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ABSTRACT
This paper focuses on community mining including com-
munity discovery and change-point detection on dynamic
weighted directed graphs(DWDG). Real networks such as
e-mail, co-author and financial networks can be modeled as
DWDG. Community mining on DWDG has not been studied
thoroughly, although that on static(or dynamic undirected
unweighted) graphs has been exploited extensively. In this
paper, Stream-Group is proposed to solve community mining
on DWDG. For community discovery, a two-step approach is
presented to discover the community structure of a weighted
directed graph(WDG) in one time-slice: (1)The first step
constructs compact communities according to each node’s
single compactness which indicates the degree of a node be-
longing to a community in terms of the graph’s relevance ma-
trix; (2)The second step merges compact communities along
the direction of maximum increment of the modularity. For
change-point detection, a measure of the similarity between
partitions is presented to determine whether a change-point
appears along the time axis and an incremental algorithm is
presented to update the partition of a graph segment when
adding a new arriving graph into the graph segment. The ef-
fectiveness and efficiency of our algorithms are validated by
experiments on both synthetic and real networks. Results
show that our algorithms have a good trade-off between the
effectiveness and efficiency in discovering communities and
change-points.

Categories and Subject Descriptors
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Algorithm
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1. INTRODUCTION
Because of extensive application domains, community min-

ing on graphs has attracted more and more attentions in
recent years[8, 19, 26, 25, 23, 9, 28, 16]. Community mining
can help identify the overall structure of networks and dis-
cover the latent rule of community evolution. Many real net-
works can be modeled as dynamic weighted directed graphs
(DWDG), such as e-mail, co-author and financial networks.
Although community mining on static(or dynamic unweighted
undirected) graphs has been exploited extensively[23], that
on DWDG has not been studied thoroughly.

There are roughly two classes of community mining on
graphs. One is static community detection and another is
community mining on dynamic graphs.

For community detection, there are many prevailing algo-
rithms, including METIS[12], spectral partitioning [1], hier-
archical clustering[13, 10, 17, 20], Information-theory based
algorithm [6, 22] and Markov clustering[29] and so on. In
addition, Du et al.[8] proposed an algorithm called Com-
Tector which is based on computing the cliques of graphs.
Pizzuti et al.[19] proposed a genetic algorithm based com-
munity detection algorithm. But the existing algorithms
have one or more drawbacks: needing user-specified num-
ber k of communities, considering no directions or weights,
inefficient and so on.

In recent years, the dynamic characteristics of real net-
works begin to be studied. Leskovec et al.[15] discovered
the shrinking diameter phenomena on time-evolving graphs.
Backstrom et al.[3] studied community evolution in social
networks. Berger-Wolf et al.[4] proposed a framework of dy-
namic social network analysis. Sun et al.[24] presented dy-
namic tensor analysis, which incrementally summarizes ten-
sor streams as smaller core tensor streams and projection
matrices. Tantipathananandht et al.[26] proposed frame-
works and algorithms for identifying communities in social
networks that change over time. Tang et al.[25] studied com-
munity evolution on multi-mode networks. As an original
work on change-point detection, Sun et al.[23] proposed a
information-theory based algorithm, GraphScope, to iden-
tify communities and to detect change-points on dynamic
graphs without using any parameter. Falkowski et al.[9] de-
veloped a software tool to visualize community evolution
and change-points. However, these algorithms considered
only graphs whose edges have no directions and weights.
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In this paper, we focus on community mining including
community discovery and change-point detection on DWDG.
There are mainly two techniques we used in our algorithms.
One technique is Random Walk with Restart [28], which is
adopted to compute the relevance matrix of a weighted di-
rected graph(WDG). Another is modularity [16] which is ex-
tended to evaluate the goodness of a given partition with
respect to a WDG.

The primary contributions of this paper are as follow-
ing: (1)The relevance matrix computed by Random Walk
with Restart is applied to the first step OBO-Group of com-
munity discovery algorithm, which can efficiently construct
compact communities with only one scan of the nodes of
a WDG; (2)The classic measure called modularity is used
and extended onto the WDG, and the second step M-Group
of community discovery algorithm is devised to merge com-
pact communities according to heuristics of maximizing the
modularity of these communities; (3)A similarity measure
between partitions of continuous time segments is devised
to detect the change-points and algorithm Inc-Group is pre-
sented to update the partition of a graph segment when it
is necessary to add a new arriving graph into the graph seg-
ment.

The rest of the paper is organized as follows: Section 2
gives out the formal description of community mining prob-
lem. Section 3 presents the community mining algorithm
including community discovery algorithm (Section 3.1) and
change-point detection algorithm (Section 3.2). Section 4
shows the experiments and results and we conclude this pa-
per in section 5.

2. PROBLEM DEFINITION
The main goal of our work is similar to[23], in which two

problems community discovery and change-point detection
are formally defined and addressed in a streaming fashion
without any user-defined parameters. The major difference
between our work and GS is that we consider both problems
on DWDG but GS considered that on dynamic unweighted
undirected graphs.

GraphScope(GS)[23] could not be directly used to solve
our more general problems. Because GS is an algorithm
based on information theoretical principle, which can be
adopted to compress bool matrix and other discrete data.
But in weighted graphs, weights on edges may be any real
number which is continuous not discrete.

To facilitate our elaborations, some necessary definitions
and notations are formally introduced.

Definition 1. (Weighted Directed Graph). A weighted
directed graph is defined as G(V, E, W, F ) where V denotes
the node set, E = {< u, v > |u, v ∈ V } denotes the edge set
where < u, v > is an ordered pair of nodes, W = {wij ∈
R|i, j ∈ V and < i, j >∈ E} denotes the set of weights
on edges, and F is a mapping assigning weights to edges:
F : E →W .

We also denote the node set, the edge set and the weight
set of G by V (G), E(G) and W (G) respectively. To sim-
plify the presentation, we also refer to the weighted directed
graph defined above as graph without explicit explanation.

Based on the definition of graph, there are some other
important concepts. Graph stream G is a sequence of graph
evolving over time infinitely. Graph segment Gs is a sequence
of graph in the s-th time segment which include one or more

Table 1: Symbols
Symbols Definitions

G A graph represented as a matrix with elements
being weights on corresponding edges

G̃ Column normalized matrix of G
i, j Node indices, 1 ≤ i, j ≤ n
R Relevance matrix of G with the i-th row and j-

th column element representing relevance score
of node i with respect to node j

n Number of nodes in G
t Time-slice index, t ≥ 1
s Graph or time segment index, s ≥ 1

Gt Graph in time-slice t
G Graph stream
Gs The s-th Graph segment
ts Starting time-slice of the s-th graph segment
ks Number of communities of Gs

p, q Community indices, 1 ≤ p, q ≤ ks

Is Partition of Gs

Is
p The p-th community in Is

Algorithm 1: Stream-Group(G,c0)

1:Initialization:t← 1, s← 0, I0 ← ∅, t0 ← 0
2:while(Gt in G is coming)
3: (It, k)← S-Group(Gt)
4: c← Sim(Is, It)
5: if c > c0 then
6: (Is, ks)← Inc-Group(Gs,Is,Gt,It)
7: else
8: s← s + 1, ts ← t, Is ← It

9: report Is,ts

continuous time-slices. Partition Is is a set of communities
for the graph segment Gs. For graph stream, graph segment
and partition, detailed definitions could be found in[23] ex-
cept that G is defined as definition 1 in our setting.

Definitions of main symbols throughout this paper are
listed in table 1.

Formally, our task is to identify good partition Is and
good change time-slice ts for every graph segment Gs where
1 ≤ s < ∞. It should be noted that our algorithms could
solve community discovery and change-point detection prob-
lems on dynamic weighted directed graphs.

3. COMMUNITY MINING ALGORITHM
In this section, we propose the community mining algo-

rithm Stream-Group aimed at mining community on DWDG.
The overall framework of Stream-Group is outlined in Al-

gorithm 1.
From Algorithm 1, it can be clearly seen that Stream-

Group is an incremental algorithm. Stream-Group listens
to the new arriving graph along the graph stream contin-
uously. When a new time-slice is coming, Stream-Group
executes following steps: (1)Discover community structure
of the arriving graph through S-Group; (2)Compute similar-
ity between the partition(It) of the new arriving graph and
that(Is) of the previous graph segment; (3)Judge whether a
change-point appears or not according to the partition sim-
ilarity and the specified threshold(c0), if the time-slice t is
not a change points, then (4)Update the partition Is of the
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graph segment Gs through Inc-Group, otherwise (5)Start a
new graph segment Gs+1.

In the following sub-sections, S-Group, partition similarity
and Inc-Group are discussed in more detail.

3.1 Community Discovery
In this section, we omit the subscripts s and t because

we consider the community discovery problem in only one
specific time-slice which is a special kind of graph segment
including just one graph. The most important points of
searching a good partition of a graph efficiently are as fol-
lows: (1)Choose a metric to evaluate the goodness of a
partition summarizing the overall community structure of
a graph; (2)Devise timesaving algorithms to find out the
partition with the most optimal value of the above measure.

In the following subsections, we elaborate the two points
respectively.

3.1.1 Evaluation of a Partition
Formally, Newman et al.[16] proposed a metric named

modularity to evaluate the goodness of a partition of undi-
rected graphs. Recently modularity is extended to weighted
or directed graphs[14, 2, 7]. In this paper, we simply use the
extended modularity to evaluate the partition of a graph.

First, we represent graph by a matrix. For graph G, as-
sume there are totally n nodes in it, then the matrix form
of the graph is,

G =

g11 · · · g1n

...
. . .

...
gn1 · · · gnn

 (1)

where gij =

{
wij < j, i >∈ E
0 others

Based on the matrix shown above, we rewrite the in-
degree and out-degree of a node as din

i =
∑

j gij and dout
i =∑

j gji respectively. We denote by A =
∑

ij gij the sum of

each edge’s weight in G. Then, the modularity[2] of a parti-
tion I with respect to G is as follows. We denote by p or q
the community indices in the partition I and assume there
are totally k communities in it.

Q =
1

A

k∑
p=1

∑
i,j∈Ip

(
gij −

din
i dout

j

A

)
(2)

To be consistent with the conventional way, we present
the modularity Q in a more concise way as below.

Q =

k∑
p=1

(epp − apbp) (3)

where epq = 1
A

∑
i∈Ip

∑
j∈Iq gij is the fraction of weights

on edges between community p and q, ap = 1
A

∑
i∈Ip

∑
j gij

is the fraction of weights on edges that link to nodes in
community p, and bp = 1

A

∑
i∈Ip

∑
j gji is the fraction of

weights on edges that link from nodes in community p.
It is easy to prove that the two computation formulas of

Q above are equivalent.
Modularity described above is right the metric to evalu-

ate the goodness of a partition of a graph. The larger the
modularity Q is, the better the partition summarizes the

overall community structure. Note that Q is a real number
between 0 and 1 and when it is larger than 0.3 the commu-
nity structure is remarkable[16]. The optimal modularity of
real networks usually lies between 0.3 and 0.7.

Thus, given a graph G, the task of community discovery is
to search a partition I maximizing the modularity Q. Unfor-
tunately, optimization of modularity is a non-deterministic
polynomial-time hard (NP-hard) problem[5].

3.1.2 Search Good Partition
To optimize the modularity Q, there are some heuristics.

One of the most famous algorithms is first advanced by New-
man[16]. This algorithm works as following: first regard
each node as a community, then iteratively merge two com-
munities which maximize ∆Q (the modularity difference of
before and after merging two communities) until Q doesn’t
increase. However, recent study[30] shows that ∆Q usu-
ally makes mistake when communities are small. Good Ef-
ficiency and effectiveness is always a pair of conflict goals of
community discovery.

To balance the efficiency and effectiveness, we propose
a two-step algorithm to search for good partition with the
optimal or near-optimal modularity. The first step con-
structs compact communities. The second step merges those
compact communities into larger ones until the modularity
doesn’t increase. The following contents explain the two
steps in more detail respectively.
First Step: Construct Compact Communities

What kind of community is compact? Given two commu-
nities, which one is more compact? To answer these ques-
tions, we need a metric to measure the degree of a set of
nodes being like a community. There exist some kinds of
definitions of community. For example, Radicchi et al.[21]
proposed two definitions of community with one in a strong
sense and another in a weak sense. But they can only an-
swer whether a set of nodes form a community but can not
answer the questions above.

Before introducing the measure of the goodness of a com-
munity, we first consider the relevance matrix computed
through Random Walk with Restart (RWR) technique. It
is right the observation that relevance scores between nodes
within the same communities are usually higher than the
ones between different communities[28] that inspires us. The
computation formula of relevance matrix between each pair
of nodes is as follows[28, 18, 11, 27].

R = (1− d)(E − dG̃)−1 (4)

where E is the identity matrix, G̃ is the column normalized
matrix of G. The element rij represents the probability of
random particle will finally stay at i when starting from j
with restart probability 1− d.

Notice that the relevance matrix has more non-zero el-
ements than the original matrix. If the original graph is
strongly connected, there are not any zero value elements in
its relevance matrix. Of course, the relevance matrix lose
some detail information of the original graph, but it pre-
serves and even strengthens the overall community struc-
ture, which is appreciated by us.

Then, we define a goodness metric compactness of a com-
munity based on the relevance matrix. In fact, compactness
is a local modularity of communities and its idea is origi-
nated from the advanced concept of modularity. Given a
sub-graph G′ of G, the compactness of G′ is computed by
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the equation as follows. Denote V (G′) by V ′.

C(V ′) =
1

B

 ∑
i,j∈V ′

rij −
∑

i∈V ′ ri∗
∑

j∈V ′ r∗j

B

 (5)

where B =
∑

ij rij is the sum of all the elements in R, which

is the relevance matrix of G. ri∗ =
∑

k rik and r∗j =
∑

k rkj

are the sum of the i-th row’s and j-th column’s elements of
R respectively.

Compactness is a local goodness measure of a sub-graph
being a community. The larger C(V ′) is, the more likely the
sub-graph G′ is a community.

Now, we present a fast heuristic OBO-Group to construct
compact communities. The main idea of the algorithm is as
following.

The overall view of the algorithm is to construct local
compact communities one by one until there isn’t any node
left. In more detail, when constructing a new community,
we expand the community by adding new nodes into it it-
eratively until Condition 1 is not satisfied. Before showing
Condition 1, we give out the concept single compactness
of a node with respect to a community, which indicates the
degree of the node belonging to the community. The com-
putation formula of single compactness of a node i with
respect to a community V ′ is as following, where i /∈ V ′.

C(i, V ′) =
1

B

rii +
∑
j∈V ′

(rij + rji)−
ri∗r∗i

B

 (6)

where the meaning of notions ri∗, r∗i and B is the same as
Equation (5).

Based on the definition of single compactness, we give
out Condition 1 as below.

Condition 1. Current largest single compactness of possi-
ble nodes with respect to the current constructing commu-
nity is larger than or equal to the previous one.

Note that theoretically the compactness of a community
constructed under the constraint of condition 1 neither nec-
essarily keep increasing nor decreasing. However, the over-
all trend is always increasing with little decreasing. When
condition 1 is not satisfied, it also doesn’t suggest that the
compactness decrease.

Nonetheless, we only need to find compact communities
at this step, that is, we put nodes that is obviously in the
same community together first. If two nodes are in the same
community very naturally, then the single compactness of
one node which is added after the other is larger than or
equal to the former one which is consistent with Condition
1. The reason is that as the augmentation of the community,
intra-community relevance scores become more and more
and inter-community ones become less and less. Thus if
Condition 1 don’t hold, then we think that there is not any
more nodes which is definitely in the current constructing
community, then start a new community construction.

The pseudo-code of the algorithm OBO-Group is pre-
sented in Algorithm 2. For a brief conclusion, OBO-Group
is to put nodes into compact communities. The nodes in the
same community of the partition output by OBO-Group will
be definitely in the same community of the final partition

Algorithm 2: OBO-Group(G,R)

1:S ← {v|v ∈ V (G)}, I ← ∅, k ← 0
2:k ← k + 1, Ik ← ∅,CC ← 0
3:while S is not empty
4: foreach v in S do
5: compute v’s single compactness with respect to

Ik (Equation (6))
6: record the node v with Largest Compactness(LC)
7: if LC not less than CC then
8: CC ← LC,add v into Ik

else
9: add Ik into I and Set corresponding variables as

line 2
10:return I, k

Algorithm 3: M-Group(I,k)

1:I ′ ← I,k′ ← k
2:while(k′ larger than 1)
3: foreach pair of communities p and q in I ′ do
4: compute ∆Q according to Equation (7)
5: record the community pair p and q with the largest
∆Q(LQ)
6: if LQ larger than 0 then
7: merge p and q in I ′,k′ ← k′ − 1
8: else break
9:return I ′,k′

but the reverse not true. OBO-Group is also a preprocess-
ing step of the next step M-Group which gives out the final
partition.
Second Step: Merge Compact Communities

Now, we introduce an algorithm M-Group to obtain the
final partition that has optimal or near-optimal modularity
through merging the communities output by OBO-Group.

The main idea of M-Group is to merge compact commu-
nities continuously until the modularity Q doesn’t increase.
That is, when merging any two existing communities pro-
duces a lower modularity, we stop the whole process of com-
munity discovery and report the final partition. The pseudo-
code is described in Algorithm 3.

When merging community p and community q, the in-
creasing amount of modularity can be calculated as Equa-
tion (7).

∆Q = epq + eqp − apbq − aqbp (7)

The meaning of the notations above can be found in Section
3.1.1.

The straightforward derivation of Equation (7) is described
below.

Denote by D(Ip) = epp − apbp the local modularity of
community p, Then, the modularity Q1 before merging p
and q is:

Q1 =
∑

p′ 6=p,q

D(Ip′) + D(Ip) + D(Iq) (8)

And the modularity Q2 after merging p and q is:

Q2 =
∑

p′ 6=p,q

D(Ip′) + D(Ip ∪ Iq) (9)
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Algorithm 4: S-Group(G)

1:compute relevance matrix R of G
2:(I,k)← OBO-Group(G,R)
3:(I,k)← M-Group(I,k)
4:return I,k

Then

∆Q = Q2 −Q1

= D(Ip ∪ Iq)−D(Ip)−D(Iq)

= [epp + eqq + epq + eqp − (ap + aq)(bp + bq)]

−(epp − apbp)− (eqq − aqbq)

= epq + eqp − apbq − aqbp (10)

which is in line with Equation (7)

Integrating two steps described above together, we obtain
the overall framework of community discovery algorithm (see
Algorithm 4 for pseudo-code) for a static graph.

3.2 Detection of Change-points
In subsection 3.1, we propose community discovery algo-

rithm S-Group for a static graph in a specific time-slice.
However, time is an important element considered by us.
In this subsection, we discuss how to group time-evolving
graphs into graph segments and uncover the change-points
along time-slices.

Whether putting a new arriving graph into the current
graph segment or starting a new graph segment is deter-
mined by the similarity between partitions of the current
graph segment and that of the arriving graph. This similar-
ity is defined as follows.

Definition 2. (Partition Similarity). Given two partitions
I and I ′ of N nodes, the similarity between them is calcu-
lated as:

Sim(I, I ′) =
PI(I ′) + PI′(I)

2N
(11)

where PI(I ′) =
∑

p maxc∈I∩I′ |Ip ∩ c|

For example, there are partitions I = {{1, 2}, {3, 4}, {5, 6}}
and I ′ = {{1, 2}, {3, 4, 5, 6}} of six nodes. Then I ∩ I ′ =
{{1, 2}, {3, 4}, {5, 6}}, PI(I ′) = 2 + 2 + 2 = 6, PI′(I) =
2 + 2 = 4 and Sim(I, I ′) = (6 + 4)/12 = 0.83.

Suppose we know the partition Is of the current graph
segment Gs and the partition It of the new arriving graph
Gt, according to the size of the similarity between Is and It

we determine whether putting G into Gs. If the similarity
is larger than or equal to a specified similarity threshold c0,
then put the new arriving graph Gt into the current graph
segment Gs, otherwise start a new graph segment Gs+1. No-
tice that It can be computed through Algorithm 4 and how
to obtain and update Is will be discussed in the coming
paragraphs.

Now, we propose an incremental algorithm to find good
partition of an updated graph segment Gs. The naive way
is to integrate all the graphs in Gs into a graph and then
perform S-Group on it. To make advantage of the existing
partitions Is of Gs and It for the new arriving graph Gt,
we present algorithm, Inc-Group, instead of the naive one
to improve the overall performance.

Algorithm 5: Inc-Group(Gs,Is,Gt,It)

1:Gs ← Gs ∪ {Gt}
2:H ← integrate Gs

3:I ′ ← Is ∩ It,k′ ← |I ′|
4:(Is, ks)← M-Group(I ′,k′)
5:return Is,ks

The main idea of Inc-Group is as follows. First, update
the s-th graph segment Gs to Gs∪{Gt} where Gs represents
current or updated s-th graph segment and Gt represents
the new arriving graph at time-slice t. Second, integrate
graphs in Gs to one graph H. Third, compute the meet I ′

of Is and It, and count the number of elements k′ in I ′.
Forth, perform M-Group on I ′ and k′. At last, report the
result of the forth step as the final partition Is of the s-th
updated graph segment. For more explicit, the pseudo-code
is listed in Algorithm 5.

More details of line 2 in Algorithm 5 are as follows. Be-
cause in our setting, all the graphs along graph stream have
the same number of nodes, so V (H)← V (Gt) and E(H)←⋃

t E(Gt) and W (H)← 1
ts+1−ts

∑
t W (Gt), where t ∈ [ts, ts+1−

1].
Based on the algorithm above, we give out our overall

framework of community discovery and change-point detec-
tion for infinite graph stream G(see Algorithm 1).

Notice that the realized program of Stream-Group is an
endless loop process because it must listen to the arriving
graph on the graph stream continuously.

4. EXPERIMENTS AND RESULTS
In this section, we validate the effectiveness and efficiency

of our algorithms through experiments. Results on commu-
nity discovery and change-point detection are both evalu-
ated on synthetic and real datasets. The experiments are
conducted on Widows xp installed on PC with P4 1.7GHZ
CPU and 512MB MEM.

4.1 Experiments on Community Discovery
In this subsection, we evaluate both the effectiveness and

efficiency of community discovery algorithms through exper-
iments on synthetic and real networks.

Synthetic Networks
For synthetic networks, data are generated by the way

extended from Newman’s[17]. Here, a graph stream in-
cluding 16 random weighted directed graphs are generated.
For each graph, there are 128 nodes divided into 4 known
communities of 32 nodes. Moreover, there are 3 synthetic
change-points which separate the time into 4 time segments
{T1−T4, T5−T8, T9−T12, T13−T16}. In one time segment,
each graph has the same known community structure. But
between any two continuous time segments, graphs have
different known community structure. Table 2 has shown
each graph’s community structure where [i-j] means node
set {i, i + 1, i + 2, . . . , j}.

Then, we generate random weighted directed graphs ac-
cording to their known community structure. To this end,
suppose each node has on average zin = 12 edges connect-
ing it to members of the same community and zout = 4
edges to members of other communities. From probability
perspective, each node is connected to each member of the
same community with probability 0.375(12/32) and to every
member of other communities with probability 0.0417(4/96).
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Table 2: The known community structure for graphs in the synthetic graph stream
Graphs Community one Community two Community three Community four

G1 −G4 [1-32] [33-64] [65-96] [97-128]
G5 −G8 [121-128],[1-24] [25-56] [57-88] [89-120]
G9 −G12 [113-128],[1-16] [17-48] [49-80] [81-112]
G13 −G16 [105-128],[1-8] [9-40] [41-72] [73-104]
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Figure 1: Running Results of algorithms M-Group,
OBO-Group and S-Group on 160 Independent Cases

For weights, we generate an integer from 1 to 10 randomly
for intra-community edges and 1 to 6 for inter-community
ones.

First, we compare the effectiveness and efficiency of com-
munity discovery algorithms which are M-Group, OBO-Group
and S-Group. To this end, 160 graphs are generated in the
way described above. Then, run the three algorithms on all
the generated graphs. Results are shown in Figure 1. Figure
1a) illustrates the modularity size of community structure
discovered by the algorithms, while Figure 1b) shows the
number of communities discovered through each algorithm.
As discussed in previous sections, the larger the modular-
ity, the better the community structure and the more ef-
fective the algorithm is. From figure 1a), we can see that
M-Group is the most effective algorithm and OBO-Group is
the most ineffective one while the effectiveness of S-Group
falls in between. Actually, M-Group is similar with the algo-
rithm proposed by Newman in[17]. From Figure 1b), we can
see that the number of communities discovered by S-Group
is the same as or near to the result of M-Group in most
cases. Finally, Figure 1c) has shown the running time (in
milliseconds) of the three algorithms. From these results, S-
Group has nearly the same good effectiveness with M-Group
and has nearly the same good efficiency with OBO-Group.
It is concluded that S-Group is a good trade-off between
effectiveness and efficiency comparing to the other two algo-
rithms.

To see the effectiveness of the algorithms more deeply,
we illustrate a graph and its output graphs after running
different algorithms. Figure 2 has shown the results. Figure
2a) is the grayscale image of the original graph where the
gray values reflect the weights of edges in the graph. The
larger the gray value is, the larger the weight is. Figure 2
b) to d) are the output graphs output by M-Group, OBO-
Group and S-Group respectively. From these results, we
can see S-Group is nearly as effective as M-Group and only
have a few nodes error-partitioned. In fact, when the graph
is very large, people usually prefer to the algorithm losing
some accuracy but with high efficiency. Taken in this sense,
S-Group is more meaningful than others.

Real Networks
To test whether our algorithms can discover interesting

communities in real networks, we choose four real networks
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Figure 2: Grayscale Images of a) a Synthetic Graph
and b-d) The Output Graphs
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Figure 3: Grayscale Images of a) The Karate Graph
and b-d) The Resulting Graphs

to perform our experiments. The real networks are Karate,
Football, Dolphins and Neural which are released by New-
man and can be downloaded from http://www-personal.umich
.edu/˜ mejn/netdata/. The former three networks have no
directions and weights on edges, and the last network is a
weighted directed network.

For each real network, we run M-Group, OBO-Group and
S-Group on it. For Figure 3 to Figure 5, the results are
shown with grayscale images in which black reflects the
weight of corresponding edge is 1 and white represents the
weight is 0. For Figure 6, the gray value scales from 0(white)
to 8(black) where white represents there are no arcs between
corresponding node pair and black represents the largest
weight on edges. In each of this figures, a) represents the
input graphs, b) to d) are the resulting graphs after running
M-Group, OBO-Group and S-Group on the input graphs
respectively. Through brief analysis, the effectiveness of S-
Group lies between that of M-Group and OBO-Group in all
the four cases.
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Figure 4: Grayscale Images of a) The Football
Graph and b-d) The Resulting Graphs

Finally, we illustrate the scalability of our algorithms for
community discovery. To this end, we vary the graph size
(the number of nodes) from 100 to 1000 and generate ran-
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Figure 5: Grayscale Images of a) The Dolphins
Graph and b-d) The Resulting Graphs

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

 
         a)              b)             c)             d)  

Figure 6: Grayscale Images of a) The Neural Graph
and b-d) The Resulting Graphs

dom graphs of these sizes. The three algorithms are run
on the generated graphs and we record their running time
(in milliseconds) in Figure 7, from where we can see that
S-Group as well OBO-Group have nearly linear time com-
plexity which is much better than M-Group.
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Figure 7: Running Time of Community Discovery
algorithms on Graphs with Different Sizes

From the experiments in this subsection, it is concluded
that S-Group can find meaningful communities as human
intuition in a timesaving way.

4.2 Experiments on Change-point Detection
In this subsection, we test the ability of change-point de-

tection of Stream-Group through experiments on both syn-
thetic and real networks.

Synthetic Networks
For synthetic networks, we simply adopt the graph stream

generated in subsection 4.1. Then we run Stream-Group on
the graph stream. For the threshold of partition similarity,
we choose three typical real values 0.65, 0.75 and 0.85. For
each threshold and each time-slice of 16, we record the sim-
ilarity between partitions of current time-slice and previous
time segment. The results are shown in Figure 8. Similar-
ities lower than thresholds indicate change-points. We can
see that Stream-Group has detected all the three synthetic
change-points(5, 9 and 12) when choosing 0.75 as the simi-
larity threshold as Figure 8b) shows. When the threshold is
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Figure 8: Similarities between Partitions of Previ-
ous Time segment and Current time-slice by Set-
ting Three Different similarity Thresholds a) 0.65,
b) 0.75 and c) 0.85

lower (0.65), the number of change-points becomes smaller
as Figure 8a) shows. When the threshold is higher (0.85),
the number of change-points becomes larger as Figure 8c)
shows.

Real Networks
To test whether our algorithms can detect interesting change-

points in real networks, we choose Enron dataset which
is a well known public dataset for social network analy-
sis. The MySql Script of Enron dataset can be downloaded
from http://www.isi.edu/˜adibi/Enron/Enron.htm. Totally
19673 e-mail addresses with suffix “@enron.com” are ex-
tracted from the original dataset. The graphs are constructed
from communications among these extracted e-mails from
Jan 1999 to July 2002. We choose one week as a time-slice
and there are totally 185 time-slices. Edges represent there
are communications between e-mails. The direction of an
edge originates from the sender and terminates at the re-
cipient. The weights on edges represent the frequency of
corresponding communications.

Because of our ignorance of the actual partitions and change-
points of Enron dataset, It is hard for us to set a reasonable
threshold of partition similarity. Nevertheless, an aforehand
exploration into the Enron dataset is first conducted by us,
that is, we compute the similarity between partitions of any
two adjacent time-slices at the beginning of the experiments.
To this end, we set the similarity threshold c0 to 1.0 in
Steam-Group. Because it is impossible that the partition
similarity is larger than 1.0, so any time-slice itself is an inde-
pendent time segment under the constraint of the threshold
1.0.Through simple statistics, the mean value of similarities
between continuous adjacent time-slices is 0.3351 and the
median value is 0.3214.

Based on the above observations, the similarity threshold
c0 is set by us to 0.32, 0.31 and 0.30 which are a bit smaller
than the mean and median value. The relative similarity
(the partition similarity minus the similarity threshold) be-
tween the partitions of every time-slice and its previous time
segment under different thresholds are recorded in Figure 9.

In Figure 9, the similarities below the relative thresh-
olds (dotted lines) represent the change-points under the
confidence of corresponding similarity thresholds. Through
simple statistics, there are 65, 58 and 50 change-points un-
der the three thresholds respectively. The average number
of time-slices in one time segment are 2.8, 3.2 and 3.7 re-
spectively. From Figure 9, we can see that the size of the
time segments scales from several to dozens. To further in-
vestigate the experimental results, formally the continuous
time-slices with partition similarity above the correspond-
ing thresholds is called stable phase, and that with parti-
tion similarity below the thresholds is called fluctuant phase.
Figure 9 has marked the primary stable phases and fluctu-
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Figure 9: Relative Similarities Between Partitions of
Previous Time segment and Current Time-slice For
Enron Data by Setting Three Different Similarity
Thresholds a) 0.32, b) 0.31 and c) 0.30

ant phases under different thresholds. The left unmarked
time-slices are very small stable or fluctuant phases which is
always not so meaningful to real applications. As the thresh-
old increases, the primary stable phases become longer and
the primary fluctuant phases become shorter, which accords
with human intuition. From the primary stable and fluc-
tuant phases, it can be see when the community structure
of Enron communication network is stable and when it is
fluctuant.

To investigate whether the change-points detected by Stream-
Group are accordant with actual situation, we consider two
adjacent stable phases t1-t29 and t30-t39 that are divided
by the change-point 30 in Figure 9a). From the report of
the counterpart algorithm GraphScope[23, Figure 1], about
the 30-th timestamp (Nov 1999) is the time when Enron
launched which is one of real change-points. So Stream-
Group detected the actual change-points. Other change-
points can be analyzed in the same way.

5. CONCLUSIONS
We propose Stream-Group to discovery communities and

to detect change-points on DWDG. In the process of Stream-
Group, algorithm S-Group is proposed to detect communi-
ties in a particular time-slice. In order to ease the contradic-
tion between effectiveness and efficiency, S-Group combines
two heuristic steps OBO-Group and M-Group. For change-
point detection, a partition similarity measure is devised.
According to the similarity between the partition of the new
arriving graph and that of the current graph segment, it can
be determined whether we need expand the current graph
segment by adding the new arriving graph into it or start an-
other graph segment. Our algorithms are carefully designed
to achieve a balance between the effectiveness and efficiency
in community discovery. Through extensive experiments on
both synthetic and real networks, we have validated the ef-
ficiency and effectiveness of our algorithms. As community
mining has a broad application domain, our work can be
applied to solve related problems in many different appli-
cations. Future work includes how to find the underlying
rule of these communities and change-points, such as clas-
sifying the discovered communities, finding out the cause of
the change-points and so on.
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