
Boosting KNN Text Classification Accuracy by using
Supervised Term Weighting Schemes

Iyad Batal
Department of Computer Science

University of Pittsburgh
iyad@cs.pitt.edu

Milos Hauskrecht
Department of Computer Science

University of Pittsburgh
milos@cs.pitt.edu

ABSTRACT
The increasing availability of digital documents in the last decade
has prompted the development of machine learning techniques to
automatically classify and organize text documents. The majority
of text classification systems rely on the vector space model, which
represents the documents as vectors in the term space. Each vec-
tor component is assigned a weight that reflects the importance of
the term in the document. Typically, these weights are assigned
using an information retrieval (IR) approach, such as the famous tf-
idf function. In this work, we study two weighting schemes based
on information gain and chi-square statistics. These schemes take
advantage of the category label information to weight the terms ac-
cording to their distributions across the different categories. We
show that using these supervised weights instead of conventional
unsupervised weights can greatly improve the performance of the
k-nearest neighbor (KNN) classifier. Experimental evaluations, car-
ried out on multiple text classification tasks, demonstrate the bene-
fits of this approach in creating accurate text classifiers.

Categories and Subject Descriptors
I.7 [DOCUMENT AND TEXT PROCESSING]: General

General Terms
Algorithms, Experimentation, Performance

Keywords
Text Classification, Supervised Weights, K-Nearest Neighbors

1. INTRODUCTION
With the rapid growth of online information, text classification

has become one of the key techniques for handling and organiz-
ing text data. Many interesting applications are based on text clas-
sification such as: junk mail detection, articles filtering based on
long-term standing interests (e.g., filtering all CIKM articles that
talk about text classification), document organization (e.g. organiz-
ing the medical journals of Medline), hierarchical categorization of
web pages (such as Yahoo!’s topic hierarchy), etc...

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’09, November 2–6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$10.00.

The construction of a text classifier usually involves two phases:
1. Indexing phase: This phase converts each document into a

vector in the term space using the popular vector space model
(VSM) [10]. If words are chosen to be the terms, the dimen-
sionality of each vector is the number of all distinct words
in the corpus (known as the vocabulary size). Each vector
component is assigned a weight related to the estimated im-
portance of the corresponding term in the document. In this
phase, term selection/extraction techniques can be optionally
applied to reduce the dimensionality of the space.

2. Learning phase: This phase uses the training data to build
a classification model capable of deciding the categories of
future unlabeled documents.

A large number of statistical machine learning techniques have
been proposed to improve the learning phase of the text classifier
[1, 11, 16, 15]. Traditionally, category label information associ-
ated with the training documents is used in the learning phase to
build the classification model. In addition, many researchers pro-
posed using this information to perform supervised dimensionality
reduction during indexing [8, 7, 4, 18]. However, the weights of
the terms are mostly assigned in an unsupervised way. Currently,
the most popular term weighting function is tf-idf [9], originally
proposed in the information retrieval (IR) field, and subsequently
adopted in most text classification research [8, 7, 11, 17, 6].

This work focuses on instance-based learning for text classifi-
cation. We study ways of incorporating category information into
term weights in order to improve the distance/similarity metric of
the KNN classifier. KNN is an extremely simple yet surprisingly
effective method for text classification [16, 17, 6]. However, the
caveat of dealing with KNN is that its performance critically de-
pends on the quality of the distance metric. Giving all terms the
same weight may bias the distance metric because this allows irrel-
evant, redundant, or noisy terms to have as much effect on distance
computation as other terms. This observation motivated us to study
the effect of term weighting schemes on KNN performance.

We show that substituting conventional unsupervised weights
with supervised weights greatly improves KNN performance. In
particular, we study using information gain (IG) and chi-square
statistics (χ2), which have been previously found to be excellent
for term selection [18], to weight the terms. Intuitively, these super-
vised schemes give high weights for terms that are discriminative
among the categories.

To illustrate the idea, suppose that we have documents from two
categories: “computer science” and “art”. Clearly, if we want to
classify a document that contains the word “algorithm”, this word
should give a strong indication that the document probably belongs
to the “computer science” category. Thus, “algorithm” should have
a high influence on KNN distance metric. Supervised weights help
to automatically focus more on important terms and less on com-

2041

mon uninformative terms. This ability does not exist in the tf-idf
approach because it is a category-blind weight.

The contributions of this paper can be summarized as follows:
1. We study using IG or χ2 scores, traditionally applied for fea-

ture selection, to weight the terms. We show that utilizing
these supervised weights, instead of conventional unsuper-
vised weights, significantly boosts KNN performance.

2. We empirically demonstrate how the supervised weights im-
prove space representation by clustering the documents ac-
cording to their categories.

3. We show that when KNN uses the supervised weights, it can
outperform SVM, the state-of-the-art text classifier.

2. TERM WEIGHTING
In this study, we compare five different weighting schemes: bi-

nary weights (bin), term frequency (tf), term frequency-inverse
document frequency (tf-idf), chi-square (χ2) and information gain
(IG). These weighting schemes can be divided into two main groups:
supervised weights and unsupervised weights, depending on whether
or not they use the category label information available in the train-
ing dataset when calculating the weight.

2.1 Traditional unsupervised weights
bin is the simplest way to score the terms of a document. A term

gets a weight of 1 if it exists in the document, and 0 otherwise.
tf counts the number of occurrences of a term in a document. tf

is usually normalized to prevent a bias towards longer documents.
tf-idf [9] originated from the IR field to score and rank the doc-

uments relevant to a user query. Later on, tf-idf has been adopted
by the majority of text classification researchers [8, 7, 11, 17, 6].
The idf factor favors rare terms over frequent terms. In IR, the idf
assumption is reasonable since a rare term is usually important to
discriminate a document from a set of similar documents. How-
ever, in text classification, this assumption is inappropriate because
it completely ignores the presence of labeled training data.

2.2 Supervised weights
We study two supervised methods based on chi-square statistics

and information gain. Conventionally, these methods are used to do
feature filtering during document indexing [18]. However, this pa-
per instead studies using these scores to weight the terms of the doc-
ument instead of selecting them. These supervised weights change
the term space representation of the documents by assigning large
weights to predictive terms and low weights to irrelevant terms,
which has a great effect on KNN performance.
χ2 is frequently used to measure how the results of an observa-

tion differ from the results expected according to an initial hypoth-
esis. In text classification, the initial hypothesis is that term tk and
category ci are independently distributed. Thus, the χ2 statistics
measures the lack of independence between tk and ci. Denoting
the observed probabilities by P and the expected probabilities un-
der the independence assumption by E, χ2 is defined as:

χ2(tk, ci) =
∑

c∈{ci,c̄i}

∑
t∈{tk,t̄k}

(P (t, c)− E(t, c))2

E(t, c)
(1)

IG is an information-theoretic function which measures the amount
of information that can be obtained about one random variable by
observing another. In the text classification context, IG evaluates
how much information term tk contains about category ci

IG(tk, ci) =
∑

c∈{ci,c̄i}

∑
t∈{tk,t̄k}

P (t, c) . log2
P (t, c)

P (t).P (c)
(2)

After computing χ2 or IG, we multiply them with tf in order to
incorporate the “local” importance of the term in its document.

We can see from equations (1 and 2) that calculating the χ2

or IG weight of a term in a document requires knowing the cat-
egory label of that document. However, this label is unknown
for the documents we want to classify. Therefore, we define the
category independent weight of a term in an unlabeled document
(wunlabeled(tk)) to be the maximum of all individual category-
related weights (maxcj{w(tk, cj)).

The rationale for doing this is that if a new document d′ contains
a term tk that is highly discriminative for a specific category ci,
then wunlabeled(tk) = w(tk, ci). Therefore, the occurrence of tk
helps making d′ more similar to the documents of category ci, i.e.
it biases KNN towards choosing category ci.

3. EXPERIMENTAL EVALUATION

3.1 Data
In our experiments, we draw the text classification benchmarks

from the CMU’s 20-Newsgroups dataset. We tested the classifica-
tion performance on three different datasets:
Dataset1: This dataset consists of documents from the following
6 categories: baseball, computer graphics, hockey, motorcycles,
space and christianity. We select randomly 100 documents from
each of these categories.
Dataset2: This dataset consists of documents from 4 categories:
general politics, guns, Mideast and religion. We select 200 docu-
ments from each category. All documents in this dataset belong to
the same discussion group: talk.*. Therefore, categories in dataset2
are more similar to each other than the categories in dataset1.
Dataset3: Dataset3 is a binary classification task to differentiate
documents that talk about PC computers and documents that talk
about MAC computers. The contents of these documents are very
similar since they are all about computer hardware (drawn the dis-
cussion group comp.sys.*). Each category contains 200 documents.
Pre-Processing: Before indexing the documents, we remove stan-
dard stop words. Concerning stemming, we only apply the first step
of porter’s stemming algorithm, which removes the -s, -ed and -ing
suffixes from the words. The resulting vocabulary size for dataset1
is 16,184, for dataset2 is 18,194 and for dataset3 is 8,496.

3.2 Classifier
This study focuses on comparing the effectiveness of the differ-

ent term weighting schemes using the k-nearest neighbor (KNN)
classifier. KNN has the advantages of being a non-parametric and
non-linear classifier. Experiments in [16, 17, 6] showed KNN to be
one of the top-performing text classification methods.

To make KNN work, we must define a distance/similarity mea-
sure for comparing documents. We use the cosine similarity [9],
which measures the similarity between two documents by finding
the cosine of the angle between their vectors in the term space. The
similarity ranges from 0 to 1, where 0 indicates independence (the
vectors are orthogonal) and 1 indicates a perfect match.

We use the distance weighted version of KNN, which weights
the vote of each neighbor by its similarity to the document.

3.3 Performance measures
The effectiveness of a text classifier is usually measured using

the traditional IR measures of precision and recall. First, the preci-
sion and recall are calculated separately for each category. Then the
global precision π and recall ρ are obtained by averaging individual
precisions and recalls using either micro-average or macro-average.
since our datasets are balanced (all categories have the same gen-

2042

Figure 1: Comparing the F1 score of distance-weighted KNN for the different weighting schemes on dataset1, dataset2 and dataset3

erality), the results of micro-averaging and macro-averaging are al-
most identical [12]. In order to combine the effect of π and ρ in
one measure, we use the well-known F1 score [12].

In this work, we experimentally demonstrate how the supervised
schemes tend to cluster the documents in the vector space according
to their categories. In order to assess this clustering ability for the
different weighting schemes, we define two measures: the intra-
category similarity and the inter-category similarity.

The intra-category similarity measures the average similarity be-
tween the documents from the same category and is defined as:

1

K

K∑
k=1

 1

nk
2

∑
d∈ck

∑
d′∈ck

COS(d, d′)

 (3)

Where K is the number of categories and nk is the number of doc-
uments from category ck.

The expression between brackets calculates the average pairwise
cosine similarity for the documents of the same category (ck). These
quantities are added and divided by K to obtain the average intra-
category similarity for all categories.

Similarly, the inter-category similarity measures the average sim-
ilarity between the documents from different categories.

1
K(K−1)

2

K∑
k1=1

K∑
k2=k1+1

 1

nk1

1

nk2

∑
d∈ck1

∑
d′∈ck2

COS(d, d′)


(4)

The expression between brackets calculates the average pairwise
cosine similarity between the documents of category ck1 and the
documents of category ck2 . The total inter-category similarity is
obtained by adding the similarity between every pair of categories
and dividing the sum by K(K − 1)/2.

A good space representation should have a high intra-category
similarity and a low inter-category similarity to indicate that the
categories can be easily separated by the classification algorithm.
Thus, we define the AR ratio (intra-category similarity to inter-
category similarity ratio)

AR ratio =
intra-category similarity
inter-category similarity

(5)

Clearly, the bigger the AR ratio for a weighting scheme, the bet-
ter it represents the documents in the space.

3.4 Results
In our experiments, we report the micro-average F1 function on

the test set, using a 5-fold cross validation scheme.

3.4.1 KNN classification
In this section, we compare the 5 different weighting schemes:

bin, tf, tf-idf, IG and χ2. We also report their effectiveness in con-
junction with feature selection (denoted as FS). We perform feature
selection by scoring terms according to χ2 and selecting the top
10% terms to represent the documents. Using IG for feature filter-
ing gave almost the same performance (for all schemes) as using
χ2 for feature filtering (this agrees with the findings in [18] that IG
and χ2 are highly correlated). Besides, the performance of IG with
FS was very similar to the performance of χ2 with FS. Thus, we
omit IG FS from the graphs to improve their readability.

Figure 1 shows the performance plots of KNN on dataset1, dataset2
and dataset3 (from left to right). The x-axis represents the number
of KNN neighbors and the y-axis represents the micro-averaged F1

measure. In all figures, we can see a big performance gap between
the classifier that uses the supervised weights (IG or χ2) and the
classifier that uses the unsupervised weights (bin, tf or tf-idf) for
all different numbers of neighbors. For instance, the F1 measure
of 5NN (using 5 neighbors) on dataset1 is 0.928 when using tf-
idf, while it is 0.992 when using χ2 and 0.993 when using IG. On
dataset3, using the supervised weights instead of tf-idf improves
5NN performance from 0.835 to 0.99.

The graphs also show that the accuracy improves after applying
feature selection. This suggests that a lot of the terms are indeed
just noisy features. For example, applying χ2 to both weight and
select the terms (χ2 FS) achieves an F1 of 0.98 on dataset2.

We can see that the simple binary weights can sometimes outper-
form tf-idf weights, as in the case of dataset3. This shows that tf-idf
are not optimized to score the terms for text classification tasks.

3.4.2 Space representation
In order to understand the reason behind the superior classifica-

tion accuracy of the supervised weights, we examine more closely
the way each of the weighting schemes maps the documents in the
space. We use the two measures we defined in section 3.3: the
intra-category similarity (equation 3) and the inter-category simi-
larity (equation 4) to assess the quality of the space representation.
A good weighting scheme should maximize the similarity between
the documents of the same category and minimize the similarity be-
tween the documents of different categories. In these experiments,
we use the category information of all documents (no test set).

From Figure 2, we can see that χ2 and IG (the last two columns)
always increase the intra-category similarity and decrease the inter-
category similarity as opposed to bin, tf and tf-idf unsupervised
weights (the first three columns). For instance, applying IG on
dataset1 (the first set of columns) achieves an intra-category sim-

2043

ilarity of 0.81 and an inter-category similarity of 0.0018, whereas
applying tf-idf on the same dataset results in an intra-category sim-
ilarity of 0.044 and an inter-category similarity of 0.007. Thus,
using IG instead of tf-idf increase the AR ratio about 75 times!

These results support the conjecture that the supervised weights
improve documents representation in the term space.

Figure 2: The intra-category similarity (left) and the inter-category
similarity (right) for bin, tf, tf-idf, χ2 and IG on the three datasets

3.4.3 Comparison with SVM
In this section, we compare the performance of KNN against

SVM [13], which is considered the top performing text classifica-
tion algorithm [6, 17].

SVM works by learning a linear combination of the features in
order to define the decision hyperplane. Previous studies [3, 5] who
applied different weighing schemes with SVM did not get much
improvement because SVM itself is optimized to learn the term
weights. SVM is also known to be quite robust in the presence of
many features [6], and the extensive experiments in [2] confirmed
this fact by observing either no improvement or small degradation
in SVM performance after applying feature selection.

Consequently, we compare our approach against linear SVM
with tf-idf weights on the full vocabulary (without applying feature
selection), as defined in the original paper [6]. In order to perform
multi-class classification, we adopt the one-against-all approach,
using the continuous values of SVM decision functions to make
the classification (as defined by Vapnik in [14]).

Figure 3: comparison with SVM

Figure 3 compares the performance of SVM with tf-idf weights,
KNN with tf-idf weights and KNN with IG weights. We can see
that, when we use the conventional tf-idf weights, SVM has higher
F1 than KNN. This agrees with the findings of [6, 17], which empir-
ically show that SVM is the top performing text classifier, followed
by the KNN classifier. However, by switching to the IG weights,
KNN is able to outperform SVM on all three datasets. For example,
using KNN IG instead of SVM on dataset3 (a binary classification

task) increases F1 from 0.89 to 0.9925 (almost a perfect classifica-
tion). This clearly shows that appropriate supervised weights can
make KNN a very effective text classifier.

4. CONCLUSIONS
This paper closely examines the aspects of document represen-

tation during the indexing phase of a text classifier, focusing on the
KNN classifier. KNN is known to be a very effective text classifi-
cation algorithm [16, 17, 6]. However, its most serious drawback
is a modeling issue: how to define a good distance metric in order
to find the “nearest” neighbors of a test document?

Many research papers have studied applying feature selection
techniques in text classification to discard “useless” term [8, 4, 18].
But why not using these scores to weight the terms instead of se-
lecting them. In this paper, we experimentally show that using su-
pervised weights, like information gain or chi-square, can greatly
boost KNN accuracy, as opposed to using conventional unsuper-
vised weights. The reason for this superior performance is that:

1. Supervised weights give a high impact to important (discrim-
inative) terms on the distance calculation. In comparison,
tf-idf weights terms inappropriately by favoring rare terms.

2. Supervised weights cluster the documents in the space ac-
cording to their categories.

5. REFERENCES
[1] D. Blei, A. Ng, and M. Jordan. Latent Dirichlet Allocation. Journal

of Machine Learning Research, 2003.
[2] J. Brank, M. Grobelnik, N. Milic-Frayling, and D. Mladenic.

Interaction of Feature Selection Methods and Linear Classification
Models. In Proc. of the ICML Workshop on Text Learning, 2002.

[3] F. Debole and F. Sebastiani. Supervised Term Weighting for
Automated Text Categorization. In Proc. of ACM Symposium on
Applied Computing, 2003.

[4] G. Forman. An Extensive Empirical Study of Feature Selection
Metrics for Text Classification. Journal of Machine Learning
Research, 3:1289–1305, 2003.

[5] G. Forman. BNS Feature Scaling: An Improved Representation over
tf-idf for SVM Text Classification. In Proc. of CIKM, pages
263–270, 2008.

[6] T. Joachims. Text Categorization with Support Vector Machines:
Learning with Many Relevent Features. In Proc. of European
Conference on Machine Learning, 1998.

[7] T. Liu, Z. Chen, B. Zhang, W. Ma, and G. Wu. Improving Text
Classification using Local Latent Semantic Indexing. In Proc. of
ICDM, 2004.

[8] D. Mladenić, J. Brank, M. Grobelnik, and N. Milic-Frayling. Feature
Selection using Linear Classifier Weights: Interaction with
Classification Models. In Proc. of ACM SIGIR, 2004.

[9] G. Salton and M. McGill. Introduction to Modern Information
Retrieval. McGraw-Hill, 1983.

[10] G. Salton, A. Wong, and C. Yang. A Vector Space Model for
Automatic Indexing. Commun. ACM, 1975.

[11] R. Schapire and Y. Singer. Boostexter: a Boosting-Based System for
Text Categorization. Journal of Machine Learning Research, 2000.

[12] F. Sebastiani and C. Ricerche. Machine Learning in Automated Text
Categorization. ACM Computing Surveys, 2002.

[13] V. Vapnik. The Nature of Statistical Learning Theory.
Springer-Verlag, NY, 1995.

[14] V. Vapnik. Statistical Learning Theory. Wiley-Interscience, 1998.
[15] E. Wiener, J. Pedersen, and A. Weigend. A Neural Network

Approach to Topic Spotting. In Proc. of SDAIR, 1995.
[16] Y. Yang. An evaluation of Statistical Approaches to Text

Categorization. Journal of Information Retrieval, 1999.
[17] Y. Yang and X. Liu. A re-examination of Text Categorization

Methods. In Proc. SIGIR, 1999.
[18] Y. Yang and J. Pedersen. A Comparative Study on Feature Selection

in Text Categorization. In Proc. of ICML, 1997.

2044

