
Sound Rules for Parallel Evaluation of a Functional Language with callcc

Luc Moreau and Daniel Ribbens

Service d’Informatique
Institut d’Electricity Montefiore, B28

University of LiAge (Sart-Tilman)
4000 Li&ge Belgium

moreau@montef iore. ulg. ac. be ribbens@montef iore .ulg. ac .be

Abstract

Observationally equivalent programs are programs which are
indistinguishable in aJl contexts, aa far aa their termination

property ie concerned. In this paper, we present rules pre-

serving observational equivrdence, for the parallel evaluation

of programs using call/cc. These rules idlow the capture
of continuations in any applicative context and they prevent

from aborting the whole computation when a continuation is

applied in the extent of the call/cc by which it was reified.
As a consequence, these results prove that one can design a

functional language with first-class continuations which haa

transparent constructs for parallelism.

1 Introduction

Some programming languages, like Scheme and Standard
ML of New Jersey, provide a control operator call/cc which

gives the programmer the possibility to reify the current con-

tinuation aa a first-class object. When such a reified con-
tinuation is applied to a value V, the current computation

is aborted and the execution resumes at the point where
the continuation waa captured; the value v being the vsJue

returned from this call/cc expression. When parallelism

is introduced in such languages the meaning of continua-

tions does not appear to be clear. There have been seversJ
attempts to give a semantics to continuations and paral-
lelism [11], [12], [16], [17], [22]. In a previous paper [19], we

presented a new semantics for a functional language with
continuations and transparent constructs for parallelism. In
this paper, we formalise this approach and prove some in-

teresting properties.

1.1 Intuitive semantics

A construct for parallelism is said to be transparent if all pro-

grams using this construct return the same result as those

programs written without thw construct. Thus, a transpar-
ent construct can be seen aa an annotation for parallel ex-
ecution which preserves the meaning of programs. Thanks

to this property, parallel applications can be developed in
two phases: programs can be written using the functional

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the
title of the publication and its date eppear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.
ACM-FPCA’93-6/93 /Copenhagen, DK
01993 ACM O-89791-595-X/93/0006/01 25...$1.50

programming methodology and then, they can be annotated

by constructs for parallelism aa described in [18].
Let us consider the purely functional subset of Scheme

extended with call/cc and let us suppose that evaluation
is sequential (left-to-right order) unless parrdlelism is intro-

duced by the construct pcall. pcall requires two argu-

ments; (pcall f e) applies the value of f to the value of e
after evaluation of f and e in parallel.

Let us show by severaJ examples the behaviour of pro-
grams using simultaneously call/cc and pcall. In the fol-
lowing program, which is the same as program 1 (in figure
1) without the pcall annotation,

(call/cc (lambda (k)
((fl (k 1)) (k 2))))

k is applied to 1 because evaluation is supposed to be from
left to right. In program 1, the evaluations of (k 1) and

(k 2) proceed in parallel. Since pcall is transparent, only
one application can actually be performed, and it must be

k to 1. In fact, with a transparent pcall, k must not be
applied to 2 because expression (f 1 (k 1)) escapes and this
expression, appearing to the left of (k 2), is evaJuated before

(k 2) in the sequential program. We can state this intuitive
rule: before applging a continuation in a parallel program,
expressions appearing to the left of the application of this

continuation should have returned a value.

(call/cc (lambda (k)
(pcall (fl (k 1)) @ 2)))) 1

(pcall (e) (call/cc (lambda (exit) 2
(. . (exit 2)))))

(pcall (call/cc (lambda (kl) . . .)) 3
(call/cc (lambda (k2) . ..)))

Figure 1: Three small examples

In the following example,

(let ((a (call/cc (lambda (x) x))))
(a (lambda (x) x)))

the continuation returned by the call/cc expression is ap

plied outside this call/cc expression. The continuation is
said to be applied outside the extent of this call/cc. On

the other hand, in program 2 (in figure 1), the continuation
bound to exit is applied whale evaluating the call/cc ex-

pression, i.e. in its extent. If we apply our intuitive rule
to program 2, we have to wait for the value of (e) before

125

http://crossmark.crossref.org/dialog/?doi=10.1145%2F165180.165197&domain=pdf&date_stamp=1993-07-01

applying exit to 2 because (e) appears to the left of (exit
2). However, we understand that we can invoke exit inde-

pendently of the behaviour of (e), since the application of
exit aims at returning the value of the call/cc expression.

In program 3, we would like to capture two continuations
in parallel. Intuitively, there does not seem to be any reaaon

to sequentialise those captures: indeed, the continuation to
be bound to k2 can be found independently of the value of

(call/cc (lambda (kl) . ..)) and vice-versa.
Those three examples illustrate the principles about the

parallel evaluation we want to formalise using syntactic the-
ories. First, continuations can be applied if expressions to

their left have returned a value. Second, if a continuation
is applied in the extent T of the call/cc by which it waa

reified, one has to consider only expressions appearing to
the left and which have an extent which is included in T.

Third, a continuation can be captured in any context, inde-
pendently of expressions appearing to their left.

1.2 Syntactic theories of control

Syntactic theories of control were introduced by Felleisen et

al. [5], [7], [8], [6]. These theories extend the call-by-value

A-calculus defined by Plotkin [21] with control operators like
C and d. C allows to capture a continuation and A aborts

a computation. Felleisen et al. proved these systems to be
Church- Rosser. Thw property states that if M reduces to
P and M reduces to Q by different reduction paths, there
exists N such that P and Q reduce to N. This entails that

there is an evaluation function.
Initially, we defined a reduction system which waa also

an extension of Plotkin’s call-by-value A-calculus with con-

trol operators ca IIcc and A. It was composed of several
reduction rules: the /3-value reduction, rules to eliminate

ca Ilcc (i.e. reify a continuation) in any context and rules

to apply a continuation. Those rules were supposed to be
a formalisation of the intuitive semantics given in section

1.1. We defined a leftmost, outermost reduction strategy
which corresponds to a sequential (left-to-right evaluation

order) semantics. A parallel evaluation was also possible in
this system since several redlces could be reduced at each

evaluation step.

Unfortunately, it appeared that such a system was not
Church- Rosser: we could find a program M which reduced

to P and Q by the sequential and parallel strategy but we
could not find N such that both P and Q reduced to N.

The rule which made the Church-Rosser property collapse
was the rule which allowed the capture of continuation in

any context. Although Church-Rosser is a nice property,
it appears to be too strong for our purpose. Indeed, there
are programs which cannot be proved to be equal although
thev behave “externally” in the same wav. in anv context. . .
they are used. This notion of equivalence is usually called
observational equivalence. Given two observational equiv-

alent programs, there is no context in which one program
terminates and the other not: both programs are indistin-

guishable as far aa termination is concerned.
Therefore, we adopted another approach to formalise the

intuit ive semantics of section 1.1. We initially defined a
core reduction system C, which extends the call-by-value ~-

calculus, wit h control operators ca 1Icc and A. Unlike our
first attempt, we do not allow the capture of continuation
in all contexts and we do not consider the problem of the

application of a continuation in the extent of the ca Ilcc by

which it waa reified. This system C looks very like Felleisen’s

theory [5] and it suffers from the same defaults: a parallel
evaluation strategy can be defined but far less parallelism

is obtained than in our intuitive semantics because control
operators are bottlenecks. Although it does not capture our

intuitive semantics, this system is interesting since it can
be proved to be Church-Rosser and can be used to define a

notion of observational equivalence. Then, we extend this
initial system wit h a set of equations which encode the in-
tuitive semantics. We show that those equations preserve
observational equivalence. It means that programs reduced

with those equations and the same programs reduced with-
out them return results which are observationa.lly equivalent.

Our goal is reached: we can define a sequential reduction
strategy and a parallel reduction strategy (with the seman-

tics of 1. 1) for which returned results are observationally in-
distinguishable. It means that parallel evaluation does not

change the meaning of programs and transparent constructs

can be added to a sequential language and be considered as

annotations for execution.
Thk paper is organised aa follows. In section 2, we

present the core reduction system C and in section 3, we
define the observational equivalence in C and prove a ma-

jor result relating the CPS translation to the observational
equivalence. In section 4, we extend C by equations for
the capture of continuations in any context and equations
which improve the evaluation, all of them being proved to

be sound. At this point, our reduction system is able to
evaluate examples 1 and 3 as explained in section 1.1. The

optimisation of the application of a continuation in the ex-
tent of a ca IIcc requires a new representation of continuation

objects and a new syntactic construct to mark the extent.

This is presented in two steps: in section 5, we describe an
intermediate reduction system CP (for Continuation Points)
which allows to uniquely name a reified continuation. In sec-

tion 6, we define the system CPP (for Continuation Points

and Prompts) with a mechanism of prompt delimiting the
extent of a ca IIce. This system is able to evaluate example 2

aa explained in section 1.1. All reduction systems C, CP and
CPP are proved to have the same notions of observational

equivalence.

2 The C calculus

Let us consider Ac, the language defined by

(v Value

Term M ::=

{

(MM) Application

(callcc M) callcc-Application
(AM) A-Application

{

a, b,... Constants

Value V ::= Z,y, . . . Variables

,lz.M Lambda Abstraction

and let us use Barendregt’s [1] conventions, for substitution,
free variables, closed values. This language is a A-calculus
extended wit h two cent rol operators: ca IICC which captures
the current continuation and A which aborts a commutation.
We also define several kinds of contexts used in t~is paper,

Contexts C[], Applicative A[], Evaluation contexts E[]:

q] ::= [1 I C[JW 11I C[[IMl I C[-W 11
I C[callcc []] I C[A []]

A[] ::= [1 I A[M[11I A[[W]
E[] ::= [1I ~[v[11I ~[[IMl

126

(Az.M)V
~

M{V/z} with V a value (cl)

(ah) ~ 6c(a, b) ifthu is defined (C2)

M(callcc N)
cal~~

callcc M.M(N (Av.A(k(14v)))) with M a value (C3)

(callcc M)N Ca’EL callcc M.(M(,l~.A(k(~N))))N (C4)

(AM)N a AM (C5)

M(AN) ~“ AN with M a value (C6)

AAM
d,%.

AM (C7)

A(callcc M) Ca”cs ‘“A A(M(2z.A~)) (C8)

Figure 2: One step reduction AC for C

The C reduction system is defined by the set of rules in
figure 2; it ia similar to Felleisen’s reduction system [8]. Let

us sketch some of its features. The first rule is the /3-value
reduction [21] and the second rule is the 6-reduction apply-
ing a primitive a to a constant b. As Plot kin [21], we sup-
pose that 6 is defined on the following domain: Constants x
Constants + Closed Value. Rules C5 and C6 are the same
as in [8]; in an application (Aitf) N, when the expression in

operator position aborts, the operand N is removed and, in
M(AN), an expression in operand position can abort if the

expression in operator position M is a value.

Rules C3 and C4 are adapted from Felleisen’s rules for

C. callcc is intended to reify the current continuation and
to apply its argument to it. In this reduction system, the

current continuation is reified as a functional abstraction,
which is built step by step according to the context in which

callcc appears. The two rules allow callcc to appear in an
application either in operator or operand position. Let us
consider rule C3, rule C4 being symmetric. Supposing that
the continuation of Af(ca Ilcc N) is k, the continuation of
callcc N is represented by Av.A(k(Mv)), an abortive func-

tion waiting for a value, applying M to this value, the result

being transmitted to the continuation k. The value of the
continuation k is also found by a callcc.

By successively, applying rules C3 and C4, a callcc-ex-

pression appearing internally in a expression is moved step

by step, inside-out, until it appears at the top level of this ex-
pression. Instead of using computation rules as Felleisen, we

suppose that a computation is performed in an A-application.
Rule C8 transforms a callcc at the top level by an applica-
tion of its argument to the initial continuation (Az .Az) and

similarly, rule C7 eliminates an A at the top level.

As long as no ca Ilcc or A appears in a program, this
reduction system behaves as the call-by-value A-calculus.
When a callcc is used in a program, it is intended to capture

its current continuation. This continuation is represented by
a functional abstraction of the context which is built step
by step by bubbling up [6] ca!!cc-applications (using rules

C3 and C4) until a callcc reaches the top level. This phase,
called the con.druction phase [7], accumulates all Capplica-
tion frames”. At this point, rule C8 can be applied (since we
suppose that evaluation proceeds in an A-application) and a
series of /3. reductions are performed; this phase, called the
coUection pha8e [7], “concatenates all application frames”.

After these two phases, we are in the situation where the

initial callcc-application is replaced by the application of its

argument to the functional abstraction of the context. If a
continuation is applied to a value, it immediately aborts the
current computation (with A). In order to abort a compu-

tation, terms are pruned step by step using rules C5 and C6
until the top level is reached where rule C7 can be applied.

With the first six rules, we can define a notion of reduc-
tion +“

-C=fi” ~” cal&R” ca~c’
IJ ‘+i u ‘+’

and its compatible closure +C is defined by

M+’N ~ M+CN

M +c N + ~z.M += ~x.N
M += N + ZM += ZN, MZ ~c NZ, with Z G A=

M += N +- callcc M +. callcc N
M*. N + AM+c AN

Classically we define -+:, the reflexive, transitive closure of

+= and == the equivalence relation generated by +;.
We suppose that an evaluation is performed within an

A operator. Rules C7 and C8 can only be used at the top

level. We call them top level rules. Those rules are different
from rules Cl to C6 since we do not define their compatible

closures. We define a computation +: by

callcc Ind
--+:=-+: IJ ‘*” l.J +

and we note + ~● its transitive closure.
The C reduction system has the following properties:

Theorem 2.1 (Church-Rosser)

● The notion of reduction += is Church-Rosser.

● The relation +: satisjies the diamond property.

Sketch of Proof of Theorem 2.1
The proof is similar to the one proposed by Felleisen [8].

First, from the definition of +’, we define a parallel reduc-
tion -r. We prove the diamond property for +1 which
leads to the diamond property of +:. Then we show that
+: also satisfies the diamond property. ❑

We can abstract the evaluation process by evaic:

Definition 2.2 (Eval) evaic(M) = V ifiAM-+:*AV with

V a value.

127

evalc is defined if the reduction AM+~*AV terminates,

else it is undefined. We can also define a standard reduction

function ++. which reduces the leftmost, outermost redex

and which does not allow reduction under A-abstraction, A
and callcc-applications. We naturally extend it to a stan-
dard reduction function with top level reduction t+;.

Definition 2.3

M-+CIV

M I+. M’

N I-+, N’

M-~N

(Standard Reduction Function w,)

+ M-. N

* MN W, M’N

+- MN -s MN’ with M ia a value

These standard reductions are related to the notion of
evaluation by the following theorem:

Theorem 2.4 evalcM = V iff MH~*V’ for some value

v’.

Sketch of Proof of Theorem 2.4
Again, similar to Felleisen’s [8] and Plotkin’s [21] proofs.

We define a standard reduction sequence and show that for

any reduction M +: N there is a standard reduction se-
quence M, ..., N. Then we extend standard reduction se-
quences to standard reduction sequences with top level re-
ductions and relate them to the notion of evaluation. ❑

The standardisation theorem and the Church-Rosser prop
erty entail that there is an evaluation function, and that
there is an algorithm to compute it which corresponds to a
left-to-right evaluation order. We can alao define a parallel
evaluation strategy where the subexpressions of an applica-
tion are evaluated in parallel, and where evaluation can be

performed under an A or callcc.

Definition 2.5 (Parallel Evaluation Strategy)

M~c N a M+PN

M+PM

M +P M’, N -+= N’ ~ MN 4P M’N’

M+PN + callcc M +P callcc N

M+PN +- AM-+PAN

We call+; the ref7exive, transitive closure of -P and M +;

Ca[lCC :nA
N is dejined b~ M +; N uAM “3” ANu AM +

AN.

By examining the parallel evaluation strategy of C, we

can conclude that it does not allow parallel evaluation aa
we described in section 1.1. As a matter of fact, in order

to capture a continuation, callcc must be bubbled up to the
top level; this requires all expressions appearing to the left
of cal ICC to be values, i.e. a continuation can be captured
in an evaluation cent ext. Moreover, when a continuation is

applied, expressions appearing to the left, up to the top level,
are pruned if they are values but there is no optimisation
when the continuation is applied in extent of the callcc by
which it waa reified.

Consequently, we could change the side condition of rule
C3 to solve the first problem: we could allow the capture of

the context even if M is not a value:

M(callcc N)+ ca!lcc M.M(N (Aw.A(k(Mu))))

Unfortunately, adding such a rule makes the Church-Rosser
property disappear. However, we can define a more generai

notion of equivalence based on C which is called observa-

tional equivalence.

3 Observational Equivalence

From a programmer’s point of view, two behaviors can be

observed: either a program terminates or it does not termi-

nate. Consequently, we can say that two expressions M and

N have ind~tinguishable behaviors, if for all contexts C[],

either C[M] and C’[N] both terminate or both do not ter-

minate. ThM leads to the formal definition of observational

equivalence.

Defhition 3.1 (Observational Equivalence) M =C N

ifl V context C[], such that C[M] and C’[N] are programs,

either both evalc(CIM]) and evalc(C’[N]) are defined or both
are undefined.

Observational equividence allows to prove the correctness of
some optimisations.

Abstractly, an optimisation of a program C[M]

is the replacement of M by a more “efficient” ex-

pression N such that a programmer cannot dis-
tinguish the observational behaviour of the pro-

grams C[M] and C[N]. [26, section 2,page 230]

Therefore, a correct optimisation is an equation M = N

such that M =C N. It is our intention to define some op-
timisations which allow parallel evaluation in the sense of
section 1.1. Proving the observational equivalence of two
terms is not an immediate task but Plotkin gave a powerful
technique for this purpose relating the CPS translation to
the observational equivalence.

The CPS translation is an old idea in computer science.

It was first formalised by Fischer and Reynolds [10], [25];
it is defined by the following equations where [.] maps a

call-by-value term to a lambda-term:

Definition 3.2

[n

[(MN)]

v(x)

V(,lz.M)

(CPS translation)

= M.kV(V) with V a uake (Cpsl)

= ~k.[M](Am.[N](An. mnk)) (cps2)

= x with z a variable or constant(cps3)

= (Az.[M]) (cps4)

Some essential properties of the CPS translation were proved
by Plotkin; A. and A. represent the call-by-value and call-
by-name theories respectively, eva!v and eval n, the cor-

responding evaluation functions, =V, observational equiv-

alence in Au.

Theorem 3.3 (Plotkin)

1.

.2.

3.

V(evalv(M)) = evaln([M](h.z)): the value o~M ac-
cording to the &all-by-value evaluation strateg~ is re-

lated to the value of the CPS translation of M accord-

ing to the call-by-name strategy.

J. t- M = N ~ A. 1- [M] = [N]: the call-by -uahe

A-calculus is sound with respect to the CPS translation
(but it is not complete).

,ln 1- [M] = [N] ~ M =“ N: equality in An of the

CPS translations of M and N implies observational

equivalence of M and N in A“ (the converse does not

hold).

128

We proved similar results for c:

Theorem 3.4 (Simulation)

lio(eval~(itf)) = evaln([ikf]k.z)

Theorem 3.5 A. 1- [M]= [N] + M SSCN

Sketch of Proof of Theorems 3.4, 3.5

Theorem 3.5 comes from theorem 3.4 as Plotkin’s corol-
lary 2 comes from theorem 6.2 [21]. For theorem 3.4, we
adopt the same technique as Plotkin in theorem 6.2. If
eva Ic (M) is defined, there is a leftmost, outermost reduc-

tion path M =: Ml w: M2 H.; . . . V by theorem 2.4. By
lemma A. 1, we can conclude that

[M]~”’ +“ [MI]~”Z -+’ . . . [Vj~’ s IUO(V)

which concludes the proof since evalc (M) = V. ❑

We now have the tool to prove that two expressions

are observationally equivalent. In the following section we
present some optimisations which preserve the observational

equivalence. The appendix is dedicated to the description
of the optimised cps translation that we use in theorem 3.4.

4 Optimisations and Parallel evaluation

Using theorem 3.5, it is now easy to state some optimisations
which are suitable for parallel evaluation. An optimisation

is an equation M = N, where ~n 1- [M] = [N]; this implies

M SC N. A set of such optimisations is displayed in figure
3.

With equation OPT1, it is allowed to capture a continu-

ation in any applicative context. This rule is essentially the
same as rule C3 where the side condition is removed. One

should also note that in the right-hand side,

callcc M.(Al.f(IV (h. A(k(fv)))))M

the expression M is not duplicated; this was necessary to

have equality between CPS translations of both sides of this
equation. This hss a strange consequence: one could have

expected that if the application of N to the continuation
reduces to snot her ca I/cc-application, a new continuation

could have been captured. Unfortunately, this new ca i lCC-

application does not appear in an applicative context but
under a A-expression; however, rule 0PT2 gives a solution
to this problem, allowing to reduce several callcc to only

one. This is also the purpose of equation 0PT3. Equations
0PT4 and OPTS allow to simplify some callcc-applications

independently of the context. This bunch of equations en-
codes the rules 1 and 3 of the semantics given in 1.1.

Rule OPT6 is the equivalent of C~oP [9]; it allows to eval-
uate a ca IIce-application without capturing the context by

applying the argument to a continuation h.d(b).
The equations 0PT7 and 0PT8 show that the top level

rules C7 and C8 can, in fact, be used in any context and
that, they preserve observational equivalence.

Equations 0PT9 to 0PT12 are presented here and will
be used in several proofs in the following sections. Equation
0PT9 proves that a special operator like A is not necee-

sary. Indeed, (Ac.dz) represents the initial continuation
and equation 0PT9 says that every expression AM can be
replaced by the application of the initial continuation to

M. This equation is generalised by equation OPT lO for

any evaluation context, We can even further generalise this
equation with equation OPT12, where K[] is a captured
context which will be defined in the following section.

5 The CP calculus

There is still a notion we presented in the intuitive seman-

tics which is not yet axiomatised: when a continuation is

applied in the extent of the ca IIcc by which it was reified, it

is not necessary to abort the whole computation; it is suffi-
cient to abort the computation up to th~ callcc. We intend

to formalise this idea by a prompt mechanism which is ex-
plained in the following section. In th~ section, we present

an intermediate system where continuations can be uniquely
named.

In C, continuations are represented by anonymous func-
tions and the abortive effect comes from the A operator. In

CP (standing for Continuation Points), we introduce a new
object (p, K[]P), called continuation point which abstracts

a context K[]P. A continuation point object is given a name
p which is also given to the hole of the context. When the

name of the continuation point is unimportant (which is the
case in C P), we conventionally use p. C P is based on the

following language A.P

{

v Value

Term M ::= (MM) Application

(callcc M) callcc-Application

(a, b,... Constants

Value V ::=
{

Xl Y>... Variables
~z.M Lambda Abstraction

\ (P,~[]~) Continuation point, p name

where A-applications were removed since they were showed
to be optional according to rule 0PT9. The new reduction

system CP is defined by the rules displayed in figure 4.

Rules CP1 and CP2 are the same as rules Cl and C2.
Rules CP3 and CP4 allow the capture of a continuation in

any applicative context; the continuation is now represented

by a continuation point. Rules CP5 and CP6 model the fact
that the application of a continuation is abortive.

Rules CP7 allows to reduce a callcc in a continuation.

Top level reductions are performed with rules CP9 and CP1O.
We call a captured contezt, the context K appearing in

a continuation point. Such a context satisfies the following

grammar

K ::= [] I K[[]M] I K[V[]] I K[callccAk.[]] I K[(Av.[])V]

Rule CP9 allows the composition of captured contexts; this

was proved to be sound in C according to optimisation OPT12.

Similarly to C, we can define +’p, a notion of reduction,

M +“ N if M + N using rules CP1 to CP8

+=P its compatible closure,

M +=P N
Az.M +=P h.N
ZM 4=P ZN, MZ +.P NZ with Z G A=P
callcc M +CP callcc N

(a, M) +CP (a, N)

+;P the reflexive, transitive closure of +Cp, and =CP the
equivalence relation generated by +:P.

Similarly to C, we call a computation the relation +.:P
defined by

kf+V.M+:p NUMc~9j V Ukfc~lON

129

M(callcc IV) =

callccM.((Af.j(callcc M’.fV))M) =

caIIccM.callccM’.M =

callcc~k.kf =

callccM.(kM) =

callcc M =

Acallcc M =

AAM =

(k.Az)M =

((k.AE[z])M) =

(A ((XZ.(A (callcc z))) Q)) =

((kAK[z])M) =

callcc M.(Af.j(N (Av.A(k(fv)))))M (OPT1)

callcc~k.((~~.f ((~k’.N)(~v.k(~o))))M) (OPT2)

callccM.(M’.M)k (OPT3)

M if k @ FV(M) (OPT4)

M if k # FV(M) (OPT5)

callcc(M.(MAv.A(kv))) (OPT6)

AM(h.dz) (OPT7)

AM (OPT8)

AM (OPT9)

A(E[M]) with E an evaluation context (OPTIO)

(A (callcc Q)) (OPT1l)

A(K[M]) with K an captured context (OPT12)

Figure 3: Optimisations for parallel evaluation

(k.M)V +

(iab) +

M(callcc N) +

(callcc M)N +

((P, ~[1P) w +

M((P, K[M V +

(a, (callcc M)) +

(a, (B, ~1[li3) (K2[la)) +

((P, M 1P) v +T

callcc M +~

M{V/z} with V a value

$C,(a, b) if th~ is defined

cailcc Ak.(A~.j(N(cY,k(~ []a))))M

callcc M.(M(a, k([]~ N)))iV

((P, K[]P) V) with V a value

((P, K[1P) V) with M, V values

(a, (M (6, []~)))

(a, K,[K2[]=])

KIVl with V a value

M (6, [la)

(cPI) ~

(CP2)

(CP3)

(CP4)

(CP5)

(CP6)

(CP7)

(CP8)

(CP9)

(CP1O)
I .-. I

Figure 4: Reduction system with continuation points: +Cp

and we note +z~ its transitive closure. eva Icp can be defined
by

evalcp(M) = V ifi M +& V with V a v~ue

The observational equivalence for CP is also a simple adap
tation of definition 3.1

Definition 5.1 (Observational Equivalence) M % N
ifl v contezt C[] c A~p, such that C[M and CIN1 are wo-

grams, either both evalcP(CIM]) and evalcp (C[N]) CMWde-
jined or both are undefined.

We can easily show that the system C and the system CP

are equivalent. For this purpose, we define two translations

which essentially map A-applications to continuation points
and vice-versa.

VM E AcP,~w E A. :

6cp((a, b)w= 6=(% b) callcc Mq = (callcc Rq)

(a, K[]a)Q = h.A~
[x/a]7fl-=z

AC.MW = (k.~w) m’ = ‘+’(”)
MN” = (~” ~’)

tic(a, b) = ti.p(a, b) callccM = (callcc ~)

44!4 = ((~, [16)M)
(MN) = (~ ~)& z :x.x

These translations satisfy the following properties:

Sketch of Proof of Theorem 5.2
We proceed by a straightforward induction on the size of

Por M.n
The main result of this section is that the observational

equivalences in C and CP are preserved.

Theorem 5.3 M ~cP N + ~w S NW
Pzc Q + ~=cpQ —

Sketch of Proof of Theorem 5.3
First, we prove that for each possible reduction M +CP

N, ~v % ~9. We can then prove that evalcp (M) ia de-

fined iff evalc (~) is defined. Then, supposing that M %P

N, we try to prove that ~’” ~. ~w, i.e. VC[], evalc(C[~])

and eva Ic (C[~p]) are simultaneously both defined or unde-
fined. We show that for any C[] E A., we can find ~[1 C ACP

I (C[~]) k defined,such that K[] m C[]. Therefore, eva c

iff evalcp (K[M]) is defined, iff evalcp (WM) is defined) if

evalc (C[~w]) is defined which concludes the proof. ❑

ThB theorem has a corollary. There is a bijection between

the classes of observational equivalent programs in C and
CP.

Corollary 5.4 If we consider programs composed of vari-

ables, constants, applications, lambda abstraction, callcc ap-
plications, SC = ~cP

130

The optimisation rules given in figure 3 can now be adapted where K[] is a captured context:

to CP where they also p~eserve o~servational equivalence
a!
—CP.

We are now ready to define a reduction system where the
notion of extent is made explicit.

6 The CPP calculus

The notion of extent is not easy to define for a parallel lan-

guage with first-class continuations. First, we informally de-
fine it and then we represent it explicitly in a new reduction

system CPP.

According to [13], [28], the eztent refers to a period of
time: the lifetime of an object or a construct.

“In Scheme, the extent of the application of a function
j on its argument v is the time during which is computed
the body of the function ~, this includes the time taken by
the computation of all subforms that appear in the body[24,

page 175, section 1~.

The extent of an expression in which parallelism is intro-

duced encompasses all the processes evaluating parts of this
expression [23].

On a sequential machine, when first-class continuations

are not used, the extent of an expression is a single interval of

time, or a contiguous time period. When first-class contin-
uations with indefinite extent are introduced ss in Scheme,

the evaluation of an expression E can be aborted by apply-
ing a continuation, and the evaluation of E can be resumed
later by a continuation which was captured in E. In this sit-
uation, the extent is composed of several intervals of time,

or a non-contiguous time period. On a parallel mschine,
the evaluation order is non-deterministic (while results of\
our programs are deterministic). Therefore, time intervals
can be interleaved,

We define the extent of an expression callcc M by the

extent of the application of M to the current continuation.

In the reduction system CP, callcc is bubbled up to the top
level in order to build the continuation. Let us suppose that

rule CP4 is used,

(callcc M)N + callcc M.(M(cr, k([]. N)))N (CP4)

The extent of callcc M in the left-hand side is the extent
of the application of M to the continuation (a, k([]a N)),

while the extent of the callcc-expression in the right-hand

side is the extent of the application of M.(M(a, k([]= N)))N

to the current continuation. Consequently, the extent of the

callcc in the right-hand side includes the lifetime of N which

is not the case in the left-hand side. Eventually, when we

apply a top level reduction CP1O, the extent of callcc is the

lifetime of the whole program.

This example illustrates that it is difficult to define the

extent of a callcc in a reduction system like C P. This is
the reason why we introduce a new construct, that we call

prompt, which is used to mark the extent of a callcc. We
define a new set of expressions, A=pP:

(v Value

Term M ::=

(

(MM) Application
(calicc M) caiicc-Application
#=(M) Prompt

(a, b,... Constants

Value V ::=

i

~,?J,... Variables

Ax.M Lambda Abstraction

(P, ~[1P) Continuation point

K ::= [1 I M[W] I JW[]] I K[=llccAk.[]]

I K[#a([])] I If[(h.[])vl

Similarly, we define contexts C[] and evaluation contexts

E[]:

C[] ::= [1 I C[M[11 I C[[IW I c[~z.[11

I C[callcc [1] I f3#a([1)1

E[] ::= [] I E[V[11 I E[[IJfl I E[#a([1)1

The reduction system is baaed on equations displayed

in figure 5. Equations CPP1 to CPP1O are the same as
equations CP1 to CP1O. Those equations are independent
of the prompt construct. CPP 15 is the rule which introduces
a prompt; it is similar to the equation 0PT6:

callcc M % callcc(M.(M(a, k[]~))) (OPT6)

callccu M + callccM.#~(M (a, k[]~)) with a fresh a

(CPP15)

The equation CPP15 wraps the application (M(a, k[].))

in a prompt #=(...) where the continuation point (a, k[]=))
and the prompt #~ (. ..) are given the same new fresh name.

When a callcc is a redex for the first time, rule CPP15

should be applied to mark the extent of this ca Iicc. Af-

terwards, there is no need to use this rule again: indeed,
one prompt is enough, moreover if we re-apply th~ rule, we
obtain:

callcc M

+ callccM.#=(M (a, k[]=))

+ callccM’’.#@((# =(M(M (a, k[]~))) (P, k[]@))

+ callccM’’.#p(#~(M (a, (/?, k[]p) []a)))

+ callccM’’.#p(#~(M (cr, k []=)))

where the continuation point named /3 has disappeared and
the prompt /3 is useless. This is the reason why we have

added the subscript u to callcc in the left-hand side of the
rule. This ca IICcu is a construct which originally appears in
the user program while the callcc in the right-hand side is

an internal callcc generated by the reduction system.

In order to be able to perform the same reductions as
we could before introducing the prompt, we must consider
the different reductions of (M(a, k[]~)) that might appear

in the prompt:

1.

2.

(M(a, k[]=)) reduces to a value V. We can use equa-

tion CPP1l

#a(v) + V with V a value (CPP1l)

which eliminates the mark #~ (), meaning that the

application (M (cr, k[]~)) has reached its end.

A continuation named /3 is invoked and escapes from
(M(a, k[]~)). By equation CPP13

#a((P>~[1/3) v) + (0, K[]P) V with V a value

(CPP13)

the mark #~ () is removed to allow the escape of this
continuation.

131

(kd’f)v + M{V/z} with V a value (CPP1)

(ah) ~ C$cpP(a,b) if this is defined (CPP2)

M(callcc N) ~ callcc M.(~~.~ (N (p, k(~ []P))))M (CPP3)

(callcc M)N -+ callcc M.(J4 (p, k([]P N)))N (CPP4)

((P, W IP) w + ((II, ~[]P) V) with V a value (CPP5)

M((p, K[]P) V) + ((p, K[]P) V) with M, V values (CPP6)

(a, (callcc M)) + (a, (M (6, []6))) (CPP7)

(~, (/3, ~1[1P) (~2[la)) + (~, ~1[~2[la]) (CPP8)

((R ~[1P) v) +T KIV_l with V a value (CPP9)

callcc M +T M (8, []6) (CPP1O)

#a(v) + V with V a value (CPP1l)

#a((cv, ~[].) V) ~ V with V a value (CPP12)

#P((~, K[1.) v) + (a, K[].) V with V a value (CPP13)

callcc M.M ~ M with k $?FV(M) (CPP14)

callccu M + callccM.#~(M (a, k[]~)) with a fresh a (CPP15)

#a(callcc M) + callcc M.#~(M(p, k(#~([]P)))) (CPP16)

Figure 5: Reduction system with continuation points and prompts: ~cpp

3. (M(rr, k[]~)) reduces to a callcc expression.

#a(callcc M) ~ callcc M.#~(M(p, k(#=([]P))))

(CPP16)

In the equation CPP16, the callcc is passed out of the

mark and the mark is also copied in the continuation.

Now, we can define the extent of a callcc by the extent of

its corresponding mark. Moreover, we say that an expression
M is evaluated in the extent of a ca Ilcc if M is a redex in an

apphcative context appearing in the mark associated with
this callcc:

#. (A[M]) ~ #~(A[M’]) with A[] an applicative context

We can easily optimise the invocation of a continuation in

the extent of the ca Iicc by which it was reified. Since a con-
tinuation and the mark delimiting the extent of this ca Ilcc

are given a unique name, the following rule can detect such
an invocation:

#a((@, K[].) V) ~ V with V a value (cPP12)

Therefore, rule CPP13 should be applied when a continu-

ation escapes from a mark with a different name while rule
CPP12 is used for the application of a continuation in a
mark with the same name.

The main result of this section is the following theorem;

it says that two programs are observationally equivalent in
CP if they are observationally equivalent in CPP.

Theorem 6.1 VM E A=P, M ~cP N iff M SCPP N

The proof of theorem 6.1 requires the definition of an
intermediate reduction system C P’: it is based on the set of

expressions A=P and it is composed of all reduction rules of
CPP except cPP12. In thk system CP’, we define a notion
of reduction, its compatible closure, equivalence relations,
evaluation and observational equivalence as we did in the

previous systems. We can prove that CP’ and CP satisfy

the following theorem:

Theorem 6.2 evalcD(M) = V ~ eva!cDl (M) = V’ with

S(V’) = V and qtij tiefined by ‘ ‘ ‘

S(XZ.M) = Az.S(M) s(z) = z

S(MN) = (S(M) S(N)) S([]a) = []a

S(callcc M) = callcc S(M) S(#cg(M)) = S(M)

S((ci, M)) = (a, S(M))

Although rule CPP12 does not belong to CP’, we can show
that this rule preserves observational equivalence %.PJ.

Lemma 6.3 #=((cr, K[].) V) E=pI V

Sketch of Proof of Lemma 6.3
In C, we have proved that callcc M.(kV) -c callcc M.V.

So, it is true in CP by th. 5.4 and in CP’ by th. 6.2. By ap

plying rule CPP15, we have callcc M’.#~((cr, k’ []a)V’) ~cP,
callcc M’.#a(V’) from which we can derive that

#a((a, K[]a)v’) =.,, v’. ❑

Sketch of Proof of Theorem 6.1
Rule CPP12 is shown to preserve observational equiv-

alence in CP’ and CPP is defined to be CP’ extended by
CPP12. Therefore, by theorem 6.2, M ~.P N iff M =Cp, N
and by lemma 6.3, M ~=P/ N iff M =CPP N which concludes

the proof. ❑

CPP is a reduction system which allows the capture of
continuations in any applicative context and which does not
abort the whole computation when a continuation is applied

in the extent of the ca IICC which created it. With theorems

5.4 and 6.1, observational equivalence is the same in CPP
and C, meaning that programs can be evaluated with a tie-
quential or a parallel strategy. Therefore, we have succeeded
in formalizing the intuitive semantics of section 1.1.

Instead of CPP16, we could have used another equation

#=(cal!cc M) + callcc Ak.#a(M(p, k[],)) (CPP16’)

where the prompt in not copied in the continuation. In

th~ case, the prompt is the explicit representation of the

dynamic extent of the callcc.

132

7 Related work

Queinnec [22] haa also proposed a semantics for continu-

ations in a parallel framework but his pcall construct is

not transparent. Moreover, the concept of returned value

haa changed: an expression may return several results (at
different times) and, for a given expression, the number of

returned results can change with execution.

Katz and Weiee have implemented a system with a trans-
parent future construct [16], [17]. It is based on a notion of
legitimacy: a process is legitimate if the code it is executing
would have been executed by a sequential implementation in

the absence of future. For a given program, their implemen-

t ation returns one or more results without knowing if they
are legitimate. The legitimacy is determined later when all

subcomputations have completed and a total order of eval-
uation can be found as in the sequential semantics. In a

sense, we also have a notion of legitimacy: we have to deter-

mine whether it is legal to apply a continuation in a parallel

program. But, pcall can be more optimised than future: a
continuation can be applied in an evaluation context and if

an expression returns a value using parallel evaluation rules,

the result is behaviourly equivalent to the one returned by

a sequential evaluation strategy.
In [19], we presented the intuitive semantics we describe

in section 1.1. We can see [19] as an implementation of the
system C P P on a machine with multiple processors and a
shared memory.

The system C is very similar to Felleisen’s & [8] except
that C is based on callcc and not C. The notion of ob
servational equivalence has already been used by Felleisen

and others in several papers [5], [8], [9]. However, Felleisen

hardly investigated the problem of parallelism in reduction

systems with control operators. This is partly due to the

choice of the control operator: C is abortive, it applies its
argument to the current continuation in an empty context

while ca IICC is not abortive. Therefore, it was required for
C to be in an evaluation context which is not the case for

ca I!cc. In [6], a parallel evaluation strategy is proposed but
C is designated as the cause of bottlenecks.

Sabry and Felleisen [26], [27] present extensions of the A.
and A.-calculi which are complete with respect to CPS trans-

lation (VM, N c AV,., &,C 1- M = N e An 1- [M]= [N]).

It appears that their axioms ~iijt, Bjt.t, Bid, lk, Ctift, 6’abort,

Ctait all satisfy our relation of observational equivalence.
However, we did not investigate if C was complete by adding

this set of axioms.

Kanneganti et al. [15] use the axiom ca!!ccM.C[E[kv]] 4

callcc M. C[kv] which also preserves observational equiva-
lence =.. When added to C, this axiom optimises the appli-

cation of a continuation in the dynamic extent of a callcc.

While this approach does not require to introduce a prompt

construct and continuation point objects, it suffers from the
defaults suggested at the beginning of section 6. cailcc is
given the role of both marking the dynamic extent and cap-
turing a continuation: therefore, after capturing a continu-

ation, the mark of the dynamic extent has dwappeared.
Optimised CPS translations were proposed by Sabry and

Felleisen [26], [27], Danvy and Filinski [3]. For the purpose of
the proof, we had to specialise our CPS translation but the

applicability of this approach in other circumstances does
not appear to be immediate.

The mechanism of prompt introduced in section 6 is es-
sentially different from Felleisen’s prompt [4], or Danvy and

Filinski’s reset [2] or Queinnec and Serpette’s splitter fa-

cility [24]. In their approach, a prompt is used to delimit a

partial continuation whale we use the prompt to mark the
extent of ca IICC,

Jouvelot and Gifford [14] present a static analysis of pro-

grams with call/cc. Their type system can detect programs
that use internally call/cc. While they prove their type

system gives a safe approximation, we show that the opti-
misation of the application of a continuation in the extent
of its call/cc, always preserves observational equivalence.

8 Conclusion

To our knowledge, it is the first time that reduction rules

for control operators are investigated in the perspective of

parallelism. It appears from our results that continuations

can be captured in any applicative context. It is also the
first time that the notion of extent of a cal Icc is used in

a reduction system in order to avoid to abort the whole

computation.

Allowing the capture of a continuation in any applica-
tive context entails that a control operator like callcc does

not introduce sequentiality in a parallel language. However,
application of a continuation introduces some sequentiality,
especially when the continuation is applied outside of the

extent of the callcc by which it was reified.

9 Acknowledgements

To Vincent Kieffer for providing helpful comments on formal
proofs, to Olivier Danvy for reading an earlier version of
this paper, to the anonymous referees for their comments,

to Amr Sabry and Matthiaa Felleisen for an encouraging

discussion in a Chinese coffee shop in SF.

A The optimised cps translation

As observed by Plotkin [21], by Danvy and Filinski [3] and
by Sabry and Felleisen [26], the CPS translation introduces

‘administrative” redices. Indeed, for a standard reduction
in the call-by-value A-calculus, MO I+. Ml, we have a se-

quence of administrative reductions, followed by a reduction
M: ~ Mj which corresponds to the original reduction:

[Mo](Az.z) +* M: + M;

but this term M; does not reduce to [M1](XC.Z), it is in fact

the reduction of administrative redices of [MI] (Az.z):

[M,](k.z) +“ M;

Therefore, we have this unfortunate property

M. X. Ml but [Mo](kr.z) %“ [MI](XC.Z)

Hence, for the purpose of the proof of the first proposi-
tion of theorem 3.3, Plotkin introduces an optimised CPS
translation where some administrative redices are eliminated.
In our proof, we also define an optimised cps translation. We
write [M]: for the optimised cps translation of M with the
continuation K. We have the following property

M. -s MI ~

which gives lemma A. 1.

If M I-+. N using the
mised cps-translation of M
translation of N.

[Mo]$ +“ [M&

standard reduction, the opti-
reduces to the optimised cps-

133

Lemma A.1 If M M, N then [M]~ +“ [N]$ (if K is a
closed value and M and N are terms)

Sketch of Proof of Lemma A.1

The proof similar to Plotkin’s proof of lemma 6.3; we

proceed by induction on the size of M and by cases according
to the definition of W$. 0

Optimised cps translations were proposed by Plotkin [21],
by Danvy and Filinski [3] and by Sabry and Felleisen [26],
[27]. In [21] and [26], the translations concern cdl-by-value
terms while, in [27] and [3] they concern call-by-value terms

extended by control operators callcc or escape z in M
(which is a special form equivalent to callcck.kf).

As Sabry, in the original Fischer’s translation, we mark
by an overline all lambda-abstractions which are not present

in the original term. Rules Ocpsl to 0cps5 in definition A.2

Are similar to Sabry’s. In those rules, each continuation is a

kabstraction. We add rules 0cps6 and 0cps7 for the trans-
lation of A and callcc. In the translation of AM, the initial
continuation is marked as administrative and in the trans-
lation of callccM, the reified continuation ~vk’ .kv, standing

for ~v.~k’ .kv is also marked as administrative.

Definition A.2 (Optimised CPS translation)

[n =
[6.(a, b)] =

[(MN)] =

w(z) =

W(,lz.M) =

[(AM)] =

[(callcc M)] =

~k.kW(V) with V a value (Ocpsl)

6n(a, b) (ocps2)

Xk.[M](Xm.~N](ln. mnk)) (ocps3)

z with x, variable or constant (ocps4)

(Az.[M]) (ocps5)

~k.[M](~z.z) (0cps6)

~k.[M](~m.m(~wk’. kv)k) (ocps7)

We define the optimised CPS translation aa a three-pass
process, where lambda-expressions marked aa administra-

tive are reduced at translation-time, and where unreduced
administrative expressions are unmarked.

Definition A.3 (Three-Pass Translation) The three-pass

optimised trandation of M, indexed by the continuation K,
[M]~ is I? iflU(eva!-([M]K)) = N where eval-(P) = Q

iff % 1- P +“ Q with +F and +F reductions defined by

(~z.M)V +7 M{V/z} (1)

(~z.Mz) ~ M with z @ IT’(M) (2)

and U(P) removes the marks on administrative abstractions:

U(XV.M) = Az.U(M) U(;(~; ~ $.4(P)U(Q))

U(~z.M) = Az.U(M) —

We also note WO(V), the result of a translation of a value

[VJ~ = KW~(V). Therefore, VJV) = U(eval-(Q(V)))

This solution is not yet satisfactory; indeed, in C, let
us consider (ca IICC M)iV and its reduction by rule C4. Let
us cpz-translate the two terms, we obtain the following dia-

gram:

(callcc M)iV calw%allcc~k,(M(Af.A(k(fN))))N

lCPS

[(callcc M)N]~ +* [callcc M.(M(Af.A(k(fN))))N]$

where the reductions in An go in the opposite direction
to the reduction in C. This situation comes from the fact

that the rule C4 introduces in the right-hand term two A-

Abstractions; the new argument of ca IIcc is called a contin-

uation receiver, M.(M(Aj.A(k(fN))))N and the other ab-
straction, (A~.A(k(fN))), is a functional representation of

the continuation. Since the translation of those A-abstrac-
tions are not administrative, they are not reduced in the

three-pass translation. As a matter of fact, both abstrac-
tions should be considered as administrative abstractions
introduced by the reduction system. Indeed, it is the inter-

nal way of handling ca IIcc in C. Therefore, in the reduction

system, let us mark by a star the A-expressions which are

continuation receivers or representation of a continuation

created by the system.

M(callcc N) ~ callcc A*k.M(N (A*v.A(k(MrJ))))

(callcc M)N + callcc A*k.(M(,l*f.A(k(fN))))N

A(callccM) + A(M(~*z.Az))

(A”z.M)V + M{V/z}

and let us add the new following rules to the cps translation

V(~”X.M) = (~z.[M]) (Ocps8)

where A*-expressions are marked as administrative and are

reduced at translation-time. With these two rules, we have
now

(callcc M)N caUc%al~~;*k.(M(A* ~.A(k(iN))))N

lcps

[(callcc M)N]S a [callcc A*k.(M(A*j.A(k(fN))))N]S

Of course, the user is not given the right to write pro-
grams with A*-abstractions. Since they are only created by
the reduction system, we can prove that this optimised cps

translation is always defined.

Lemma A.4 The optimised cps translation is a total func-
tion.

Sketch of Proof of Lemma A.4

Sabry and Felleisen proved that this cps translation is

a total function for terms belonging to A. Using the same
technique, we can show that [AM] does not duplicate any

1-expression. However, the introduction of callcc and ~*-
abstraction increases the number of possible redices in the
cps terms. We can show that [ca IIccM] duplicates its con-
tinuation but there is a bound on the number of duplications
of this continuation which depends on M and which can be

computed. 0

References

[1]

[2]

[3]

H. P. Barendregt. The Lambda Calculus: Its Syntax
and Semantics, volume 103 of Studies in Logic and the
Foundations of Mathematics. North-Holland, second
edition, 1984.

Olivier Danvy and Andrzej Filinski. Abstracting Con-
trol. In Proceedings of the 1990 ACM Conference on
Lisp and Functional Programming, pages 151–160, June
1990.

Olivier Danvy and Andrzej Filinski. Representing Con-

trol. A Study of the CPS transformation. Mathematical

Structures in Computer Science, 2(4):361-391, 1992.

134

[4] M. Felleisen, M. Wand, D. P. Friedman, and B. F.

Dubs. Abstract Continuations : A Mathematical Se-
mantics for Handling Full Functional Jumps. In Pro-

ceedings of the 1988 ACM Conference on Lisp and

Functional Programming, pages 52-62, July 1988.

[5] Matthiss Felleisen and Daniel P. Friedman. Control

Operators, the SECD-Mschine and the A-Calculus. In

M. Wirsing, editor, Formal Description of Program-

ming Concepts III, pages 193-217, Amsterdam, 1986.

Elsevier Science Publishers B.V. (North-Holland).

[6] Matthias Felleisen and Daniel P. Friedman. A Reduc-
tion Semantics for Imperative Higher-Order Languages.
In Proc. Conf. on Pamllel Architecture and Languages

Europe, pages 206-223. Lecture Notes 259 in Computer

Science. Springer-Verlag, 1987.

[7] Matthias Felleisen, Daniel P. Friedman, Eugene E.

Kohlbecker, and Bruce Dubs. Reasoning with Con-
tinuations. In Proceedings of the Symposium on Logic
in Computer Science, pages 131–141, Washington DC,

June 1986. IEEE Computer Society Press.

[8] Matthias Felleisen, Daniel P. Friedman, Eugene E.

Kohlbecker, and Bruce Duba. A Syntactic Theory

of Sequential Control. Theoretical Computer Science

(North-Holland), (52):205-237, 1987.

[9] Matthias Felleisen and Robert Hieb. The Revised Re-
port on the Syntactic Theories of Sequential Control
and State. Theoretical Computer Science, 2(4):235-271,

1992.

[10] Michael J. Fischer. “Lambda calculus schemata. In

Proceedings of the ACM Conference on Proving Asser-
tions about Programs, pages 104-109. SIGPLAN No-

tices 7(l), 1972.

[11] Robert H. Halstead, Jr. New ideas in parallel lisp : Lan-
guage design, implementation. In T. Ito and Robert H.

Halstead, editors, Parallel Lisp : Languages and Sys-
tems. US\Japan Workshop on Parallel Lisp. Japan.,

pages 2-57. Lecture Notes 441 in Computer Science.

Springer-Verlag, 1990.

[12] Robert Hieb and R. Kent Dybvig. Continuations

and Concurrency. In Second ACM SIGPLA N Sympo-
sium on Principles & Practice of Parallel Progmmming,

pages 128-136, March 1990.

[13] IEEE Std 1178-1990. IEEE Standard for the Scheme
Progmmming Language. Institute of Electrical and
Electronic Engineers, Inc., New York, NY, 1991.

[14] Pierre Jouvelot and David K. Gifford. Reasoning about
continuations with control effects. In Proceedings of the
ACM SIGPLAN’89 Conference on Progmmming Lan-
guages Design and Implementation, SIGPLAN Notices,

Vol. 24, pages 218-226, Portland, Oregon, June 1989.

ACM Press.

[15] R. Kanneganti, R. Cartwright, and M. Felleisen. SPCF:

its Model, Cslculus and Computational Power. In Pro-
ceedings of the REX Workshop on Semantics and Con-
currency. Lecture Notes in Computer Science, Springer

Verlag, 1992.

[16] Merry Katz and Daniel Weise. Continuing Into the

Future: On the Interaction of Futures and First-Class

Continuations. In Proceedings of the 1990A CM Confer-
ence on Lisp and Functional Progmmming, pages 176-

184, June 1990.

[17] James S. Miller and B. S. Epstein. Garbage collection

in MultiScheme. In T. Ito and Robert H. HalStead, edi-
tors, Pamllel Lisp : Languages and Systems. US/Japan

Workshop on Parallel Lisp. Japan., pages 138-160. Lec-
ture Notes 441 in Computer Science. Springer-Verlag,

1990!

[18] Luc Moreau. A Parallel Functions Language with
First-Class Continuations. Programming Style and Se-

mantics. To appear in, Computers and Artificial Intel-
ligence. Journal version of [19] and [20].

[19] Luc Moreau. An operational semantics for a paral-
lel language with continuations. In D. Etiemble and

J.-C. Syre, editors, Parallel Architectures and Lan-
guages Europe (PARLE ‘92), pages 415–430, Paris, June

1992. Lecture Notes in Computer Science 605. Springer-
Verlag.

[20] Luc Moreau. Programmer clans un langage fonctionel

parallkle avec continuations. In Avancdes Applica-

tive. Journ6es Fmncophones des Langages Applicatifs,
Tn4guier, France, February 1992. BIGRE.

[21] G. D. Plotkin. Call-by-name, call-by-value and the A

calculus. Theoretical Computer Science, pages 125-159,
1975.

[22] Christian Queinnec. Polyscheme, a Semantics for a

Concurrent Scheme. In High Performance and Parallel

Computing in Lisp Workshop, Twickenham, England,
November 1990. Europal.

[23] Christian Queinnec and David De Roure. Design of a
concurrent and distributed language. In A. Agarwal,
R. H. Halstead, and Takayasu Ito, editors, Proceedings
of the Workshop on Parallel Symbolic Computing: Lan-

guages, Systems and Applications, Boston, Massachus-
etts, October 1992.

[24] Christian Queinnec and Bernard Serpette. A Dynamic

Extent Control Operator for Partial Continuations. In
Proceedings of the Eighteenth Annual A CM SIGA CT-

SIGPLAN Symposium on Principles of Progmmming
Languages, 1991.

[25] John Reynolds. Definitional interpreters for higher-

order programming languages. In 25th ACM National
Conference, pages 717-740, 1972.

[26] Amr Sabry and Matthias Felleisen. Reasonirrg about

Programs in Continuation-Psssing Style. In Proceedings
of the 1992 ACM Conference on Lisp and Functional

Programming, pages 288-298, June 1992.

[27] Amr Sabry and Matthias Felleisen. Reasoning about

Programs in Continuation-Passing Style. To appear in

Lisp and Symbolic and Computation, Special Issue on
Continuations, 1993.

[28] Guy Lewis Steele, Jr. Common Lisp. The Language.

Digital Press, second edition, 1990.

135

