
Mining Frequent Itemsets in Time-Varying
Data Streams

Abstract

A transactional data stream is an unbounded sequence of trans-
actions continuously generated, usually at a high rate. Mining
frequent itemsets in such a data stream is beneficial to many real-
world applications but is also a challenging task since data streams
are unbounded and have high arrival rates. Moreover, the distrib-
ution of data streams can change over time, which makes the task
of maintaining frequent itemsets even harder. In this paper, we pro-
pose a false-negative oriented algorithm, called TWIM, that can
find most of the frequent itemsets, detect distribution changes, and
update the mining results accordingly. TWIM uses two tumbling
windows, one for maintenance and one for change prediction. We
maintain a frequent itemset list and a candidate list for a data
stream. Every time the two windows tumble, we check members
in both lists. New frequent itemsets will be added and itemsets no
longer frequent will be removed. Experimental results show that
our algorithm performs as good as other false-negative algorithms
on data streamswithoutdistribution change, and has the ability to
detect changes over time-varying data streams in real-time with a
high accuracy rate.

1. Introduction

The problem of mining frequent itemsets has long been recog-
nized as an important issue for many applications such as fraud
detection, trend learning, customer management, marketing and
advertising. Mining frequent itemsets in data stream applications
is also beneficial for a number of purposes such as knowledge dis-
covery, trend learning, fraud detection, transaction prediction and
estimation [9, 12, 19]. However, the characteristics of stream data
– unbounded, continuous, fast arriving, and time-changing – make
this a challenging task. Existing mining techniques that focus on
relational data cannot handle streaming data well [10].

First, since a data stream is unbounded and usually has high
arrival rate, it is not possible to rescan the whole stream, and thus,
multi-scan data mining algorithms for traditional databases and
batch data cannot be applied to stream data directly. Second, the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

large volume of the data makes it infeasible to process the entire
stream within limited memory [2]. Finally, fast data streams are
created by continuous activities over long periods of time, usually
months or years. It is natural that the underlying processes gen-
erating them can change over time, and thus, the data distribution
may show important changes during this period. This is referred
to asdata evolution, time-varying data, or concept-drifting data
[13, 17, 24]. Updating and maintaining frequent itemsets for such
time-varying data streams in real time is a challenging issue.

The problem of mining frequent items has been extensively
studied [5, 8, 9, 15]. The common assumptions that the total num-
ber of items is too large for memory-intensive solutions to be fea-
sible. Mining frequent items over a data stream under this assump-
tion still remains an open problem. However, the task of mining
frequent itemsets is much harder than mining frequent items. Even
when the number of distinct items is small, the number of itemsets
could still be exponential in the number of items, and maintaining
frequent itemsets requires considerably more memory.

Mining frequent itemsets is a continuous process that runs through-
out a data stream’s life-span. Since the total number of itemsets
is exponential, it is impractical to keep statistics for each itemset
due to bounded memory. Therefore, usually only the itemsets that
are already known to be frequent are recorded and monitored, and
statistics of other infrequent itemsets are discarded. However, as
mentioned, data streams can change over time. Hence, an itemset
that was once infrequent can become frequent if a stream changes
its distribution. Detecting such changes is an important task es-
pecially for online applications, such as leak detection, network
monitoring, and decision support. However, since it is not feasi-
ble to maintain all itemsets, it is hard to detect frequent itemsets
when distribution changes happen. Furthermore, even if we could
detect these itemsets, we would not be able to obtain their statis-
tics (supports), since mining a data stream is a one-pass procedure
and history information is not retrievable. Distribution changes
over data streams might have considerable impact on the mining
results, but few of the previous works have addressed this issue.

A number of techniques have been proposed in recent years for
mining frequent itemsets over streaming data. However, as we dis-
cuss in Section 3, they have problems in meeting common require-
ments: ability to process large number of itemsets in real time,
low (preferably minimum) memory usage, and ability to cope with
time varying data streams.

In this paper, we develop a new algorithm, called TWIM, that
can find most of the frequent itemsets in real time. It can also
predict the distribution change and update the mining results ac-
cordingly. Our approach maintains two tumbling windows over
a data stream: a maintenance window and a prediction window.

All current frequent itemsets are recorded and maintained in the
maintenance window, and we use the prediction window to keep
track of candidates that have the potential of becoming frequent
if the distribution of stream values changes. Every time the win-
dows tumble, we check if new frequent itemsets and candidates
should be added, and if some existing ones need to be removed
from the lists. Since we do not keep statistics for every itemset
within the windows, memory usage is limited. Experimental re-
sults show that TWIM is as effective as previous approaches for
non-time-varyingdata streams, but is superior to them since it can
also capture the distribution change for time-varying streams in
real-time.

The contributions of this paper can be summarized as follows:

• We formalize the problem of mining for frequent itemsets
over streams, and prove that the problem of mining the com-
plete frequent itemsets over data streams is NP-hard.

• We introduce a double-tumbling windows model for mining
frequent itemsets over data streams. Experimental results
show that this model can adapt to distribution changes effec-
tively and efficiently. Since one of the windows is a virtual
window, memory usage for this model is not larger than that
of the popular sliding window models.

• We present a novel algorithm, TWIM, to mine frequent item-
sets over data streams. Unlike most of the existing frequent
itemset mining techniques, our algorithm is false-negative
oriented and is suitable for streams with distribution changes.
Furthermore, since TWIM maintains counters for candidate
itemsets long before they become frequent, once an item-
set becomes frequent, its estimated support is more accu-
rate than those algorithms that can only detect and record
changes in the last minute.

The rest of the paper is organized as follows. In Section 2, we
formally define our problem and prove that mining the complete
frequent itemsets is NP-hard. In Section 3, we discuss the related
work and compare them with our proposal. In Section 4, the pro-
posed TWIM algorithm for detecting frequent itemsets over time-
varying data streams is presented. Experimental results are given
in Section 5. We conclude the paper in Section 6.

2. Problem Statement

Let I = {i1, i2, ..., in} be a set ofitems. A transactionT ac-
cesses a subset of itemsI ⊆ I. A data stream is an unbounded
sequence of tuples that continuously arrive in real time. In this
paper, we are interested in transactional data streams, where each
tuple corresponds to a transaction. Example of such transaction-
based data streams include online commerce, web analysis, bank-
ing, and telecommunications applications, where each transaction
accesses a set of items from a certain item pool, such as inventory,
customer list, or a list of phone numbers.

Let Tt = {T1, T2, ..., TNt} be the set of transactions at time
t. Nt is the total number of transactions received up to timet.
The data stream that containsTt is denoted byDTt . Note that
the number of items,n, is finite and usually not very large, while
the number of transactions,Nt, will grow monotonically as time
progresses.

Table 1 summarizes the main symbols used in this paper.
Definition 1. Given a transactionTj ∈ Tt, and a subset of

itemsA ⊆ I, if Tj accessesA (i.e.,A ⊆ Ij), then we sayTj

supportsA.

Table 1. Meanings of symbols used
Symbols Meanings

t, t′ timestamps
we always lett′ > t in this paper

Tj a transaction
Ij an itemset thatTj accesses
DTt transactional data stream
Nt number of transactions at timet
I set of items
A an itemset
sup(A) A’s counter

number of transactions that supportA
S(A) the support ofA at timet

S(A) = sup(A)/Nt

ATt set of frequent itemsets
C set of candidates
δ minimum support for frequent itemsets

if S(A) ≥ δ thenA ∈ ATt

θ minimum support for candidates
if θ ≤ S(A) < δ thenA ∈ C

WM maintenance window
WP prediction window

Definition 2. Let sup(A) be the total number of transactions
that supportA. If S(A) = sup(A)/Nt > δ, whereδ is a prede-
fined threshold value, thenA is a frequent itemset inDTt under
current distribution.S(A) is called thesupportof A.

Example 1.Consider a data streamDTt with Tt = {T1, T2,
T3, T4, T5} at time t and a set of itemsI = {a, b, c, d}. Let
I1 = {a, b, c}, I2 = {a, b, c, d}, I3 = {c, d}, I4 = {a}, and
I5 = {a, c, d}. If thresholdδ = 0.5, then the frequent itemsets
areA1 = {a},A2 = {c},A3 = {d},A4 = {a, c}, andA5 =
{c, d}, with supportsS(A1) = S(A2) = 0.8, andS(A3) =
S(A4) = S(A5) = 0.6.

Let ATt = {A1,A2, ...Am} be the complete set of frequent
itemsets inDTt under current distribution. The ultimate goal of
mining frequent itemsets in data streamDTt is to find ATt in
polynomial time with limited memory space. However, it has been
proven that the problem of findingATt off-line is NP-hard [21].
The following theorem proves that on-line updatingATt for a data
stream that grows in real-time is also NP-hard.

THEOREM 1. The problem of finding the complete set of fre-
quent itemsetsATt in a given transaction-based data streamDTt

with thresholdδ is NP-hard.

PROOF. If there exists an algorithm that can list all frequent
itemsetsATt in polynomial time, then this algorithm should also
be able to count the total number of such frequent itemsets with
the same efficiency. Thus, it suffices to show that counting|ATt |
for any givenDTt and thresholdδ is NP-hard.

Let n be the total number of items inI, andNt be the total
number of transactions at timet. Construct an × Nt matrixM.
Each elementMk,j in M is a Boolean value:Mi,j = 1 iff ik ∈
Tj , and 0 otherwise. Hence, there exists a one-to-one mapping
between streamDTt and matrixM.

Any n × Nt matrixM can be mapped to a monotone-2CNF
formula with Nt clauses andn variables. Therefore, we can re-
duce the problem of counting|ATt | to the problem of counting
the number of satisfying assignments for a monotone-2CNF for-
mula using polynomial time.

It has been proven that the problem of counting the number of
satisfying assignment of monotone-2CNF formulas with thresh-
old δ is #P-hard [11, 23]. Hence, counting|ATt | is a NP-hard
problem.

Note that in the proof,Nt does not have to be infinite, and does
not even have to be a large number. Therefore, even if techniques
such as windowing that can reduce the number of transactionsNt

are applied, the problem of mining the complete set of frequent
itemsets still remains NP-hard. Furthermore, the size of the com-
plete set of frequent itemsetsATt can be exponential. An extreme
case is that every transactionTj in DTt accessesI (i.e. ∀Tj ∈ Tt,
Ij = I). For such cases, no algorithm can listATt using polyno-
mial time and space. However, note that this proof holds even for
the cases where|ATt | is not exponential. Even when the actual
size ofATt is small, the time taken forsearching forATt is still
exponential.

3. Related Works
Mining frequent items and itemsets is a challenging task and

has attracted attention in recent years. Jiang and Gruenwald [14]
provide a good review of research issues in frequent itemsets and
association rule mining over data streams.

The problem of mining frequentitemsand approximating fre-
quency counts has been extensively studied [5, 8, 9, 15]. Many
of the works consider mainly the applications where total number
of items in a stream is very large, and therefore, under memory-
intensive environments, it is not possible to store a counter even for
each of the items. However, the problem of mining frequent items
is much easier than the problem of mining frequent itemsets. Even
when the number of distinct items is small, which is true for many
applications, the number of itemsets could be exponential.

One of the classical frequent itemset mining techniques for re-
lational DBMSs is Apriori [1], which is based on the heuristic that
if one itemset is frequent, then its supersets may also be frequent.
Apriori requires multiple scans over the entire data and hence can-
not be directly applied in a streaming environment. Many Apriori-
like approaches for mining frequent itemsets over streaming data
have been proposed in literature [4, 6, 16], and some of them can
be applied on dynamic data streams. However, as will be discussed
in Section 4.2, Apriori-based approaches suffer from a long de-
lay when discovering large sized frequent itemsets, and may miss
some frequent itemsets that can be easily detected using TWIM.

Yang and Sanver [25] propose a naive approach that can only
mine frequent itemsets and association rules that contain only few
items (usually less than 3). When the sizes of potential frequent
itemsets are over 3, this algorithm may take intolerably long time
to execute.

Manku and Motwani propose the Lossy Counting (LC) algo-
rithm for mining frequent itemsets [18]. LC prunes itemsets with
low frequency quickly, and thus only frequent itemsets will re-
main. Because LC has a very low runtime complexity and is
easy to implement, it is one of the most popular stream mining
techniques adopted in real-world applications. However, as ex-
perimentally demonstrated by a number of studies, LC may not
perform well in practice [6, 8, 26], and is not applicable to data
streams that change over time.

Chang and Lee [3] propose an algorithm named estDec for
finding recent frequent itemsets by setting a decay factor. It is
based on the insight that historical data should play a less impor-
tant role in frequency counting. This approach does not have the
ability to detect any itemsets that change from infrequent to fre-
quent due to distribution drifts.

Chi et. al present an algorithm called Moment [7], which main-
tains closedfrequent itemsets [22] using a tree structure named
CET. The Moment algorithm provides accurate results within the

window, and can update the mining results when stream distri-
bution changes. However, Moment is not suitable for streams
that change distributions frequently, because there might be a long
overhead for updating CET when new nodes are added or an item-
set is deleted. Furthermore, if the total number of the frequent
itemsets or their size is large, Moment could consume a large
amount of memory to store the tree structure and hash tables.
Chang and Lee also adopt a sliding window model to mine re-
cently frequent itemsets [4], which suffers from the same problem
of memory usage boundary and may not be feasible in practice.

Most of the techniques proposed in literature are false-positive
oriented, that is, the itemsets they find may not be truly frequent
ones. False-positive techniques may consume more memory, and
are not suitable for many applications where accurate results, even
if not complete, are preferred. Yu et al propose a false-negative
oriented algorithm, FDPM, for mining frequent itemsets [26]. The
number of counters used in FDPM is fixed, and thus memory us-
age is limited. However, this approach cannot detect distribution
changes in the stream, because an itemset could be pruned long
before it becomes frequent.

4. TWIM: Algorithm for Mining Time-
Varying Data Streams

In this section, we propose an algorithm called TWIM that uses
two tumbling windows to detect and maintain frequent itemsets
for any data stream. The algorithm is false-negative oriented: all
itemsets that it finds are guaranteed to be frequent under current
distribution, but there may be some frequent itemsets that it will
miss. However, TWIM usually achieves high recall according to
our experimental results. Since it is a false-negative algorithm, its
precision is always100%.

In order to detect distribution changes in time, we apply tum-
bling windows model onDTt (Section 4.1). A tumbling window
accepts streaming transactions in “batches” that span a fixed time
interval [20]. When windows tumble, the supports of existing fre-
quent itemsets will be updated. If a distribution change occurs
during the time span of the window, then some frequent itemsets
may become infrequent, and vice versa. In most of the previous
techniques, itemsets that are not frequent at the point when the
check is performed are simply discarded. Since only the supports
for frequent itemsets are maintained, the infrequent itemsets that
become frequent due to the distribution change are hard to detect.
Even if such itemsets can be somehow detected, since the histor-
ical information are not retrievable, their estimated supports may
be far from the true values, which leads to poor precision. There-
fore, we maintain a candidate list that contains a list of itemsets
that have the potential to become frequent when the distribution
of DTt changes. Since the supports for the candidates are main-
tained long before they become frequent, their estimated supports
have high accuracy. How to predict candidate itemsets and the
procedure for reducing the size of candidate lists in order to re-
duce memory usage are discussed in Section 4.2.

When windows tumble, the supports of all candidates are up-
dated. If a distribution change occurs, some infrequent itemsets
are added to and some itemsets will be removed from the can-
didate list according to certain criteria (Section 4.3). Candidates
with supports greater thanδ are moved to frequent itemset list.

The main TWIM algorithm is given in Algorithm 1. We expand
each procedure in the following subsections. The experimental
results show that TWIM is sensitive to distribution changes, and

can update its mining results accordingly in real-time.

Algorithm 1 TWIM Algorithm
1: INPUT: Transactional data streamDTt

2: Tumbling windowWM andWP

3: Thresholdδ andθ
4: OUTPUT: A list of frequent itemsetsATt and their supports
5: ATt = Φ; C = Φ; Nt = 0;
6: sup(i1) = sup(i2) = ... = sup(in) = 0;
7: for all transactionTk that arrives inDTt do
8: if WM is not ready to tumblethen
9: Update the supports for all frequent itemsets and candidates

10: else
11: //Windows ready to tumble
12: Call MAINTAIN_CURRENT_FREQSETS;
13: //Move infrequent itemsets fromATt to candidates
14: Call DETECT_NEW_FREQSETS;
15: //Check if any itemset in candidate becomes frequent
16: Call MAINTAIN_CANDIDATES;
17: //Add new candidates
18: Call UPDATE_CANDIDATE_SUP;
19: //update supports for all candidates
20: WM andWP tumble;
21: end if
22: end for

4.1 Tumbling windows design
For most real-life data streams, especially the ones with dis-

tribution changes, recent data are more important than historical
data. Based on this insight, we adopt a tumbling windows model
to concentrate on recently arrived data.

We define a time-based tumbling windowWM for a given data
stream, which we call themaintenance windowsince it is used
to maintain existing frequent itemsets. SmallerWM is more sen-
sitive to distribution changes inDTt , however, it will also incur
higher overhead as the interval for updating frequent itemset list
and candidate list is shorter. On the other hand, largerWM reduces
the maintenance overhead, but it cannot detect sudden distribution
changes.

Since data streams are time-varying, a frequent itemset can be-
come infrequent in the future, and vice versa. It is easy to deal
with the first case. Since we keep counters for all frequent item-
sets, we can check their supports periodically (every timeWM

tumbles), and remove the counters of those itemsets that are no
longer frequent. However, in the latter case, since we do not keep
any information about the currently infrequent itemsets, it is hard
to tell when the status changes. Furthermore, even if we can de-
tect a new frequent itemset, we would not be able to estimate its
support, as no history exists for it.

To deal with this problem, we define a second tumbling win-
dow called theprediction window(WP) on the data stream.WP

moves together withWM , aligning the window endpoints. It keeps
history information for candidate itemsets that have the potential
to become frequent. The size ofWP is larger thanWM , and it
is predefined based on system resources, the thresholdδ, and the
accuracy requirement of the support computation for candidates.
Note that we do not actually maintainWP ; it is a virtual window
that is only used to keep statistics. Hence, the size (time length)
of WP can be as large as required. A large prediction window can
ensure high accuracy of the estimated supports for candidate item-
sets, resulting in high precision. However, it cannot detect sudden
distribution changes, and may consume more memory as there are
more itemsets maintained in the window. A smallerWP is more
sensitive to distribution changes and requires less memory, but the

precision of the mining result may be lower.
Figure 1 demonstrates the relationship between maintenance

window WM and prediction windowWP with an example. In
Figure 1,WM andWP are the windows before tumbling, while
W ′

M andW ′
P are windows afterwards1. When the end ofWM is

reached, it will tumble to the new positionW ′
M . Every timeWM

tumbles,WP will tumble at the same time. This is to ensure that
the endpoints ofWM andWP are always aligned, so that frequent
itemsets and candidate itemsets can be updated at the same time.
Therefore, in Figure 1,WP tumbles to its new positionW ′

P even
before its time interval is fully spanned.

D T
t MW MW’

PW’

PW

Figure 1. Tumbling windows for a data stream
Mining frequent itemsets requires keeping counters for all item-

sets; however, the number of itemsets is exponential. Consequently,
it is not feasible to keep a counter for all of them, and thus, we only
keep counters for the following:

• A counter for each itemij ∈ I. Since total number of items
n is small (typically less than tens of thousands), it is fea-
sible to keep a counter for each item. If each counter is 4
bytes, then the memory requirement for storing all the coun-
ters usually will not exceed 4 MB.

• A counter for each identified frequent itemset. As long as
the threshold valueδ is reasonable (i.e., not too low), the
number of frequent itemsets will not be large.

• A counter for each itemset that has the potential to become
frequent. We call thesecandidate itemsets2. The list of all
candidates is denoted asC. The number of candidate item-
sets|C| is also quite limited, as long as the threshold valueθ
(discussed in Section 4.2) is reasonable.

If a frequent itemset becomes infrequent at some point, instead
of deleting it right away, we move it from the set of frequent item-
setsATt to C, and reset its counter (but not remove it just in case it
becomes frequent again soon, as will be explained in more detail
in Section 4.3). Hence, the counter for an itemset is removed only
when this itemset is removed from candidate listC.

4.2 Predicting candidates
To deal with the difficulties of determining which infrequent

itemsets may become frequent, as discussed in the previous sec-
tions, we introduce a prediction stage to generate a list of candidate
itemsetsC, which includes itemsets that are most likely to become
frequent. The prediction stage happens asWM andWP tumble,
so that statistics for these candidates can be collected within the
new windowW ′

P .
Any itemsetA with θ ≤ S(A) < δ is considered a candidate

and included inC. Hereθ is the support threshold for considering
an itemset as a candidate. Every timeWP tumbles, we evaluate all
candidates inC. If the counter of one candidate itemset is below
θ, it is removed fromC and its counter is released.θ is user de-
fined: smallerθ may result in a higher recall, but consumes more
1In this paper, if we need to discuss the maintenance and prediction win-
dows before and after tumbling, we always useWM andWP to denote
the old windows before tumbling, andW ′

M , andW ′
P to denote the new

windows after tumbling.
2The question of which itemsets are predicted to have such potential will
be discussed in the following subsections.

memory since more candidates are generated; a highθ value can
reduce memory usage by sacrificing the number of resulting fre-
quent itemsets. Thus, theθ value can be set based on application
requirements and available memory.

Every timeWM and WP tumble, the counters of all candi-
dates and the supports of all items will be updated. If one can-
didate itemsetA′ ∈ C becomes frequent, then∀A′′ ∈ ATt ,
A = A′ ∪ A′′ might be a candidate. Similarly, if one infre-
quent itemi becomes frequent at the time windows tumble, then
∀A′′ ∈ ATt ,A = {i} ∪ A′ can be a candidate.

One simple solution is to add all such supersetsA into the can-
didate listC. However, this will result in a large increase of the
candidate list’s size, since the total number ofA for eachA′ or
{i} can be|ATt | in the worst case. The larger the candidate list,
the more memory required for storing counters, and the longer it
takes to update the list whenWM andWP tumble.

As indicated earlier, many existing frequent itemset mining
techniques for streams are derived from the popular Apriori al-
gorithm [1]. When an itemsetA′ with sizek is determined to be
frequent, Apriori makes multiple passes to search for its supersets.
In the first run (or in our streaming case, the first timeWM and
WP tumble afterA′ is detected), all its supersets with sizek + 1
are added to the candidate list. The size of candidate supersets in-
creases by1 at every run, until the largest itemset is detected. This
strategy successfully reduces the number of candidates; however,
in cases if the itemset size|I| is large, it may take extremely long
time until one large frequent itemset is detected.

Example 2. Let I = {a, b, c, d, e}, where{a}, {b}, {c} and
{d} are frequent itemsets. Assume that, at the point whenWM

andWP tumble, iteme becomes frequent, hence,{e}’s immediate
supersets{a, e}, {b, e}, {c, e} and{d, e} will be regarded as can-
didates. If, by next timeWM andWP tumble,{a, e} is detected
as frequent, then,{a, b, e}, {a, c, e} and{a, d, e} will be added to
the candidate list. Assuming the largest itemset{a, b, c, d, e} is ac-
tually a frequent itemset, it will take time4×|WM | for this itemset
to be detected. When the maintenance window size is large, this
delay could be unacceptably long. Furthermore, if the distribution
of the stream changes rapidly, the itemset{a, b, c, d, e}may never
be detected as frequent.

Another problem may occur for such Apriori-like approaches,
as demonstrated in the following example.

Example 3. Let I = {a, b, c, d}, wherea andb are frequent
items, and itemset{a, b} is the only candidate. Assume that next
time windows tumble,S({a, b}) < θ, and hence, itemset{a, b}
will be discarded from the candidate listC. Assumingt time later,
c becomes a frequent item, we will haveATt = {{a}, {b}, {c}},
and C = {{a, c}, {b, c}}. If by the next run, both{a, c} and
{b, c} are determined to be frequent, then we might end up with
ATt = {{a}, {b}, {c} {a, c}, {b, c}, {a, b, c}}. Notice the prob-
lem here: itemset{a, b} is not included inATt . However, since
{a, b, c} is a frequent itemset, by definition,{a, b} must be fre-
quent as well. The problem occurs because{a, b} has been dis-
carded long before. When the distribution changes and{a, b}
turns from infrequent to frequent, it cannot be added to the can-
didate list if {a} and{b} are inATt all the time. Although by
simply adding all subsets of{a, b, c} in ATt we will be able to
add{a, b} back to the frequent itemset list, since Apriori-like ap-
proaches only check the supersets of the existing frequent itemsets,
the subsets of existing frequent itemsets are not considered.

Continuing with Example 3, assume that itemd becomes fre-
quent at timet′. Using Apriori-like approaches, it will take3 ×

|WM | to detect the frequent itemset{a, b, c, d}. However, if in-
stead, we start from the current largest itemset inATt , that is
{a, b, c} in this example, then itemset{a, b, c, d} is considered
a candidate, and can be detected as frequent next time windows
tumble. Hence, the time for detecting{a, b, c, d} is only |WM |.
By definition, the completeATt can be obtained by simply com-
puting the power set of{a, b, c, d}minus null setφ. This approach
minimize both the delay in detection and the size of candidate list.

Definition 3. Given an itemset listA = {A1,A2, ...,Am},
for ∀A′ = {A′1,A′2, ...A′r}, whereA′1,A′2, ...A′r ∈ A, if A′1 ∪
A′2 ∪ ...∪A′r = A1 ∪A2 ∪ ...∪Am andr < m, then we sayA′
is acover setof A, denoted asAC .

For example, given itemset listA = {{a}, {b}, {c}, {d}, {a, b},
{a, b, c}},AC = {{d}, {a, b}, {a, b, c}} is one cover set.

Definition 4. Given an itemset listA and all its cover set
AC

1 ,AC
2 , ...,AC

q , if |AC
s | = min(∀|AC

i |), wherei = 1, ..., q,
then we callAC

s thesmallest cover setof A, denoted asASC .
For example, the smallest cover setASC of itemset listA =

{{a}, {b}, {c}, {d}, {a, b}, {a, b, c}} is {{d}, {a, b, c}}.
When a candidate itemset or an infrequent item becomes fre-

quent, the candidate list can be expanded from either direction, i.e.,
combining the new frequent itemset with all current frequent items
in ATt or with the smallest cover set ofATt . The decision as to
which direction to follow depends on the application. If the sizes
of the potential frequent itemsets are expected to be large, then the
smallest cover set could be a better option. On the other hand, if
small sized frequent itemsets are more likely, then Apriori-like ap-
proaches can be applied. However, in many real-world scenarios,
it is hard to make such predictions, especially when the distribu-
tion of the data streams is changing over time. Hence, we apply a
hybrid method in our approach.

4.2.1 Hybrid approach for generating candidates
Our hybrid candidate prediction technique is as follows. At the

timeWM andWP tumble:

• Step 1. Detect new frequent itemsets and move them from
candidate setC into set of frequent itemsetsATt . Also de-
tect any new frequent items and add them intoATt . This
step will be discussed in detail in Section 4.3.

• Step 2.UpdateATt = ATt∪P(ASC
Tt

)−φ, whereP(ASC
Tt

)
is power set ofATt ’s smallest cover set. This step is for
eliminating the problem discussed in Example 3.

• Step 3. Detect itemsets inC whose supports have fallen
below θ. Replace each of these itemsets by its subsets of
length one smaller, and then remove it fromC. For exam-
ple, if itemset{a, b, c, d} is not a candidate anymore, then
we add itemsets{a, b, c}, {a, b, d}, {b, c, d} and {a, c, d}
into C, and then remove{a, b, c, d}. This process can be
regarded as the reverse process of a Apriori-like approach.

• Step 4.SetC = C − ATt . After Steps 2 and 3, there could
be some candidates that are already included inATt , hence
we do not need to keep them in the candidate listC anymore.

• Step 5. Let A′ be one candidate itemset that becomes fre-
quent, or{j} wherej is an item that turns from infrequent
to frequent.

Step 5.1.∀A = {i} ∪ A′, wherei ∈ (I − A′) and{i} ∈
ATt , if A is not inATt , thenA is a new candidate.

Step 5.2.∀A′′ ∈ (ATt −A′)SC , if A = A′′ ∪A′ is not in
ATt , thenA is a new candidate.

Example 4.LetI = {a, b, c, d},ATt = {{a}, {b}, {c}, {a, b},
{a, c}, {a, b, c}}, andC = φ. At the timeWM andWP tumble:

Step 1. Assume that itemd becomes frequent, henceATt =
{{a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, b, c}}.

Step 2.ATt = ATt∪P(ASC
Tt

)−φ = ATt∪P({{d}, {a, b, c}})
−φ = {{a}, {b}, {c}, {d}, {a, b}, {a, c}, {b, c}, {a, b, c}}. No-
tice that itemset{b, c} is added toATt .

Steps 3 and 4. Since currentlyC = φ, these two steps are
skipped.

Step 5.C = {{a, d}, {b, d}, {c, d}, {a, b, c, d}}.
After time |WM |, the two windows tumble again:
Case 1:sup({a, b, c, d}) ≥ θ and{a, b, c, d} becomes fre-

quent.
Step 1.1.ATt = {{a}, {b}, {c}, {d}, {a, b}, {a, c}, {b, c},

{a, b, c}, {a, b, c, d}}.
Step 1.2.ATt = P({a, b, c, d})− φ.
Step 1.3.C = {{a, d}, {b, d}, {c, d}}.
Step 1.4.C = C − ATt = φ.
Step 1.5. All frequent itemsets detected.
Case 2:S({a, b, c, d}) < θ, and no new frequent itemset de-

tected.
Step 2.1 and step 2.2.ATt remains unchanged.
Step 2.3.C = {{a, d}, {b, d}, {c, d}, {a, b, c}, {a, b, d},

{a, c, d}, {b, c, d}}.
Step 2.4. Itemset{a, b, c} is removed fromC because it is

already a frequent itemset.
Step 2.5. No new frequent itemset detected, thus this step does

not apply.
Property: For each itemsetA with size k that moves from

infrequent to frequent at tumbling pointt, letCA be the list of new
candidates generated using our hybrid approach at Step 5. Let|CA|
be the number of itemsets inCA, andβ be the total time required
for all frequent itemsets inCA to be detected. We can prove that
|CA|+ 2

|WM |β ≤ 2p− k, wherep is the total number of frequent
items inATt . (The proof is omitted due to page limit.)

Notice thatp, i.e. the number of frequent items, is determined
by the nature of the stream and is not related to the chosen mining
method. This property indicates that the time and memory usage
of our hybrid candidate generation approach are correlated. They
are bounded to a constant that is not related to the size of mini-
mal cover setASC

Tt
. If, at time t, the size ofCA is large (which

indicates a large amount of memory consumption), then from this
property, we know that the time for detecting all frequent itemsets
in CA will be very short, i.e., large|CA| value indicates a smallβ.
Note that once all the frequent itemsets are detected,CA will be
removed fromC, therefore, the large memory usage only lasts for
a short time period. On the other hand, if it takes longer to detect
all frequent itemsets inCA, then the memory usage will be quite
limited, i.e., whenβ is large,|CA|must be small. Hence, this nice
property guarantees that the overall memory usage of the proposed
hybrid approach is small, and its upper bound is only determined
by the number of frequent items in the stream.

4.2.2 Finding smallest cover set
Our candidate prediction technique uses smallest cover set of

ATt to discover the most number of frequent itemsets in the short-
est time. In this section, we present an approximate algorithm that
can find a good cover set3 for a given frequent itemset listATt

efficiently in terms of both time and memory.
3Informally, a good cover set is one with a small number of itemsets,
and the size of each itemset in this cover set is as large as possible. For

• Step 1.LetASC
Tt

= φ. Build a set of itemsetsB = {B1,B2,
...,Bm}. LetBi = Ai for ∀Ai ∈ ATt .

• Step 2. Select the largest itemsetBk ∈ B, i.e., |Bk| =
max(|Bi|),Bi ∈ B, i = 1, ..., m. If there is a tie, then
select the one with larger corresponding itemset inATt . In
other words, if|Bk| = |Br| = max(|Bi|) and|Ak| > |Ar|,
whereAk andAr are the corresponding frequent itemsets
of Bk andBr according to step 1, then select itemsetBk.
If there is still a tie, then randomly select one of the largest
itemsets. SetASC

Tt
= ASC

Tt
∪ {Ak}.

• Step 3. For ∀Bi ∈ B, i = 1, ..., m, setBi = Bi − Bk.
Remove all empty sets fromB.

• Step 4.If B = φ, then stop. Else go to step 2.
Example 5.LetATt = {{a, b, c}, {a, c, d}, {a, d, e}, {a}, {b},

{c}, {d}, {e}}.
Step 1.ASC

Tt
= φ, andB = ATt .

Step 2. Select the largest itemsetB1 = {a, b, c} ∈ B. ASC
Tt

=
{A1} = {{a, b, c}}.

Step 3.B2 = {a, c, d} − {a, b, c} = {d}; B3 = {a, d, e} −
{a, b, c} = {d, e}. All the rest itemsets inB are empty. Hence,
B = {B2,B3} = {{d}, {d, e}}. Go to Step 2.

Step 2-2. Select the largest itemsetB3 = {d, e} ∈ B. ASC
Tt

=

ASC
Tt

∪ {A3} = {{a, b, c}, {a, d, e}}.
Step 3-2.B = φ. Algorithm terminates. The final cover set of

ATt is {{a, b, c}, {a, d, e}}.
The run time of this algorithm in the worst case is(|ATt | −

n) × |ASC
Tt
|, wheren is the total number of frequent items in the

stream. Hence, this algorithm is very efficient in practice.

4.2.3 Updating candidate support
For any itemset that changes its status from frequent to infre-

quent, instead of discarding it immediately, we keep it in the can-
didate listC for a while, in case distribution drifts back quickly
and it becomes frequent again.

Every timeWM andWP tumble,C is updated: any itemset
A ∈ C with S(A) < θ along with its counter is removed, and
new qualified itemsets are added resulting in the creation of new
counters for them.

For an itemsetA that has been in the candidate listC for a
long time, if it becomes frequent at timeti, its support may not
be greater than the thresholdδ immediately, because the historical
transactions (i.e., the transactions that arrive in the stream before
ti) dominate in calculatingS(A). Therefore, in order to detect
new frequent itemsets in time, historical transactions need to be
eliminated when updatingS(A) for everyA ∈ C.

Every timeWP tumbles, some of the old transactions will ex-
pire from WP . For any itemsetA that remains inC, S(A) is
updated to eliminate the effect of those historical transactions that
are no longer inWP .

SinceWM and WP are time-based tumbling windows, they
tumble every|WM | time units. At the timeWM andWP tum-
ble, the transactions that expire fromWP are those transactions
that arrived within the oldest|WM | time span inWP . Hence, we
can keep a checkpoint every|WM | time intervals inWP , denoted
aschk1, chk2, ..., chkp, wherechk1 is the oldest checkpoint, and
p = b|WP |/|WM |c. For eachA ∈ C, we record the number
of transactions arriving betweenchki−1 andchki that accessA,
denoted assupi(A). WhenWM andWP tumbles, transactions

example,{{a, b, c}, {b, c, d}} is better than{{a, b, c}, {d}}, because if
{b, c, d} is determined to be frequent, many subsets can be added into
ATt .

before checkpointchk1 are expired fromWP . Hence,sup(A) is
updated assup(A) = sup(A) − sup1(A). Note that after tum-
bling, a new checkpoint is added, andchk2 becomes the oldest
checkpoint.

The procedures for maintaining candidate listC and updating
candidate counters are given in Algorithm 2 and Algorithm 3, re-
spectively.

Algorithm 2 MAINTAIN_CANDIDATES
1: //Step 1 is included in Algorithm 7.
2: ATt = ATt ∪ P(ASC)− φ;
3: for all A ∈ C do
4: if S(A) < θ then
5: for all i ∈ A do
6: C = C ∪ ({A − {i}})
7: end for
8: C = C − {A}; removesup(A); removeoffset(A);
9: //we will explain the concept ofoffset in Section 4.4.

10: end if
11: end for
12: C = C − ATt ;
13: for all A′ = detect_new_freqset()do
14: for all {i} ∈ ATt andi /∈ A′ do
15: A = {i} ∪ A′;
16: if A /∈ ATt then
17: C = C ∪ {A}; sup(A) = 0; offset(A) = Nt;
18: end if
19: end for
20: for all Asc ∈ ASC do
21: A = Asc ∪ A′;
22: if A /∈ ATt then
23: C = C ∪ {A}; sup(A) = 0; offset(A) = Nt;
24: end if
25: end for
26: end for

Algorithm 3 UPDATE_CANDIDATE_SUP
1: for all A ∈ C do
2: sup(A) = sup(A)− sup(A)1;
3: offset(A) = Nt;
4: end for
5: for all i = 2 to p do
6: chki−1 = chki; //expire the oldest pointchk1

7: end for
8: Set all the records inchkp to 0;
9: //every timeWM tumbles, a new checkpoint is added toWP

4.3 Maintaining current frequent itemsets
and detecting new ones

Every timeWM tumbles, we update support values for all the
existing frequent itemsets. If the support of an itemsetA drops
below δ, then we move it from the set of frequent itemsetsATt

to the candidate listC, as indicated earlier, and the counter used
to record its frequency will be reset to zero, i.e.sup(A) = 0.
This is to ensure that, if the distribution change is not rapid,A
may stay in the candidate list for some time, as its history record
plays a dominant role in its support. By resetting its counter, we
eliminate the effect of historical transactions and only focus on the
most recent ones. This ensures that the decrease in its support can
be detected sooner. During the time-span ofWM , sup(A) will
be updated as each new transaction arrives. If, at the timeWM

andWP tumble,S(A) < θ, thenA will be removed from the
candidate list.

New frequent itemsets will come from either the infrequent
items or the candidate list. Since we keep counters for all itemsi ∈

I, when an item becomes frequent, it is easy to detect and its sup-
port is accurate. However, for a newly selected frequent itemsetA
that comes from candidate listC, its support will not be accurate, as
most of its historical information is not available. If we keep calcu-
lating its support asS(A) = sup(A)/Nt, whereNt is the number
of all transactions received so far, thisS(A) will not reflectA’s
true support. Hence, we need to keep an offset forA, denoted
offset(A), that represents the number of transactions that were
missed in counting the frequency ofA. A’s support at any time
t′ > t should be modified toS(A) = sup(A)/(Nt′−offset(A)),
whereNt′ is the total number of transactions received at timet′,
as the data stream monotonically grows. Since the counters of
candidate itemsets are updated every timeWM andWP tumble
to eliminate the history effect (as mentioned in Section 4.2), their
offsets also need to be reset to the beginning of the newWP .

Figure 2 demonstrates how the offset is calculated. Assume
that an itemsetA is added to the candidate list at the beginning
of WP (time t), and a counter is created for it. At the timeWM

andWP tumble (timet′), we need to calculateS(A) to see if we
can moveA to the set of frequent itemsetsAT ′t . Since we do not
haveA’s historical information before timet, we need to adjust
A’s offset toNt. Hence, we know thatoffset(A) = Nt, wheret
is the timestamp whenA starts being recorded.

D T t

N t

N t

PW

MW

sup(A) starts

being recorded

offset(A) S(A) = sup(A) / (− offset(A))

Figure 2. Offset for itemset A
Note that the supports for such itemsets are no longer based

on the whole history, unlike all items that we track throughout the
entire life-span of the stream. However, using supports that only
depend on recent history should not affect TWIM’s effectiveness.
This is because the data stream is continuous with a distribution
that changes over time, and hence, the mining results over such
data stream is temporary – the result at timet1 may not be con-
sistent with the result at timet2 (t1 < t2). Therefore, calculating
supports using the whole history may not reflect thecurrent dis-
tribution correctly or promptly, not to mention the huge amount
of memory required for tracking the entire history for each item-
set. Our experiments demonstrate that our approach is sensitive to
both steady and slow changes, and rapid and significant changes,
while the existing techniques cannot perform well, especially for
the latter case.

5. Experiments
In this section, we present a series of experiments to evalu-

ate TWIM’s performance in comparison with three others: SW
method [4], which is a sliding window based technique suitable for
dynamic data streams, FDPM [26], which is also a false-negative
algorithm, and Lossy Counting (LC) [18], which is a widely-adopted
false positive algorithm. Since neither FDPM nor LC has the abil-
ity to detect distribution changes, we conduct the experiments in
two stages. In the first stage, we compare these algorithms over
data streams without distribution drift. In the second stage, we
introduce time-varying data streams.

5.1 Experimental setup and data sets

Our experiments are carried out on a PC with 3GHz Pentium 4
processor and 1GB of RAM, running Windows XP. All algorithms
are implemented using C++.

We use synthetic data streams in our experiments to gain easy
control over the data distributions. We adopt parameters similar to
those used in previous studies [7, 26]. The total number of differ-
ent items inI is 1000, and the average size of transactions inTt

is 8. The number of transactions in each data stream is 100,000.
Note that in real-world a data stream can be unbounded. How-
ever, none of the algorithms will be affected by the total number
of transactions, as long as the stream is sufficiently large. Our
tumbling windows are time-based, and the sizes of the windows
are user determined based on the arrival rate of a data stream. We
show in Section 5.5.2 how the window sizes affect our mining re-
sults. For ease of representation, we fix the transaction arrival rate
for all data streams in this experiment, hence, the sizes ofWM and
WP can be represented using transaction counts.

5.2 Effectiveness over streams with stable
distribution

In these experiments, we evaluate the effectiveness of the four
algorithms over four data streams with Zipf-like distributions [27].
The lower the Zipf factor, the more evenly distributed are the data.
A stream with higher Zipf factor is more skewed. Since FDPM and
LC cannot deal with time-varying streams, to fairly compare ef-
fectiveness, the test data streams do not have distribution changes.
The objective of these experiments is to test the performance of
TWIM over streams with stable distribution.

The sizes of the two tumbling windows are|WM | = 500 trans-
actions, and|WP | = 1500 transactions. The threshold valuesδ
andθ are set to0.8% and0.5%, respectively. We discuss in Sec-
tions 5.3 and 5.5.1 how these thresholds affect the performance of
these algorithms. The size of the sliding window used in SW is
the same as the size of ourWM , i.e, 500 transactions. The error
parameter and reliability parameter used in FDPM and LC are set
to δ/10 and0.1, respectively4. According to earlier experiments,
this setting will make FDPM and LC perform better [18, 26]. The
recall (R) and precision (P) results are shown in Table 2.

Table 2. Recall and precision comparison
Stream Zipf TWIM SW FDPM LC

R P R P R P R P

D1 0.8 0.68 1 0.71 0.74 0.69 1 1 0.52
D2 1.2 0.87 1 0.79 0.83 0.80 1 1 0.62
D3 2.0 0.93 1 0.92 0.95 0.95 1 1 0.84
D4 2.8 1 1 1 1 1 1 1 0.88

These results demonstrate that, when the distribution of a data
stream is near uniform, FDPM and SW perform slightly better than
TWIM. However, when Zipf is higher, the performance of TWIM
is comparable to FDPM and better than SW. When the stream is
very skewed, TWIM, SW and FDPM can all find the exact answer.
On the other hand, although LC always has a recall of100%, its re-
sults are unreliable, especially for streams with lower Zipf. These
results demonstrate that TWIM performs at least as well as exist-
ing algorithms on streamswithout distribution change. Note that
although the recall of FDPM is claimed to approach 1 at infinity
[26], this only holds when the stream has no distribution change

4The error parameterε is used to control error bound. Smallerε can reduce
errors and increase the recall of FDPM and LC. The memory consumption
of FDPM is reciprocal of the reliability parameter [26].

during its entire lifespan, which is a very strong and usually incor-
rect assumption for most real applications.

5.3 Effect of threshold δ

This set of experiments evaluate the effectiveness of the four
algorithms with different values of thresholdδ. For this set of ex-
periments, we setθ = δ − 0.3%. Note that thresholdθ is mainly
used to control the size of candidate listC. Asθ gets smaller, more
candidate itemsets are selected, which leads to a higher memory
consumption. On the other hand, when mining a time-varying data
stream, a largerθ may cause TWIM’s recall to decrease since there
are fewer candidates. We demonstrate the effect of differentθ val-
ues on mining time-varying streams in Section 5.5.1. In this set of
experiments, since the testing data stream has a steady distribution,
the size ofC should not affect TWIM.

We apply TWIM, SW, FDPM and LC to data streamD2 (as
in Section 5.2) with Zipf 1.2, and varyδ from 0.4% to 2%. The
results are shown in Table 3, which demonstrate that the effective-
ness of TWIM is comparable with FDPM whenδ varies. TWIM’s
recall is improved with higherδ. Although SW always has a better
recall than TWIM and FDPM, its precision never reaches1. LC
has a low precision even whenδ is high (2%).

Table 3. Results for varying δ value
δ TWIM SW FDPM LC

R P R P R P R P

0.4% 0.62 1 0.76 0.57 0.65 1 1 0.44
0.8% 0.83 1 0.85 0.81 0.80 1 1 0.62
1.2% 0.94 1 1 0.87 0.93 1 1 0.74
2% 0.98 1 1 0.99 1 1 1 0.77

5.4 Effectiveness over dynamic streams
To evaluate the effectiveness of these three algorithms over

time-varying data streams, we conducted several experiments.
We created two data streamsD5 andD6 using the same statis-

tics as in Section 4.1, with Zipf = 1.5 and 50,000 transactions in
each stream. Both of the streams start changing their distributions
every 10,000 transactions. The change ofD5 is steady and slow.
It takes 4000 transactions forD5 to complete its change. On the
other hand,D6 has a faster and more noticeable change: only 800
transactions to change. The sizes of the two tumbling windows
are |WM | = 400 transactions, and|WP | = 1500 transactions.
Threshold valuesδ andθ are0.8% and0.5%, respectively. The
mining results after each distribution change forD5 andD6 are
given in Tables 4 and 5.

Table 4. Mining results over D5

change # TWIM SW FDPM LC
R P R P R P R P

change 1 0.91 1 0.85 0.87 0.82 0.93 1 0.66
change 2 0.93 1 0.86 0.92 0.73 0.87 1 0.51
change 3 0.88 1 0.74 0.84 0.69 0.77 1 0.44
change 4 0.88 1 0.77 0.93 0.72 0.68 1 0.46
change 5 0.92 1 0.83 0.86 0.60 0.68 1 0.35

Table 5. Mining results over D6

change # TWIM SW FDPM LC
R P R P R P R P

change 1 0.95 1 0.72 0.82 0.87 0.82 1 0.58
change 2 0.97 1 0.71 0.77 0.78 0.81 1 0.51
change 3 0.93 1 0.69 0.80 0.65 0.74 1 0.38
change 4 1 1 0.74 0.71 0.67 0.66 1 0.41
change 5 0.88 1 0.71 0.89 0.53 0.64 1 0.32

These results show that TWIM and SW adapt to time-varying
data streams, while neither FDPM nor LC is sensitive to distri-
bution changes. The more severe the changes, the worse is the
performance of FDPM and LC. Moreover, FDPM and LC’s per-
formance keeps worsening when more distribution changes occur
in a stream, whereas TWIM and SW are not affected by the num-
ber of changes. SW performs worse than TWIM in both cases.
Mining results of TWIM over the stream with faster and more
noticeable distribution changes (D6) are better than the one that
changes slower (D5), while SW seems more suitable to slower
and mild changes. Note that as mentioned in Section 4.1, we may
improve the mining results of TWIM for such slow-drifting data
streams by reducing the sizes ofWM andWP . We demonstrate
the effect of different window sizes in Section 5.5.2.

5.5 TWIM Parameter Settings
5.5.1 Effect of thresholdθ

We test TWIM on the time-varying streamsD5 and D6 de-
scribed in Section 4.4, and varyθ from 0.4% to 1%. The sizes
of WM andWP are400 transactions and1500 transactions, re-
spectively. Threshold valueδ is fixed at1.2%. The results are
presented in Tables 6 and 7.

Table 6. Results for varying θ over D5

Change # θ (%)
0.4 0.6 0.8 1

R P R P R P R P

change 1 0.96 1 0.97 1 0.88 1 0.72 1
change 2 0.95 1 0.95 1 0.83 1 0.74 1
change 3 0.93 1 0.89 1 0.85 1 0.68 1
change 4 0.98 1 0.94 1 0.88 1 0.75 1
change 5 0.89 1 0.87 1 0.74 1 0.69 1

Table 7. Results for varying θ over D6

Change # θ (%)
0.4 0.6 0.8 1

R P R P R P R P

change 1 0.98 1 0.92 1 0.89 1 0.83 1
change 2 1 1 1 1 0.92 1 0.87 1
change 3 0.93 1 0.91 1 0.84 1 0.77 1
change 4 1 1 0.95 1 0.91 1 0.85 1
change 5 0.95 1 0.95 1 0.90 1 0.83 1

We see that the performance of TWIM can be improved by de-
creasingθ. However, as discussed in Section 4.2, a lowθ value
may result in higher memory consumption. The extreme case is
θ = 0. In this case, all infrequent itemsets will be treated as can-
didates, and thus the total number of counters is exponential.

5.5.2 Varying window sizes
To evaluate the effect of tumbling window sizes, we test TWIM

onD5 andD6, and vary the size ofWM from 200 transactions to
1000 transactions, andWP from 1000 transactions to 4000 trans-
actions. Threshold valuesδ and θ are0.8% and0.5%, respec-
tively. The experimental results are shown in Tables 8 and 9. Since
the precision value is always 1, we only show the recall value.

We notice that larger windows size may reduce TWIM’s recall,
since sudden distribution changes will be missed. On the other
hand, as mentioned in Section 4.1, large windows can ensure high
accuracy of the estimated supports for candidate itemsets.

5.6 Memory usage

Table 8. Varying |WM | and |WP | over D5

|WM | |WP | chg 1 chg 2 chg 3 chg 4 chg 5

200 1000 0.93 0.88 0.89 0.91 0.95
400 1500 0.87 0.92 0.85 0.88 0.90
600 2000 0.82 0.88 0.79 0.74 0.82
800 3000 0.75 0.73 0.72 0.67 0.69
1000 4000 0.68 0.72 0.66 0.64 0.61

Table 9. Varying |WM | and |WP | over D6

|WM | |WP | chg 1 chg 2 chg 3 chg 4 chg 5

200 1000 0.99 0.97 0.93 0.95 0.88
400 1500 0.94 0.97 0.91 1 0.87
600 2000 0.89 0.92 0.85 0.89 0.86
800 3000 0.82 0.84 0.79 0.86 0.77
1000 4000 0.78 0.81 0.81 0.75 0.73

The major memory requirements for TWIM are the counters
used for all items, frequent itemsets, and candidates. To reflect the
memory usage of our approach, we report the maximal number of
counters that we create for each experiment.

Table 10 presents the memory usage of TWIM, FDPM, and
LC for mining data setsD1, D2, D3 andD4. Given that each
counter takes 4 bytes, the memory requirement for mining these
data streams using TWIM is around 60KB. According to this ta-
ble, the memory consumed by SW is about four times of TWIM’s
memory usage. TWIM uses slightly more memory than FDPM,
and LC has the lowest memory requirement.

Table 10. Maximal counters for mining D1 - D4

Stream Maximal Counters
TWIM SW FDPM LC

D1 11892 47606 8478 7129
D2 14533 59438 10128 8722
D3 18002 71040 13502 11346
D4 16115 56442 11764 10098

Table 11 shows TWIM’s memory usage for the experiments
in Section 5.5.1, demonstrating that its memory consumption is
inversely correlated to thresholdθ, and the maximum memory re-
quirement is around 228KB forD5 and 191KB forD6.

To evaluate the effect of window sizes on memory usage, we
present in Table 12 the maximum number of counters created for
experiments in Section 5.5.2.

The maximum memory requirements for miningD5 andD6

are around 251KB and 225KB, respectively. We can see that larger
windows sizes result in more counters to be used. Furthermore,
the number of counters used for a stream with slow distribution
changes is larger than the number of counters for a stream that
changes fast.

5.7 CPU time analysis

Since TWIM is a window-based approach while neither FDPM
nor LC use windows, it is hard to fairly compare their CPU times.
However, to demonstrate that TWIM is efficient for high-speed
data streams, we conducted a set of experiments.

By analyzing Algorithm 1, we can see that TWIM performs
the largest amount of work when|WM | and|WP | tumble. Hence,
we tested the average run time of TWIM at each tumble point for
streamsD1 to D6. The average run time for miningD1 to D6

are 3.3ms, 4.0ms, 2.5ms, 3.7ms, 5.3ms, and 5.9ms, respecitively.
These results show that TWIM is an efficient algorithm suitable
for online streams. We also notice that streams with distribu-

Table 11. Maximal counters when θ varies
Stream θ (%)

0.4 0.6 0.8 1

Max Ctr.-D5 64432 47210 36778 32002
Max Ctr.-D6 51301 42676 35209 28123

Table 12. Maximum counters when |WM | and
|WP | varies

|WM | |WP | max Ctr. -D5 max Ctr. -D6

200 1000 42398 39901
400 1500 50006 44872
600 2000 56020 51922
800 3000 59891 54646
1000 4000 65335 59043

tion changes (D5 andD6) require slightly longer processing time,
sinceATt andC are updated more frequently.

6. Conclusion
In this paper, we propose a novel algorithm called TWIM for

mining frequent itemsets. Our approach has the ability to detect
changes in a data stream and update mining results in real-time.
We use two tumbling windows to maintain current frequent item-
sets and predict distribution changes. A list of candidate itemsets
is generated and updated during mining. The candidates are the
itemsets that have the potential to become frequent if distribution
changes. Every time the two tumbling windows move, we apply a
set of heuristics to update the candidate list and maintain frequent
itemsets. Candidates that become frequent are moved to the fre-
quent itemset list, new candidates are added, and itemsets that no
longer have supports greater than threshold valueθ are removed.
Unlike most existing algorithms that are false-positive oriented,
our approach produces only true frequent itemsets, and requires
less memory. Experimental results demonstrate that TWIM has
promising performance on mining data streams with or without
distribution changes.

We are currently investigating a number of issues, including
proving the complexity for finding thekth frequent itemset in a
data stream, developing more heuristics for maintaining candidate
itemsets, designing a more sophisticated and more efficient count-
ing system, and analyzing the relationship among thresholds, win-
dow sizes, and memory space for different applications.

7. References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining association
rules. InProc. 20th Int. Conf. on Very Large Data Bases, pages
487–499, 1994.

[2] B. Babock, S. Babu, M. Datar, R. Motiwani, and J. Widom. Models
and issues in data stream systems. InProc. 21st ACM
SIGACT-SIGMOD-SIGART Symp. Principles of Database Systems,
pages 1–16, 2002.

[3] J. Chang and W. Lee. Finding recent frequent itemsets adaptively
over online data streams. InProc. 9th ACM SIGKDD Int. Conf. on
Knowledge Discovery and Data Mining, pages 487–492, 2003.

[4] J. Chang and W. Lee. A sliding window method for finding recently
frequent itemsets over online data streams.Journal of Information
Science and Engineering, pages 753–762, 2004.

[5] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent
items in data streams. InProc. Int. Colloquium on Automata,
Languages, and Programming, pages 693–703, 2002.

[6] J. Cheng, Y. Ke, and W. Ng. Maintaining frequent itemsets over
high-speed data streams. InProc. Pacific-Asia Conf. on Knowledge
Discovery and Data Mining PAKDD, pages 462–467, 2006.

[7] Y. Chi, H. Wang, P. Yu, and R. Muntz. Moment: Maintaining closed
frequent itemsets over a stream sliding window. InProc. 2004 IEEE
Int. Conf. on Data Mining, pages 59–66, 2004.

[8] Cormode and Muthukrishnan. What’s hot and what’s not: tracking
most frequent items dynamically. InProc. 22nd ACM
SIGACT-SIGMOD-SIGART Symp. Principles of Database Systems,
pages 296–306, 2003.

[9] Demaine, Lopez-Ortiz, and Munro. Frequency estimation of internet
packet streams with limited space. InProc. 10th Annual European
Symposium on Algorithms, pages 348–360, 2002.

[10] M. Gaber, A. Zaslavsky, and S. Krishnaswamy. Mining data
streams: A review.ACM SIGMOD Record, (2):18–26, 2005.

[11] D. Gunopulos, R. Khardon, H. Mannila, S. Saluja, and R. Sharma.
Discovering all most specific sentences.ACM Trans. Database Sys.,
(2):140–174, 2003.

[12] M. Halatchev and L. Gruenwald. Estimating missing values in
related sensor data streams. InProc. ACM SIGMOD Int. Conf. on
Management of Data, pages 83–94, 2005.

[13] G. Hulten, L. Spencer, and P. Domingos. Mining time-chaning data
streams. InProc. 7th ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining, pages 97–106, 2001.

[14] N. Jiang and L. Gruenwald. Research issues in data stream
association rule mining.ACM SIGMOD Record, (1):14–19, 2006.

[15] R. Jin and G. Aggrawal. Efficient decision tree constructions on
streaming data. InProc. 9th ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining, pages 571–576, 2003.

[16] R. Karp, C. Papadimitriou, and S. Shenker. A simple algorithm for
finding frequent elements in sets and bags.ACM Trans. Database
Sys., pages 51–55, 2003.

[17] D. Kifer, S. Ben-David, and J. Gehrke. Detecting change in data
streams. InProc. 30th Int. Conf. on Very Large Data Bases, pages
180–191, 2004.

[18] Manku and Motwani. Approximate frequency counts over data
streams. InProc. 28th Int. Conf. on Very Large Data Bases, pages
346–357, 2002.

[19] D. Cai et. al. Maids: Mining alarming incidents from data streams.
In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
919–920, 2004.

[20] D. Carney et. al. Monitoring streams - a new class of data
management application. InProc. 28th Int. Conf. on Very Large
Data Bases, pages 215–226, 2002.

[21] F. Angiulli et. al. On the complexity of inducing categorical and
quantitative association rules.Theoretical Computer Science, pages
217–249, 2004.

[22] J. Wang et. al. Closet+: Searching for the best strategies for mining
frequent closed itemsets. InProc. 9th ACM SIGKDD Int. Conf. on
Knowledge Discovery and Data Mining, pages 236–245, 2003.

[23] L. G. Valiant. The complexity of enumeration and reliability
problems.SIAM Journal on Computing, (3):410–421, 1979.

[24] H. Wang, W. Fan, P. S. Yu, and J. Han. Mining concept-drifting data
streams using ensemble classifiers. InProc. 9th ACM SIGKDD Int.
Conf. on Knowledge Discovery and Data Mining, pages 226–235,
2003.

[25] L. Yang and M. Sanver. Mining short association rules with one
database scan. InProc. Int. Conf. on Information and Knowledge
Engineering, 2004.

[26] J. Yu, Z. Chong, H. Lu, and A. Zhou. False positive or false
negative: Mining frequent itemsets from high speed transactional
data streams. InProc. 30th Int. Conf. on Very Large Data Bases,
pages 204–215, 2004.

[27] G. K. Zipf. Human behavior and the principle of least-effort.
Addison-Wesley, 1949.

