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ABSTRACT

We describe a novel simple and highly scalable semi-supervised
method called Word-Class Distribution Learning (WCDL), and ap-
ply it the task of information extraction (IE) by utilizing unlabeled
sentences to improve supervised classification methods. WCDL
iteratively builds class label distributions for each word in the dic-
tionary by averaging predicted labels over all cases in the unla-
beled corpus, and re-training a base classifier adding these distribu-
tions as word features. In contrast, traditional self-training or co-
training methods add self-labeled examples (rather than features)
which can degrade performance due to incestuous learning bias.
WCDL exhibits robust behavior, and has no difficult parameters to
tune. We applied our method on German and English name en-
tity recognition (NER) tasks. WCDL shows improvements over
self-training, multi-task semi-supervision or supervision alone, in
particular yielding a state-of-the art 75.72 F1 score on the German
NER task.

Categories and Subject Descriptors: 1.2.7 [Artificial Intelligence]:

Natural Language Processing - text analysis; M.4 [Knowledge Man-
agement]: Knowledge modeling

General Terms: Algorithms

Keywords: Semi-Supervised Learning, Semi-Supervised Feature
Learning, Name Entity Recognition, Information Extraction

1. INTRODUCTION

Words are a fundamental building block in language and fea-
tures based on words are a fundamental building block of natural
language processing (NLP) systems. Indeed, many tasks such as
named entity recognition (NER), part-of-speech (POS) tagging and
chunking involve sequence modeling with word-level evaluation.
For other tasks, such as document classification or sentiment ex-
traction, that are evaluated at the document-level individual words
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still carry significant label information.

Supervised techniques using such features have yielded great
success in the NLP community, but are restricted by the expense
of annotating data. Popular semi-supervised methods such as self-
training [18, 14, 12, 13] or co-training [2, 4] that utilize large un-
labeled corpora try to improve over supervised methods by itera-
tively adding self-labeled examples predicted by the current model.
However, they are vulnerable to the incestuous training bias prob-
lem [19, 21], i.e. examples may be consistently mislabeled making
the model even worse on the next iteration. To combat this sev-
eral authors have proposed schemes for only adding examples that
meet a selection criterion [13, 19, 6], but these heuristic choices
still might yield unreliable results.

In this paper we propose a novel semi-supervised strategy that
works by providing semi-supervision at the level of words rather
than examples. Under the assumption that words carry label infor-
mation we measure the class label distribution for each word on a
large unlabeled corpus. These features are then used to retrain the
model in an iterative fashion. As noisy self-labeled examples are
not added (as in self-training), our model exhibits robust behavior,
and moreover has no difficult parameters (e.g. selection criteria) to
tune.

We applied this strategy on two CoNLL-2003 [8] shared tasks,
German NER and English NER. Using a state-of-the-art neural
network model [5] in various setups, we observed improvements
from using our method, called Word-Class Distribution Learning
(WCDL), compared to the baseline classifier and to self-training,
whenever we applied it. In particular we achieved a state-of-the art
result of 75.72 F1 on the German NER task.

2. SEMI-SUPERVISED LEARNING WITH
WORD-CLASS DISTRIBUTIONS

Unlike most popular semi-supervised approaches (details in Sec-
tion 3), we propose to induce features from a large corpus of unan-
notated examples in a supervised fashion, and then use these fea-
tures to augment the feature space of the labeled set.

2.1 Word-Class Distribution Learning

We consider the setting where one is given labeled training ex-
amples {(x;,yi)}i=1,...,... € X x Y and an unlabeled set of ex-
amples {x; }i=1,....u € X where U > L. In particular X’ is the
set of all sequences composed of elements which take on a finite



set of possible values, e.g. sequences of words (but in the general
case this could include other discrete types of feature as well, e.g.
POS tags, stem-ends, etc.). That is, we will assume an input se-
quence x = (x1,...,%|4 ), Where z; € D, a dictionary of size
|D|. The labels Y € {1,..., K} are the K classes a sequence can
be assigned to.

We define the word-class distribution for a given word w € D as
a vector wed(w) € R¥ where

wed(w); = Py =i|lw € z). (1)

That is, the i*" dimension measures the probability of label y = 4
being assigned given that word w is present in the input sequence x.
This distribution is of course unknown but can be estimated from
the training set or, critically, can be re-estimated using unlabeled
data by applying a trained classifier. We thus define the empirical
word-class distribution as:

WS =i nwes)
{k:w ez} ’
where f(-) is a classifier trained to predict y € ) given z € X.

We hence propose the following iterative semi-supervised train-
ing algorithm:

@

1. Define the feature representation ¢(w) for a word w, and the
representation ® () = (¢(x1), ..., ¢(z|5)) for an example
x.

2. Train aclassifier f(-) on training examples (X, y;) using the
feature representation @(-).

3. Augment the representation of words with their word-class
distributions:

d(w) = (p(w), wed(w))
using the current model f(-) to compute (2) and redefine

O(x) = (¢(x1), - - -, B(a))-

4. Iterate steps 2 and 3.
2.2 Sequence Labeling with WCDL

In this work we consider sequence labeling tasks where inputs x
are windows of a fixed size, and the middle word in the window is
the word to be tagged. In this case one may want to consider the
modified word class distribution where we are interested in class
distributions only for the words to be labeled:

WS =i A w=(@)m)

[{k:w = (z)m}] 7
where we only count matches to word w with the middle word with
index m = (|z}| — 1)/2 + 1. However, we still augment all words
in the window with wed(-) features to capture local patterns.

2.3 Why Is It Useful?

Like self-training and co-training our algorithm (i) iteratively
tries to improve its model; and (ii) is a wrapper approach that
can use an supervised (or semi-supervised) classifier as a “base
learner”. However, our algorithm also has the following benefits:

©))

m(w)z

e It has no incestuous bias from introducing new examples
with incorrect labels as in self-training, as no examples are
added.

o [t does not require tricky selection heuristics as in self-training
algorithms.

o The supervised model can learn if the wcd features are rel-
evant or not (it can ignore or downweight them if it wants).

e The constructed wed features contain information about the
potential label of an example containing these words. This is
collected by averaging over many unlabeled examples hence
infrequent mistakes can be smoothed out and potentially cor-
rected on the next iteration.

e In a sequence labeling task, the wed features for neighboring
words are highly informative for the word to be labeled.

e This algorithm is highly scalable (it adds a few features to
the model, not lots of extra examples).

3. PREVIOUS WORK

We have already mentioned self-training [18] (also called boot-
strapping’ in the traditional NLP field) and co-training [2]. These
methods augment the training set with labeled examples from the
unlabeled set which are predicted by the model itself. This may
give improvements in a model, but care must be taken as the pre-
dictions are prone to noise.

Many other semi-supervised learning algorithms exist, including
tranductive SVMs [11], graph-based regularization [22], entropy
regularization [10] and EM with generative mixture models [16],
see [3] for a review. Apart from self-training and co-training, many
other semi-supervised methods have scalability problems for real-
istic language modeling tasks, which normally involve hundreds of
thousands of labeled examples.

Beyond the above approaches of semi-supervised learning with
small amounts of labeled data and larger sets of unlabeled data,
there has been a growing interest in the use of human-provided as-
sociations of features to particular classes for augmenting standard
supervised learning. Most of this type of work has focused on using
prior class-bias based features (called "labeled features") to gener-
ate labeled pseudo-examples or make feature selections [17, 20].
Further, the authors of [7] introduced a generalization expectation
criterion to softly constrain the model’s predictions on unlabeled
examples with labeled features directly.

Finally, there are some methods that use auxiliary tasks on a
large unlabeled corpus for training sequence models (often through
multi-task learning). Ando et al. [1] proposed a method based on
defining multiple tasks using unlabeled data that are multi-tasked
with the task of interest, which they showed to perform very well
on several natural language tagging tasks. Similarly, Collobert et
al. [5] proposed a related method for deep neural networks where
each word in the dictionary is represented by a vector (a represen-
tation which is shared between the multiple tasks). They multi-task
with an unsupervised language model (LM), predicting the missing
word in the middle of a text window, again resulting in good per-
formance. In this work we follow the setup of [5] and measure the
performance of WCDL as a wrapper on their approach.

4. EXPERIMENTS

We test our approach on the English and German NER datasets
provided by the CoNLL-2003 shared task [8]. NER systems label
atomic elements in the sentence into categories such as ‘PERSON’,
‘COMPANY’, or ‘LOCATION’, an important sub-task of informa-
tion extraction (reviewed in [15]). For each language, a training set,
a development set (for parameter tuning), a test set are provided.
For both languages, more than 200,000 training tokens exist in the
provided training sets (Table 1). The large unannotated ECI data
file provided by CoNLL-2003 is used as our unlabeled corpus for
the German NER. A sampled set of English Wikipedia web pages
is used for WCDL on the English NER (size listed in Table 1).



Table 1: Number of (labeled) and unlabeled tokens used in our
experiments in two CoNLL-2003 [8]) NER tasks .

Tokens Size | Training | Unlabeled
in Task (Labeled)
German NER | 206,931 ~58M
English NER | 203,621 ~200M
4.1 Method

As a “base classifier” for the tagging task, we use the unified
Neural Network (NN) framework of [5] where the input sentence
is processed by several layers of feature extractions. The first layer
maps words to 50-dimensional vectors (one vector for each word in
the dictionary), the parameters of which are automatically trained
during the learning process using backpropagation. The second
layer is a classical layer of H hidden units (where H is optimized
on the development set), and the final layer outputs probabilities of
the class labels. In [5], the authors described its application to sev-
eral well known NLP tasks including POS tagging and semantic
role labeling, but do not report results for NER. They report us-
ing multi-tasking with an unsupervised task of learning a language
model (LM) yields good results for other sequence labeling tasks.
We hence tried using the LM as well.

We train our NER labeling system using a sliding window, op-
tionally followed by a viterbi decoding of the entire sentence given
the class probabilities from the NN predictions. This viterbi decod-
ing could capture the local dependencies between targeted NER
classes, which improves the NN performance effectively. The pro-
posed WCDL (under sequence labeling) functions similarly as the
viterbi decoding, since the learned class-distributions of surround-
ing words should obey local dependencies as well. Hence we com-
pare WCDL with the viterbi step.

In all cases, it is straightforward to use WCDL. For all words in
the text window centered at the target word, WCDL input features
are concatenated along with the other word feature vectors.

Our baseline model uses the following word features:

e For English NER, we use (i) words in a 7-word-window sur-
rounding the current word, (ii) capitalization flags of the cur-
rent and surrounding words (Caps); and (iii) gazetteer infor-
mation, as provided by CoNLL-2003;

e For German NER, we use (i) words in a 5-word-window sur-
rounding the current word, (ii) capitalization flags of the cur-
rent and surrounding words, (iii) prefix and suffix (length up
to 4) of the current and surrounding words, (iv) the POS tags
of the current and surrounding words; and (v) the chunk tag
of the current and surrounding words. (Note in this case no
gazetteer lists are used).

4.2 Results
We compare WCDL over multiple baselines, including NER by

supervision alone, supervision with viterbi decoding, semi-supervision

with LM, and with self-training.

Comparison with Supervision & Semi-supervision: Table 2
lists the test set performance on the German NER task using the F1
measure when applying WCDL as a wrapper to various systems:
using only word features (with and without a viterbi decoding step),
and using all features plus the language model (LM) based semi-
supervised learning. In all cases WCDL improves over the base-
line. Our best performance of 75.72 (using all features + WCDL)
beats the state-of-the-art German NER performance of 75.27 which
was reported in [1]. The best result during the CoNLL-2003 com-
petition was 74.17 [9].

We also considered taking our best model, and adding the WCDL
features predicted by it to a basic word-features only model. This

Table 2: F1 score on the test set for German NER. For each
choice of baseline (left column) applying word-class distribu-
tion learning (WCDL) improves over it (right column). LM
means using language model semi-supervision.

Method Baseline | +WCDL
Words only 45.89 51.10
Words only + Viterbi 50.61 53.46
All Features + LM 72.44 73.32
All Features + LM + Viterbi 74.33 75.72

improved its accuracy from 50.61 to 64.1. Using the LM as well
yields 72.45 (words+LM on their own are 69.05). This is interest-
ing because these results do not require POS, chunk, stem or caps
features any more, but are close to the state-of-the-art.

Table 3: F1 score on the test set for English NER. WCDL im-
proves over each baseline.

Method Baseline | +WCDL
Words + Caps 77.82 79.38
Words + Caps + Viterbi 80.53 81.51
All Features + LM 86.49 86.88
All Features + LM + Viterbi 88.40 88.69

Table 3 provides results for the English NER task. Again, WCDL
improves over all baselines; our best result was 88.69. In contrast,
the best performing method during the competition was 88.76, and
[1] have since reported 89.31 using multi-task semi-supervision.
Here, our slightly worse performance seems to be due to our weaker
baseline method (before even applying WCDL) compared to these
approaches.

Comparison with Self-training We applied self-training to the
same baseline methods to compare the performance of WCDL.
There are numerous variants of self-training. We adopt the fol-
lowing weighting scheme: given L training examples, we choose
L/R (R is a parameter to choose) unlabeled examples to add in
the next round’s training. By varying R, we get a range of impacts
from self-training.

Table 4 and Table 5 give the results of the English and German
NER. Self-training only helped marginally, or not at all, depending
on the parameters.

Table 4: Test F1 of German NER using Self-Training.
Method Baseline | R=1 | R=10 | R=100
Words only | 50.61 47.07 | 4792 | 479
All+LM 74.33 7342 | 7441 | 739

Table 5: Test F1 of English NER using Self-Training.
Method Baseline | R=1 | R=20 | R=100

Words only | 80.53 79.51 | 81.01 | 80.85
All+LM 88.40 87.64 | 88.07 | 88.17

The above comparison indicates that WCDL has better behavior
than self-training with a random selection strategy. Since there ex-
ist many selection strategies for self-training, other selection tech-
niques might bring improvements, see e.g. [6, 19] for other strate-
gies. Still, these heuristic choices are difficult and need careful tun-
ing [19]. In contrast, the proposed WCDL method does not seem
to suffer from these issues.

Further, the performance in multiple rounds of self-training might
oscillate because of degradation by noisy labels (see e.g. [19, 21]).
We observed that WCDL’s iterative training gives stable results.
Figure 1 shows the test F1 from the iterations (as a wrapper for the
“All features + LM + Viterbi” baseline) for the German NER set. It
appears to converge in only a few iterations.
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Figure 1: Test F1 over WCDL rounds on German NER.

5. CONCLUSIONS

In this work we proposed a novel semi-supervised algorithm
called word class-distribution learning and applied it to the task
of sequence labeling. Our method is highly scalable, contains no
difficult parameters to tune, and we found it to be empirically ro-
bust, improving over every supervised and semi-supervised base-
line method we applied it to.

The proposed method can easily be extended to other cases or
domains. For example, instead of calculating predicted class dis-
tributions for each word, we could consider n-gram distributions
instead. Moreover, one can generalize beyond word-level evalua-
tion tasks. For instance in text categorization problems (document
classification or sentiment analysis) a word’s class distribution is
the distribution of labels of documents that contained that word.
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