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ABSTRACT
The influence of multimodal sources of input data to the
construction of accurate computational models of user pref-
erences is investigated in this paper. The case study pre-
sented explores player entertainment preferences of physical
game variants incorporating two data modalities. The main
findings of the paper reveal the benefit of multiple modalities
of input data for the prediction of preferences and highlight
the impact of feature selection on the construction of such
models.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Applications and Expert
Systems—Games; I.2.6 [Artificial Intelligence]: Learn-
ing—Connectionism and neural nets ; H.1.2 [Models and
Principles]: User/Machine Systems—Human factors

General Terms
Design, Experimentation, Human Factors, Performance

1. INTRODUCTION
Rich forms of interaction can be designed when the pref-

erences of a user of an interactive system are successfully
modeled. Multimodal sources of input data can provide the
necessary ground for constructing accurate computational
user models in such systems. These models can be used for
re-engineering the system and adjust internal controls dur-
ing the interaction for maximizing the output value of the
model function.

In this paper we investigate the impact of multimodality
to the construction of user models (multinodality refers to
the different modes of input data investigated in this paper).
Multimodality is investigated through a physical interactive
game and user models are built on entertainment (“fun”)
preferences of its players. Accurate models of user prefer-
ences have already been reported in the literature built on
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single modalities of gameplay interaction [11] and physiolog-
ical signal data [8]. This paper extends the existing knowl-
edge on user models of entertainment preference by build-
ing models of the user on the unified set of physiological
and gameplay interaction data. Artificial neural networks
(ANNs) are constructed using artificial evolution to learn
the mapping between individual features extracted and user
preferences of entertainment. For this purpose two feature
selection mechanisms are designed to choose the appropri-
ate input vector for the model: sequential feature selection
(SFS) and perceptron feature selection (PFS).

Results show that models of user preferences built on mul-
timodal input data are more accurate than the correspond-
ing models built on unimodal data verifying the underlined
assumption. The highest performing model achieves a cross-
validation performance of 83.33% on unseen data. Moreover,
SFS proves to be more efficient than PFS in searching for
the appropriate subset of features towards constructing this
model. Overall, SFS selects feature subsets for the ANN
that generate higher performance than the corresponding
subsets selected by PFS.

2. EXPERIMENTAL PROCEDURE
The procedure we follow for building accurate models of

user preferences is illustrated in Figure 1. First, an exper-
imental protocol is designed to elicit genuine emotional re-
sponses (preferences) from users of the interactive system
[9]. Then data deriving from multiple modalities are col-
lected through the experiment and statistical features are
extracted. Given the expressed preferences and the statisti-
cal features, preference learning is applied for approximat-
ing the function between selected feature subsets — derived
from efficient feature selection — and reported preferences.
Accurate functions of that relationship define the required
user models of preference.

In this paper we investigate the case study of interaction
with physical activity games and expressed preferences of
entertainment on these games. Gameplay interaction data
(i.e. interaction via foot pressed tile events on the game
platform) and physiological signal data define the two data
modes examined in this paper. The merging of the data
in a single model is investigated and the assumption of a
more accurate model is evaluated using two feature selection
schemes to select a features subset from the feature set (71
features in total) extracted from the data. The reader is
referred to [8] for more details on the experimental protocol
used.
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Figure 1: Methodology for constructing quantitative
models of user preferences.

3. PREFERENCE LEARNING
The proposed approach to user modeling is based on se-

lecting a minimal subset of individual features, on the ba-
sis of which is constructed a quantitative user model that
predicts the subject’s reported entertainment preferences.
The assumption is that the entertainment value y of a given
game, which models the subject’s internal response to play-
ing the game, that is, how much “fun” it is, is an unknown
function of individual features which a machine learning
mechanism can learn [11].

Constraint satisfaction algorithms cannot solve the prob-
lem since the variable y under the constraint yA > yB for
any two given games A and B has no specific domain values.
Likewise, any machine learning which is based on learning
a target output is inapplicable since target outputs are un-
known. Preference learning [1] is the only applicable type of
machine learning for this constrained classification problem.
There are several techniques that learn from a set of pair-
wise preferences such as algorithms based on support vector
machines, gaussian processes and evolving ANNs.

3.1 Evolving ANNs
Feedforward multilayered neural networks are employed

for learning the relation between the selected player fea-
tures (ANN inputs) and the “entertainment value” (ANN
output) of a game. Since there are no prescribed target
outputs for the learning problem (i.e. no differentiable out-
put error function), ANN training algorithms such as back-
propagation are inapplicable. Learning is achieved through
artificial evolution. The motivation behind the use of evolv-
ing ANNs is two-fold: a) the high level of subjectivity of hu-
man preferences and the noisy nature of input data require
complex non-linear functions to be used; and b) evolving
ANNs have shown performance advantages over other pref-
erence learning mechanisms in constructing models of user
preference [8].

The sigmoid function is employed at each neuron of the
ANN, the connection weights take values from -5 to 5 to

match with input values that are normalized into [0, 1].
The topology of the ANN is fixed; evolution adjusts only
the connection weight values of the ANN. A generational
genetic algorithm (GA) [3] is implemented, which uses a fit-
ness function that measures the difference between the chil-
dren’s reported preferences and the relative magnitude of
the corresponding model output values y. The ANN is itself
evolved. The algorithm is presented in full detail in [8, 9].

4. MULTIMODAL DATA COLLECTED
Data are collected from children playing with a physi-

cal interactive game. The game, called Bug-Smasher, is
designed using the Playware playground (interactive tiles)
platform [4] in the study presented here. (The reader is re-
ferred to [9] for more details on Bug-Smasher). Seventy six
children participated in the game survey experiment where
each subject played a set of 90 second games in which their
interaction data with the playground and specific physio-
logical signals were recorded. Each subject was asked to
express an entertainment preference for the two games she
played (i.e. which one of the two games was more fun?). The
two modalities of data consist of 71, in total, statistical fea-
tures extracted from gameplay interaction and physiological
signals as outlined below.

4.1 Gameplay Interaction
Pressed tile events are recorded in real-time and a selec-

tion of nine player interaction features are calculated for
each child. These include the child’s score, the number of
interactions with the game platform, the average and the
variance of the response times, the average and the vari-
ance of the distance between pressed tiles and opponents
appearing on the game; the average and the variance of the
pressure on the tiles, and the entropy of the tiles that the
child visited. The complete set of features also includes the
quantitative controllable game features of game speed and
opponent spatial diversity.

4.2 Physiological Signals
Physiology is the second modality investigated here. The

physiological signals of heart rate (HR), blood volume pulse
(BVP) and skin conductance (SC) are recorded while chil-
dren play with the Playware games. This section lists the
statistical features extracted from those three physiological
signals. Some features are extracted for all signals while
some are signal-dependent as seen in the list below. The
choice of those specific statistical features is made in order
to cover a decent amount of the HR, BVP and SC signal
dynamics [6, 8].

All signals Average, standard deviation, maximum, mini-
mum, the difference between maximum and minimum,
correlation coefficient between raw recordings and time,
autocorrelation, time when maximum and minimum
occurred and the difference between them.

HR Initial and last HR recording, and the approximate en-
tropy (ApEnh) of the signal — see [9] for further de-
tails on ApEn.

BVP Average inter-beat amplitude, mean of the first and
second differences of the raw BVP, mean of the abso-
lute values of the first and second differences of the
BVP signal [6]. Moreover, given the inter-beat (RR)
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time intervals of the BVP signal a number of Heart
Rate Variability (HRV) parameters are computed within
the HRV time and frequency domain following the clin-
ical study reported in [2]. HRV parameters include the
standard deviation of RR intervals, the fraction of RR
intervals that differ by more than 50 msec from the pre-
vious RR interval, the root-mean-square of successive
differences of RR intervals and the frequency band en-
ergy values derived from power spectra obtained using
discrete Fourier transformation on the RR intervals.

SC All extracted features used for the HR signal. Addi-
tional features include the mean of the first and second
differences of the raw SC and the mean of the abso-
lute values of the first and second differences of the SC
signal.

5. FEATURE SELECTION
Feature selection is utilized to find the feature subset that

yields that most accurate user model and save computa-
tional effort of exhaustive search on all possible feature com-
binations. The quality of the predictive model constructed
by the preference learning outlined above depends critically
on the set of input data features chosen. Using the ex-
tracted features described above, Sequential Forward Selec-
tion (SFS) and Perceptron Feature Selection (PFS) are ap-
plied and compared.

The SFS method is a bottom-up search procedure where
one feature is added at a time to the current feature set.
The feature to be added is selected from the subset of the
remaining features such that the new feature set generates
the maximum value of the performance function over all
candidate features for addition. The SFS method is used
since it has been successfully applied to a wide variety of
feature selection problems, yielding high performance values
with minimal feature subsets [8, 11]

The second method we investigate is perceptron pruning
(a variant of sequential backward selection) as a method-
ology for selecting appropriate feature subsets. Our algo-
rithm which is similar to [5] is adjusted to match preference
learning problems. Thus, the perceptron used employs the
sigmoid activation function in a single output neuron. The
ANN’s initial input vector consists of all features extracted
F (71 in this paper). The perceptron feature selection (PFS)
procedure is as follows: (a) Use artificial evolution to train
the perceptron on the pairwise preferences (performance of
the perceptron is evaluated through 3-fold cross-validation);
(b) eliminate all features F ′ whose corresponding absolute
connection weight values are smaller than E{|w|}−σ{|w|},
where w is the connection weight vector; (c) if F ′ = ∅ con-
tinue to (d), otherwise use the remaining features and go
to (a); (d) evaluate all feature subsets obtained using the
neuro-evolution preference learning approach presented in
Section 3.1.

Note that both methods are incomplete. Neither is guar-
anteed to find the optimal feature set since neither searches
all possible combinations (they are each a variant of hill-
climbing). To evaluate the performance of each input feature
subset, the available data is randomly divided into thirds
and training and validation data sets consisting of 2/3 and
1/3 of the data respectively are assembled. The perfor-
mance of each user model is measured through the average
classification accuracy of the model in three independent

runs using the leave-one-out cross-validation technique on
the three possible independent training and validation data
sets. Since we are interested in the minimal feature subset
that yields the highest performance we terminate the SFS
selection procedure when an added feature yields equal or
lower validation performance to the performance obtained
without it. On the same basis, we store all feature subsets
selected by PFS and explore the highest performing subset
starting with the smallest feature subset generated.

6. BEST MODEL OBTAINED
Preference learning combined with the two feature selec-

tion methods is applied on the data collected. It was em-
pirically determined that ANN architectures with 10 hidden
neurons, are capable of successfully obtaining solutions of
high fitness. This was determined by considering the per-
formance of ANN architectures with up to two hidden layers
containing up to 30 hidden neurons each.

6.1 Feature Selection Method Comparison
Comparing the two feature selection methods the SFS

method generates feature subsets that yield higher valida-
tion performance than feature subsets generated by PFS,
given the same number of features (see Figure 2). More-
over, PFS highest performing feature subset (76.54%) con-
sists of 8 features whereas the corresponding subset for SFS
(83.95%) consists of only 3 features. (Note that, the per-
formance of randomly generated networks lies between 48%
and 52% for all input vectors chosen by the two feature se-
lection schemes.) On the other hand, out of C71

3 = 57155
combinations available SFS tries 71+70+69 = 210 combina-
tions of features. The corresponding number of combination
trials for PFS is 15. The difference of the searching strategy
reflects on their performance difference. Even though PFS
is computationally preferred, SFS manages to find a much
higher performing subset with reasonable computational ef-
fort. An effort cost analysis [10] would reveal the exact rela-
tionship between efficacy and effort but we judge that such
an analysis is out of the scope of this paper. Given that our
priority is to generate the most accurate user model out of
the multimodal data collected, we accept the SFS solution
thereafter.

6.2 Comparison Against Unimodal Models
Obtained best performance (83.95%; standard deviation

equals 4.27) while satisfactory it shows the difficulty in dis-
tinguishing multimodal data between games in terms of the
reported preferences of entertainment. The reported com-
plexity of classifying emotions [6], the augmented signal noise
recorded during physical play and the binomially-distributed
probability of this performance to occur at random (0.0057)
demonstrate the efficacy of the model generated.

User models built on the same set of data have already
been reported; however, these models have been constructed
on features extracted from single-modalities. Specifically,
studies on constructing ANN user models on the interaction-
game data (extracted from time and pressure events on the
tiles) using SFS have generated models yielding 82.22% of
classification accuracy [11]. Likewise, user models built solely
on physiological data (HR, BVP and SC) of subjects gener-
ate an accuracy of 79.76% [8]. Table 1 presents the compar-
ative analysis of model performance across data modalities.
The unified set of features on which the multimodal user
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Figure 2: Performance vs. selected feature subset
size.

model is built performs higher (83.95%) with only three fea-
tures selected providing indications for the benefits of mul-
timodality when constructing user models of reported emo-
tional experiences (i.e. player satisfaction in this paper).

The controllable feature of opponent spatial diversity, H,
the average blood volume pulse, E{b}, and the energy of
the high frequency ([0.15, 0.4] Hz) band of heart rate vari-
ability (derived from power spectral analysis), HF, [2] are
the three features selected by SFS. Average blood volume
pulse and HF are indicators of sympathetic arousal and emo-
tional stress [7, 2], respectively, while H is an estimate of
the player’s curiosity generated from the game investigated.
Further analysis of the multimodal model will be required to
reveal the exact relationship between the selected features
and reported fun and connect that relationship to estab-
lished theoretical frameworks of emotion.

Table 1: Classification accuracy (%) over different
data modalities. Evolving ANN using SFS for se-
lecting the ANN input vector.

No. of Features Gameplay Physiology Multimodal
1 62.22 66.67 67.90
2 67.77 71.43 74.07
3 68.88 79.76 83.95
4 82.22 75.00 77.78

7. CONCLUSIONS
This paper demonstrated the advantages of using data ex-

tracted from multiple modalities and automatic feature se-
lection for building models of user preference. The highest
performance obtained (83.95%) outperforms the accuracy of
both the model built solely on physiological data (79.76%)
and the model built solely on gameplay interaction data
(82.22%). Automatic feature selection chooses only 3 out
of the 71, in total, features which feed the highest perform-
ing ANN model: the controllable feature of opponent spatial
diversity, H, the average blood volume pulse, E{b}, and the

energy of the high frequency band of heart rate variability,
HF. A deeper analysis on the generated ANN model will be
required to expose the interplay between the three selected
features and reported fun.

In the comparison between the two different features se-
lection schemes utilized, results show the benefits of using
sequential forward selection over perceptron feature selec-
tion for choosing the input vector of the model. SFS con-
stitutes a good balance between performance and computa-
tional effort. The experimental methodology proposed for
quantitatively modeling preferences of players is applicable
to any multimodal interactive system for predicting prefer-
ences of users given individual characteristics of their inter-
action with the system.

8. REFERENCES
[1] J. Doyle. Prospects for preferences. Computational

Intelligence, 20(2):111–136, May 2004.

[2] J. J. Goldberger, S. Challapalli, R. Tung, M. A.
Parker, and A. H. Kadish. Relationship of heart rate
variability to parasympathetic effect. Circulation,
103:1977–1983, 2001.

[3] J. H. Holland. Adaptation in Natural and Artificial
Systems. University of Michigan Press, Ann Arbor,
MI, 1975.

[4] H. H. Lund, T. Klitbo, and C. Jessen. Playware
technology for physically activating play. Artifical Life
and Robotics Journal, 9(4):165–174, 2005.

[5] M. Mejia-Lavalle and G. Arroyo-Figueroa. Power
System Database Feature Selection Using a Relaxed
Perceptron Paradigm. In Proceedings of 5th Mexican
International Conference on Artificial Intelligence,
LNCS, pages 522–531. Springer Berlin/Heidelberg,
2006.

[6] R. W. Picard, E. Vyzas, and J. Healey. Toward
Machine Emotional Intelligence: Analysis of Affective
Physiological State. IEEE Trans. Pattern Anal. Mach.
Intell., 23(10):1175–1191, 2001.

[7] D. W. Rowe, J. Sibert, and D. Irwin. Heart Rate
Variability: Indicator of User State as an aid to
Human-Computer Interaction. In Proceedings of
Conference on Human Factors in Computing Systems,
pages 480–487, 1998.

[8] G. N. Yannakakis and J. Hallam. Entertainment
Modeling through Physiology in Physical Play.
International Journal of Human-Computer Studies,
66:741–755, October 2008.

[9] G. N. Yannakakis, J. Hallam, and H. H. Lund.
Entertainment Capture through Heart Rate Activity
in Physical Interactive Playgrounds. User Modeling
and User-Adapted Interaction, Special Issue: Affective
Modeling and Adaptation, 18(1-2):207–243, February
2008.

[10] G. N. Yannakakis, J. Levine, and J. Hallam. Emerging
Cooperation with Minimal Effort. Rewarding over
Mimicking. IEEE Transactions on Evolutionary
Computation, 11(3):382–396, June 2007.

[11] G. N. Yannakakis, M. Maragoudakis, and J. Hallam.
Preference Learning for Cognitive Modeling: A Case
Study on Entertainment Preferences. IEEE Systems,
Man and Cybernetics; Part A: Systems and Humans,
2009. (to appear).

118


