ2)
and δ ⋖ δ2. According to Lemma 4, the patternδ with interval
[α, α + u) onA is equivalent toδ2 with [α + 1, α + u) having
support(δ) = support(δ2). In other words, the patternsδ with
interval [α, α + u) are duplicates and can be pruned. Thus,I1 =
{[α, α+ u) | u = 1, 2, . . . } can be pruned.

We then prove the pruning ofI2. Similarly, for a patternδ
with the interval[α − u + 1, α + 1) on attributeA, let δ1[A] =
[α−u+1, α) andδ2[A] = [α, α+1). We can also havecover(δ) =
cover(δ1) ∪ cover(δ2). Recall thatcover(δ2) = ∅ due to the inter-
val [α, α + 1) on attributeA of δ2, i.e.,u = 1 of I2. Moreover,
according to Lemma 4, the patternδ with interval[α−u+1, α+1)
is equivalent toδ1 with [α− u + 1, α), for u = 2, 3, . . . , and can
be pruned as duplicates. Consequently,I2 = {[α− u+1, α+1) |
u = 1, 2, . . . } can be pruned.

PROOF OFLEMMA 5.
We first prove no updates onC5. Let A be the attribute hav-

ing [0, v) ⋖ δ′[A] in B5[A]. Since[0, v) = {0, 1, . . . , v − 1} and
[v, u) = {v, v + 1, . . . , v + u − 1}, we have[0, v) ∩ [v, u) = ∅,
that is,δ′[A] ∩ δ[A] = ∅ as well. Referring to the product oper-
ator in thetup(δ) definition, we can infertup(δ′) ∩ tup(δ) = ∅.
Also, for cover sets of the patternscover(δ) ⊆ tup(δ), the inter-
section iscover(δ′) ∩ cover(δ) = ∅. In other words, the operation
cover(δ′) = cover(δ′)\cover(δ) takes no effect on patternδ′. The
patterns inC5 are not updated.

Similarly, we have[v + u, d) = {v + u, v + u+ 1, . . . , d− 1}
for B6[A]. According to[v + u, d) ∩ [v, u) = ∅, we can also infer
cover(δ′)∩ cover(δ) = ∅ for δ′ ∈ C6. Thus, the patterns inC6 are
not updated.

PROOF OFTHEOREM 5.
For a patternδ′ ∈ Cp, the intervalδ′[A] of any attributeA can

either come fromB2[A],B3[A] orB4[A]. Let

C2 = {δ′ | ∃A, δ′[A] ∈ B2[A], δ
′ ∈ Cp}

C3 = {δ′ | ∃A, δ′[A] ∈ B3[A], δ
′ ∈ Cp}

C4 = {δ′ | ∀A, δ′[A] ∈ B4[A], δ
′ ∈ Cp}

havingCp = C2 ∪ C3 ∪ C4.
We first prove the pruning ofδ′ ∈ C2 with δ′[A] = [g, h) ∈

B2[A]. Let δ1 andδ2 have the same intervals withδ′ on all the
attributes exceptδ1[A] = [g, v) andδ2[A] = [v, g + h), having
δ′ ⋖ δ1, δ′ ⋖ δ2. According to the definition ofδ′[A], we have
δ′[A] = δ1[A]∪δ2[A] andδ1[A]∩δ2[A] = ∅. Sinceδ1 andδ2 share
the same intervals withδ′ on all the other attributes, we also have
tup(δ′) = tup(δ1) ∪ tup(δ2) andtup(δ1) ∩ tup(δ2) = ∅. There-
fore, for thecover(δ′) ⊆ tup(δ′), we can split it intocover(δ′) =
cover(δ1) ∪ cover(δ2) as well. Sinceδ2 ∈ Cp, we can pruneδ2
with cover(δ2) = ∅. Thereby, according to Lemma 4, the pattern
δ′ is equivalent toδ1 with cover(δ′) = cover(δ1) after the current



elimination step. Moreover, we have[0, v)⋖δ1[A] = [g, v), that is,
δ1[A] ∈ B5[A] andδ1 ∈ C5. According to Lemma 5,δ1 already
exists inCe without updates in the current iteration. Therefore, the
patternδ′ can be pruned as duplicates after the current elimination
step inCe.

Next, we prove the pruning ofδ′ ∈ C3 with δ′[A] = [g, h) ∈
B3[A]. Let δ1 andδ2 have the same intervals withδ′ on all the
attributes exceptδ1[A] = [g, v + u) andδ2[A] = [v + u, g + h).
Similarly, we can also split the cover set ofδ′ into cover(δ′) =
cover(δ1)∪cover(δ2). Sinceδ1 ∈ Cp can be pruned withcover(δ1) =
∅, δ′ is equivalent toδ2. In addition,δ2 ∈ C6 already exists in cur-
rent Ce without update. Therefore, the patternδ′ ∈ C3 can be
pruned as duplicates as well.

Finally, we prove the pruning ofδ′ ∈ C4. For any attribute
A, according to the definition ofB4[A], we haveδ[A] ⋖ δ′[A],
that is,δ ⋖ δ′ for eachδ′ ∈ C4. Referring to Lemma 4, we have
cover(δ′) ⊆ cover(δ). After the elimination stepcover(δ′) =
cover(δ′) \ cover(δ), cover(δ′) = ∅ andδ′ can be pruned.

B. TABLE

Table 6: Reference of cosine similarity of names inContacts
No. name1 name2 sim(name1, name2)

1 Claire Green Claire Gree 0.95
2 Claire Greem Claire Gree 0.95
3 Claire Green Claire Greem 0.90
4 J. Smith W. J. Smith 0.85
5 Jason Smith J. Smith 0.60
6 Jason Smith W. J. Smith 0.50
7 Claire Green W. J. Smith 0
...

...
...

...
15 Claire Gree Jason Smith 0
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