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ABSTRACT

Contextual information is vital for the robust extraction
of semantic information in automated surveillance systems.
We have developed a scene independent framework for the
detection of events in which we provide 2D and 3D contex-
tual data for the scene under surveillance via a novel fast and
convenient interface tool. In addition, the proposed frame-
work illustrates the use of integral images, not only for de-
tection, as with the classic Viola-Jones object detector, but
also for efficient tracking. Finally, we provide a quantitative
assessment of the performance of the proposed system in a
number of physical locations via groundtruthed datasets.

Categories and Subject Descriptors

H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing—indexing methods, abstracting meth-
ods; H.3.3 [Information Storage and Retrieval]: In-
formation Search and Retrieval—query formulation; 1.2.10
[Artificial Intelligence]: Vision and Scene Understand-
ing—uvideo analysis; 1.4.8 [Image Processing and Com-
puter Vision|: Scene Analysis—tracking
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1. INTRODUCTION

Automated surveillance has received much attention in
the research community in recent literature [11, 6, 4, 14]. Its
goal is to reduce the burden on operators by assisting them
in retrieving relevant events and gathering statistical infor-
mation automatically, instead of requiring hours of video to
be viewed.

As specific goals of various applications differ, so too does
the type of event required to be detected. However, for many
flexible applications the exact event detector algorithm can-
not be hard-coded into the system framework as either; (1)
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the event definition is dependent on an undefined scene; or
(2) the event is itself undefined [14]. The first scenario is
typical of many surveillance applications as although the
event required to be detected is known (for example, in an
automated pedestrian traffic light system the event may be
to detect static pedestrians in a designated area waiting to
cross the road), contextual information about the scene (e.g.
the ezact area where pedestrians tend to wait to cross) is
unknown and will tend to vary depending upon the cam-
era positioning and other scene specific properties. To this
end, we have developed a flexible system for the detection
of events that is independent of the scene under considera-
tion. As such, the algorithmic techniques employed within
the system are designed to be independent from the camera
location and underlying scene structure.

We present two key contributions in the area of event
retrieval in surveillance video. Firstly, we have developed
an interface tool that allows a variety of 2D and 3D scene-
specific contextual data to be easily provided by the operator
to the system. This contextual data facilitates the improve-
ment of the semantic inference of a variety of user-defined
events by individually tailoring them to a variety of differing
scene specific scenarios. Secondly, due to the large volume
of data that must be managed in surveillance scenarios, we
focus on real-time processing and exploit the power of inte-
gral images to perform fast detection and tracking of people
with a given scene.

This paper is organised as follows: In section 2, we re-
view related work in this area. We describe our surveillance
event-detection system in section 3, this includes our tool for
supplying contextual data in section 3.1. Section 4 provides
quantitative experimental evaluation of the proposed system
framework in a number of differing areas. Finally, we detail
our conclusions and outline our future work in section 5.

2. RELATED WORK

With the large number of surveillance cameras now in op-
eration, both in public spaces and in commercial centres,
significant research efforts have been invested in attempts
to automate surveillance video analysis. Hu et al. [11] pro-
vide a thorough survey on the visual surveillance of object
motion and behaviours. In a similar vein, Cucchiara [6] gives
an overview of surveillance-related research into combining
multiple media streams such as audio, video and other sen-
sors. Both Hu et al. and Cucchiara argue that the use of
multiple sensors and additional data streams “will constitute
the fundamental infrastructure for new generations of mul-



timedia surveillance systems”. The types of sensors and ad-
ditional data streams they refer to include thermal infrared
[12, 19, 16], use of depth information from stereo cameras
[10, 14] and multiple cooperating surveillance cameras [4].

While future surveillance systems may rely on multiple
streams of data to perform accurate surveillance event de-
tection, such hardware infrastructure changes will not be
widespread in the immediate future. In this paper, we fo-
cus on maximising the potential of automated single-camera
surveillance, and on providing the means to supply strong
contextual information to the surveillance system using a
2D and 3D annotation tool, described in section 3.1.

Secondly, in this paper we leverage the power of inte-
gral images to perform robust person detection and tracking
in surveillance video. Integral images allow constant time
computation of sums of pixels in rectangular areas. They
were used by Viola and Jones to compute Harr-features for
rapid object detection [22] and by Bay et al. for interest
point detection [3] as a fast approximation to the differ-
ence of Gaussians operation to find scale-space extrema. In
this paper, we describe how integral images, combined with
background modelling, can provide very fast and occlusion-
tolerant person-tracking.

3. EVENT DETECTION SYSTEM

Figure 1 provides an overview of our proposed event detec-
tion surveillance system decomposed into basic sub-systems.
The first component (A) consists of a number of low-level
detectors, including foreground region and person detectors.
In the second sub-system (B), false-positives obtained from
the low-level person detector are subsequently filtered us-
ing scene specific contextual data to remove false-positives.
The third layer within the framework (C) applies the filtered
low-level information and contextual data to track pedestri-
ans temporally through a scene. In the final module (D)
of our system, events are detected from the movements and
interactions between people and/or their interactions with
specific areas that have been manually annotated by the
user. Each stage within the system framework is tailored
to the particular scene under surveillance via user-supplied
contextual data.

3.1 Contextual Data Annotation Tool

Within the system framework a variety of contextual data
is provided to the sub-systems — some is provided to im-
prove low-level detection and pedestrian tracking perfor-
mance, other contextual data is provided to tailor event de-
tection algorithms. The annotation tool allows a variety of
2D annotations via traditional point-and-click techniques.
These 2D annotations are used in a variety of ways in this
work. This includes the generation of training data for a
Haar classifier cascade (which is discussed in section 3.2.2)
and a linear person height model (outlined in section 3.3) as
well as the inclusion of 2D annotated areas into event detec-
tion algorithms (see section 4.2). However, in this section
we focus on the generation of 3D regions of interest, known
as hotspots [14].

In order to create 3D hotspot regions, an image-to-groundplane

homography must first be created as this can be used to de-
scribe both the relationship between the real-world ground-
plane and a camera’s image plane. To obtain this homogra-
phy, four corresponding points between an input image (such
as the four illustrated points in figure 2(a) or the points from

a calibration shape) and the corresponding real-world coor-
dinates of these points should be obtained. The software
then employs the technique outlined in [9] to obtain the ho-
mography.

Once estimated, the image-to-groundplane homography
can be used to generate a plan-view, or birdseye-view, of
the scene — see figure 2(b). It is from this viewpoint that 3D
hotspot regions can be created via the annotation tool inter-
face. This is achieved by simply circling a region of interest
within the plan-view image, for example see the red area in
figure 2(c). The resultant hotspot can be seen as a 3D area
of interest which can be incorporated into the algorithmic
definitions within the proposed system. The 3D properties
of the hotspot can be clearly seen when overlaid on a 3D
rendering of the scene — see figures 2(d)-(f). It should be
noted that in this work the 3D model is employed solely
as a visualisation tool — it allows users to examine hotspot
annotations from a variety of “more intuitive” angles. In
addition, the 3D model facilitates the visualisation of the
state of the pedestrian tracking system so a user can exam-
ine the perceived positioning and tracking of pedestrians in
an intuitive manner. In future work, we hope to extend the
use of the 3D model into the system sub-system algorithms,
one such example would be to use it for occlusion reasoning
between tracked people and static background objects.

These annotated hotspot regions have a variety of uses
within the proposed framework. One such example is within
the pedestrian tracking sub-system, whereby the 3D posi-
tion of tracked pedestrians can be constrained to within the
area defined by the hotspot. This technique reduces the
possibility of persons being tracked erroneously — for ex-
ample, physically impossible tracks such as persons walking
through walls. In fact, the hotspot illustrated in figure 2(c)
is employed for this purpose in one set of our experiments
in section 4. In addition, our system facilitates the easy ap-
plication of hotspots to constrain event detectors to filter
out specific types of pedestrian tracks — for example, tracks
that start-on, start-off, or pass-through a hotspot, or pedes-
trians that pass through the hotspot within a narrow range
of directions, such as only those travelling in a northerly
direction. Finally, in our system framework any number of
contextual hotspots can be created and incorporated into a
specific event detector. If more than one is created, then
logical operators can then be applied between them — thus,
for example, it becomes possible to obtain all those pedes-
trians who pass-through multiple hotspots — or conversely,
obtain all the tracks that do not.

A sample of possible 2D and 3D contextual annotations
are outlined in sections 3.5 and 4.2, all of which can be
created quickly and easily within the annotation tool. Before
discussing those specific examples, we shall describe in detail
each of the four sub-systems outlined in figure 1.

3.2 Low-level Data Extraction

The first sub-system in our framework consists of a num-
ber of low-level detectors, including background subtraction
and person detectors.

3.2.1 Background Modelling

In typical surveillance scenes, the camera is on a fixed
platform, so background modelling can be used to eliminate
the stationary pixels and find pixels belonging to moving
objects such as people. Our model is similar to the semi-
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Figure 1: System Overview

nal work of Stauffer and Grimson [21], except that we use a
fixed variance to simplify the model and avoid problems of
degeneracy. In our framework, we employ an N-layer back-
ground model to obtain moving foreground regions within
each video frame. Within this model, each pixel is described
by N layers (or colours). In our experiments, we set N = 4.
In each layer the pixel has an associated colour, a weight
and the frame number of when the colour was last observed.
When a new colour is observed, the model is updated as
follows:

e If the colour exists in one of the layers already (with
a distance threshold), then the weight of that colour
is incremented by one. The position of this layer is
swapped with the layer directly above it if its incre-
mented weight is greater, or if the higher colour has
not been observed for C' frames. In our experiments,
we used C' = 1500.

e [f the colour does mot exist in any of the layers, then
the lowest layer is reset (i.e. the weight is set to 1) and
initialised with the detected colour.

Using this technique, a pixel’s background colour is modelled
by each of the colours that appear within the top layers that
make up at least 75% of the total weight sum within the lay-
ered background model. A pixel is detected as foreground if
its colour is not found in these top colours. In our system,
the layered background models were initialised using a man-
ually generated background image of the particular scene in
question.

Shadow removal.

Shadows and other lighting-changes are frequent in surveil-
lance scenarios [18, 7]. Using the proposed technique of
background subtraction, shadows tend to be erroneously de-
tected as foreground pixels. Shadows can result in increased
false detections of pedestrians, or lost tracks. Thus, the fore-
ground data obtained was post-processed using a shadow
suppression technique. For all foreground pixels, we remove
shadow pixels by computing the change in luminance and
chrominance. We first convert from (R,G,B) to (L,g,b) us-
ingL=R+G+ B,g=G/L,b = B/L. We then compute
the change in luminance and the change in chrominance as
follows:

Ldif = |l0g(é7LL)| (1)
Cair = sqrt((Ig — By)” + (I — By)?) (2)

Where I is the current image and B is the background image
(lowest layer in the background model). If the following in-
equality holds, then the pixel is set as shadow (i.e. removed
as a foreground pixel):

Laif +ax Caqiy < 8 (3)

These parameters were learned using manually labelled fore-
ground and shadow pixels (In our data: a = 18, 8 = 0.5).
Adaptive approaches are also possible, such as using a gen-
eral shadow detector and exploiting unlabelled pixels to im-
prove the model by co-training [13].

3.2.2 Person Detection

To detect people we use the OpenCV object detector frame-
work [2]. It exploits integral images to compute Haar fea-
tures and quickly detect rectangular regions that appear to
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Figure 2: Contextual Data; (a) Annotated In-
put Image; (b) 2D plan-view image; (c) Hotspot;
(d)/(e)/(f) 3D Visualisation of Hotspot.

contain people. Training the detector involves supplying
manually segmented positive examples (regions containing a
single person) and negative examples (images with no peo-
ple) from training data via the contextual data annotation
tool. Negative sample images can also be provided automat-
ically by sampling random areas of the scene image with no
foreground activity. Positive samples can also be obtained
from public datasets (such as the MIT pedestrian dataset
[17]) or using online learning [8]. In our approach, the train-
ing consisted of two iterations; (1) the person detector was
initially trained using solely positive examples; (2) the sec-
ond stage consisted of one iteration of active-learning. This
second stage worked as follows. After the first version of the
detectors were trained, they were then run on a large batch
of test images consisting of both positive and negative ex-
amples. All detections registered by the detectors were then
manually classified as true-positives or false-positives via the
annotation tool. The detectors were then retrained using
these new samples.

3.3 Filtering Person Detections

The second sub-system layer within our framework, rep-
resented by B in figure 1, filters out false-positives obtained
from the low-level person detector using low-level informa-
tion, a variety of scene-specific contextual data and previ-
ously tracked pedestrians within the scene. This is achieved
using the following filtering techniques; (a) Foreground fil-
ter: detections that contain less than 25% of foreground

Figure 3: Model of tracked person: original image,
foreground with grid overlay and computed fore-
ground colour model.

are removed — in this process we exploit the use of integral
images to compute the amount of foreground in a detected
person in constant time; (b) Height filter: detections that
are too small or too large to be human are discarded — this
is achieved by the creation of a simple linear model of an
average person’s 2D image height as related to their 2D im-
age foot location. This contextual information is created
by manually marking the foot and head positions of pedes-
trians in test data via the annotation tool. The software
then fits a line to the data using a least squares error tech-
nique; (¢) Foot filter: detections that are determined not to
be standing in the the scenes walking area hotspot (such as
that illustrated in figure 2) are removed. In addition to these
filters, all person detections which overlap significantly with
a currently tracked pedestrians are discarded.

3.4 Person Tracking

The third layer within our framework, applies the data
extracted in the previous sub-systems to track pedestrians
temporally through a scene. Tracking is performed in a
depth-ordered way, so that people closer to the camera are
tracked first. This allows us to infer occlusion for the people
further back in the scene. As we do in the detection stage, we
exploit integral images to perform very fast person tracking
that is invariant to person size.

Each person is represented by a 2 x 3 colour grid model,
illustrated in figure 3. Each part is represented by the av-
erage colour of the foreground pixels within it. We use this
model for speed and efficiency, as it is very fast to compute
using integral images. Tracking is done by exhaustive search
in a 21 x 11 pixel window centred on the last known location
of the person. If people nearer the camera occluded people
further back, we down-weight parts of the model that are
determined to be occluded. Since the lower parts of the
body are more likely to be in motion (feet and arms), we
also weight the sections of the model differently. We express
the similarity between a candidate region T" and a person
model M as:

22:1 23:1 Zi:l w%yexp(—()b(%)g)
Ei:l 22:1 23:1 We,y

O(T, M) = Spc x
(4)

where x and y are the column and rows of the model sec-
tions, ¢ is the colour channel (in RGB), D is the colour
distance in RGB-space, and w;,, is the weight for section
(z,y). We set the weight as: wz,y = ua,y/sqrt(y), where



Ug,y is the unoccluded portion of the section. We set the
foreground weighting Spg = F?/A, where F is the number
of foreground pixels and A is the area in pixels. We update
the model in each frame to account for pose and lighting
changes.

In addition to a tracked persons location in the 2D image,
we infer their 3D location using their 2D image foot location
and the image-to-groundplane homography data described
in section 3.1. This information is valuable input to some of
the event detectors detailed in sections 3.5 and 4.2, where
3D position and velocity information are required. Addi-
tionally, the 3D location is used to constrain the tracking
search by ensuring that a person cannot be tracked out of
the contextually annotated walking area hotspot. This tech-
nique not only improves tracking robustness, but decreases
computational complexity by eliminating the need to search
specific areas of the scene for the continuation of a temporal
track. A second improvement to computational complexity
lies in the ability to apply the contextual linear height model
(outlined in section 3.3) and the 2D location of a person’s
tracked position to dynamically infer the height in pixels
of a tracked pedestrian anywhere within the scene, thereby
avoiding a search through different scales.

Finally, each tracked person has an associated confidence
value, that tends to zero over time if it’s existence is not
supported in the data. This confidence can be increased by
significant foreground pixel data within a persons bound-
ing box, or a significant overlap with a detection from the
low-level person detector, with a greater overlap causing a
greater increase in confidence. However, if the confidence
becomes too low then the tracked person is removed from
the system.

3.5 Event Detectors

As specific goals of various applications differ, so too does
the type of event required to be detected. To this end, the
final layer in our system provides the framework from which
a variety of user-defined events can be declared. In general,
events are inferred by the system using information provided
by the 2D /3D movements of the tracked people, and /or their
interactions with other people and 2D /3D contextual data
which has been manually annotated by the user. The 2D
contextual data may include regions of interest within an
image, and areas of the image where, according to annotated
training data, events tend to occur. The 3D contextual data
manifest themselves as hotspot regions, which as outlined in
section 3.1 can be then used to filter pedestrians based on
their 3D statistics such as velocity, location, direction of
movement, etc.

To illustrate the use of hotspots within this event detec-
tion framework, we will provide an example using our pub-
licly available Corridor sequence [15] (see figures 2 and 4
for example images), which comes with ground-truth anno-
tation of people in the scene. The dataset is challenging due
to the number of people, frequent occlusions, illumination
conditions, and the ability of persons to ascend/descend a
staircase on the right hand side of the image. Within this
sequence it is known that on one occasion a number of peo-
ple stand and read a notice board on the left of the scene for
an extended period of time. In order to detect this event a
hotspot is created in front of the notice board — see figures
4(a) and (b). In addition, the hotspot is set to ignore all
pedestrians except those that have; (a) been standing on it

(d)

Figure 4: Waiting Event; (a) Hotspot; (b) 3D Visu-
alisation of Hotspot; (c) Waiting Detected; (d) 3D
Visualisation of System State.

for 30 consecutive frames; and (b) had a velocity of less than
10cm/sec during that time. In addition, it is set to ignore all
times where there is only one person on the hotspot. Using
this definition, the event is triggered for a number of frames
during the sequence (all within 20 frames of each other).
An example event result is illustrated in figure 4(c), with
the corresponding 3D model visualisation of the state of the
person tracker depicted in figure 4(d).

4. EXPERIMENTAL RESULTS

In the following section, we quantitatively evaluate the
improvement provided by the contextual person detection
filters of section 3.3 with regards to precision and recall using
a groundtruthed dataset. In addition, we provide a quanti-
tative indication to the improvement in performance due to
the use of integral images. Finally, in section 4.2 it is demon-
strated how the framework can be tailored to detect a variety
of surveillance video events and we quantitatively evaluate
these events via a second manually annotated dataset.

4.1 Quantitative Performance Evaluation

To investigate the performance of our contextual data fil-
ters on the person detection and tracking sub-systems, we
apply the Corridor dataset introduced in section 3.5. In or-
der to train the pedestrian classifier we used samples from
the background images of the sequence as negative examples,
and obtained positive examples from the MIT pedestrian
dataset [17] and from annotated people in the TRECVID
Gatwick sequences [20]. In a single frame, a person is de-
termined to be correctly detected if the overlap between the
ground-truth is at least 50% of the larger rectangle. Using
this dataset we made 10 runs of the system, the first five did
not include tracking results (this set is called Detection), the
second five runs included persons tracked by sub-system D
(this set is called Detection and Tracking). In each set of 5
runs, the filters outlined in section 3.5 were either: (a) all
turned off; (b) individually turned on; or (c) all turned on.

Figure 5 shows the results this experiment. Since we are
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Figure 5: Person detection results on Corridor se-
quence

using filters, the recall values within the Detection runs can-
not be increased, and do decrease very slightly, dropping by
0.007. However, the overall effect of the filters was to sub-
stantially increase precision by 0.178. The Detection and
Tracking run, on the other hand, results in a jump of 0.227
and 0.045 in precision and recall figures respectively. These
results clearly demonstrate the benefits of using the contex-
tual data to improve semantic inference.

In addition, throughout the final Detection and Tracking
run (with all filters turned on) we quantitatively evaluated
the decrease in computational complexity during the track-
ing stage due to the use of integral images. It was found
that the exhaustive search stage of the proposed tracking
technique required over 750 times less operations when us-
ing integral images than it would have required to perform
when accessing individual pixels via traditional techniques.

4.2 Quantitative Event Detection Evaluation

To evaluate the proposed system’s performance to detect
relevant surveillance events, we used 50 hours of video (10
hours from 5 cameras — see figures 6 and 8 for some sample
views) from the Gatwick airport dataset, made available by
the UK Home Office Scientific Development Branch and re-
leased as part of the iLids project [1]. Surveillance events
within the data were annotated as part of the TRECVID
event-detection task of 2008 [20]. For each of the 5 camera
views, a person-detector was trained using manually seg-
mented positive and negative example data from the devel-
opment video datasets. Figures 7 and 8 shows some training
examples and results of the trained detector on sample data
respectively.

In total, 6 events detectors were created for 5 TRECVID

groundtruth annotated events ( ElevatorNoEntry, OpposingFlow,

Figure 6: Background images from 3 of the 5 cam-
eras.

Figure 7: Examples of positive (top row) and neg-
ative (bottom row) examples used for training our
person detector.

PeopleMeet, Embrace and PersonRuns), as well one event-
type that was not annotated, DoorOpenClose. All events
detectors are outlined below.

DoorOpenClose.

In order to detect the state of a door (i.e. opened or
closed) in a given camera view, 2D contextual data was pro-
vided to the detector to indicate regions of the door that
significantly changed colour depending upon the door state.
The colour differential (the difference of two rectangular re-
gion colours) was calculated using integral images to effi-
ciently compute the area sums and simply applied a thresh-
old to determine the state of the door.

ElevatorNoEntry.

To detect when an elevator door opened, but a waiting
person did not enter the elevator, two event detectors similar
to those outlined in both section 3.5 (see figure 4) and the
DoorOpenClose event were combined.

OpposingFlow.

To detect people travelling the wrong way through a one
way area (such as the doors in figure 9(a)), a hotspot was
created (see figure 9(c)/(d)). This hotspot was used to filter
out all people in the scene who were on the hotspot for
a minimum of 3 frames and whose direction of motion was
opposed to the normal flow through that given hotspot area.

PeopleMeet.

This event called for the detection of times when two or
more people walk up to one another, stop and communi-
cate. We deemed that communication was too subtle to
detect with our system, and as such we created an event de-
tector that triggered when two people, who were far apart
(i.e. the Euclidean distance between the 3D locations of



Figure 8: People detected by our person detector in
TRECVID data.

two people was greater than a threshold), then come into
close proximity (i.e. their distance dropped below a second
threshold).

Embrace.

Since an embrace is a difficult semantic concept to detect
directly in crowded scenes, we inferred Embrace events by
taking all detected PeopleMeet events and weighting their
confidences using a learned prior in the form of a confidence
map (an example of such a map is shown in figure 10) cre-
ated using development data via the annotation tool. In
this map, the brighter an area the more likely it is that an
Embrace event will occur (scaled between 0 and 1). We com-
pute «, the maximum average confidence map value within
either person’s bounding box (computed efficiently using in-
tegral images). The final confidence of the event occuring
was deemed to be the product of o and the tracking confi-
dences for the two people. If the final confidence was over a
predefined threshold then an event was triggered.

PersonRuns.

This event was detected in each camera using the 3D ve-
locity of tracked persons. If a person’s velocity magnitude
remains over 150cm per second for 3 consecutive frames,
then the system then triggered an event when the person
either stopped travelling at that velocity or stepped out of
the scene. The confidence of the event was computed as the
product of the person’s tracking confidence and a sigmoid
function of the length of time they were travelling at a high
velocity.

4.2.1 Quantitative Results

A comparison of our performance, using Detection Cost
Rate (DCR) which is a value that consists of a linear com-
bination of missed detections and false alarms, to other
TRECVID participants can be seen in table 1. These results
are competitive when compared to the results of other event
detection systems submitted for TRECVID evaluation.

(d)

Figure 9: Opposing Flow Event; (a) Background Im-
age; (b) 2D plan-view image; (c) Hotspot; (d) 3D
Rendering of Scene with Hotspot.

Figure 10: Background image for camera 3 and its
confidence map for the Embrace event, indicating
the likelihood for the event to occur in image space.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we illustrated how contextual information
can be supplied very efficiently for single static surveillance
cameras using our interface tool. This annotation tool al-
lows the user quickly annotate 2D and 3D information. This
data can be used to provide context that improves the detec-
tion and tracking of people in our surveillance system and to
provide a framework for visualisation and event-based query-
ing. The system we developed exploits the power of integral
images to rapidly perform both detection, using the Viola-
Jones technique, and also tracking of people, using an inte-
grated colour-foreground model and using occlusion reason-
ing. The system’s performance was illustrated on our own
publicly available corridor sequence and on the challenging
surveillance sequences from Gatwick airport that were part
of the TRECVID 2008 dataset [20]. The system performed
well on all sets of data, despite the large number of people,
frequent occlusions and substantial difference between the
camera views.

In future work, we will extend the use of the 3D rendered
scene, which is currently being used solely a visualisation
tool, to improve algorithms within the framework. One such



Event Mean DCR | Our DCR | Rank
FElevatorNoEntry 0.702 0.415 5/16
PersonRuns 1.000 0.994 7/22
Embrace 1.014 0.990 1/10
PeopleMeet 1.004 1.000 2/7
OpposingFlow 0.787 0.782 10/23

Table 1: Event detection results on TRECVID data
using optimised (min) DCR scores.

approach would be to apply the model to perform occlusion
reasoning when a person is tracked behind static objects in
the scene (such as the vertical pole to the right hand side of
figure 2(a)). In addition, we will investigate the annotation
of not only hotspots on the ground but also other areas of
the 3D model (such as the walls, etc) and the automatic
generation of the walking area hotspot from the 3D model.
Additionally, another possibility for future research is to im-
prove our person detection using online learning techniques
using unlabelled data [5].
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