
Average Case Analysis of Five Two-Dimensional Bubble Sorting Algorithms’

Scrap A. Savari

Laboratory for Information and Decision Systems

Massachusetts Iimtitute of Technology

Cambridge, MA 02139 USA

Abstract

For each of five generalizations of the odcl-even transposit-

ion sort to a sorting algorithm on a /77X W mesh of pro-
cessors. we demonstrate that with “high probability,” the

number of steps required to sort a random permutation of

N numbers is @(N).

1 INTRODUCTION

The odd-even transposition sort. or bubble soTt. is a simple
and widely known algorithm for sorting N numbers on an
N-cell Iinc,ar array in at. most N word steps. If we number
{he cells of the linear from left to right by 1,2, . . . . N. then
the algorithm can be described as follows. At odd steps. we

compare the contents of cells 1 ancl 2, 3 and 4. etc.. switch-
ing values if necessary so that, the smaller value is stored

ia t be leftmost. cell. At even Weps, we carry out the same
opmrttions for cells 2 -ancl 3, 4 and 5, etc. A history of this

algurit lun and a lJroof that it requires at. most, N steps on
any inpnt can be found in [1]. It is also interesting to c-om-
l>u{e t.lle average time needecl to sort a random permnt.atiou

of N numbers under the amnmption that all N! pernluta-
t ions are eclaally likely. It is not difficult, to show that the
irverage time neecied to sort a rauclom permutation is Q(N)
steps. This is Iwcrmse. at the end of the sorting procedure,

the Smallest numl>er in the list must be slored in the left.
most cell. In a random permut at ion. the smallest number
is equally likely to I>e initially conta,inecl in any of the cells

1,2,..., N. If the smallest number begins in cell d. then at

least d – 1 steps are needed to bring it to cell 1. so the aver-
age running time for the entire algorithm is lower bounded

~–l I,, fact, the expectecl rnnning timeb.v +~~=1 d–l = ~.

will he at le~st N — 0(w) since one of the 0(m) small-

est items is likely to start in one of the rightmost, 0(~)

positions,
After understanding how the o(l,l-even transposition sort-

i ng algorithm performs on a linear array. it is rea.sonahle t o
ia i’esl~gat e extensions of the bubble sort to two dimensional
nrrays.” In particular. we WOUICI like to sort N numbers on

- This work was supported by an AT&T Bell Laboratories GRPW
Fellowship.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery, To copy otherwise, or to republish, requires a fee

and/or specific permission.

ACM-SPAA’93-6/93 Nelen,Germany.

a 1993 ACM 0-89791 -599-2 /93/0006/0336 . ..$1 .50

a fi X W mesh of processors. For convenience. we rrs-

surne that, ~ = 2r2 or ~ = 2n + 1 for some intqyr

n. W’e number the columns of the mesh 1,2, ..., ~ in-
creasing from left to right and we similarly unmber the rows

1,2,...”, /7’7 increming from top to hotto*n. Since proces-

sors now have four neigh hors. there are many I)ossi IILIL(IeS
,.. .

regarding the comparisons made at any step. W;e wi [1 first
study (wo algorithms that, seem to Iws ( lIe n]ost “Iialural”

extensions of the babble sort to a two-dimensions I array:

for these algorithms. we will assume that W = h. l’he

goal of each of these sorting procedures is to fhish with 1he

input, in row major order: i .P.. the m ’11 Qmallest numlwr will

appear in row [*]+ 1 and column [m -1 ( mod %)]+ 1.
The first algorithm listed below Iwgins with a row sort.

i is assumed to be a non-negative integer.

1.

2.

3. .

4.

At step 42 +- 1. each row acts as a linear array and

performs an ocld M ep of the huhlde sort.

At step 4i + 2. each colamn acts as a linear array an(l

executes an odcl step of the hubhle sorting al,qorit hm
In the colamn sort comparisons. the smaller v:llut ik
out put, in the top-most, cell.

At step 42 + 3, ea,cb row acts as a linear array and

carries out an even step of the cxld-ev?n tr:lllslJ(jsil.iott
sort. At the same time. the leftmost ancl ri,ghl III(HI

columns execute a wrap-around comparison. i.e.. for
h=l,2,..., 2n – 1. a comparison is made between I he

ht’ll roI\7 of colllmn 2n an~t the h + 1st row of Collllnn

1 and the smaller value is placed in the ht 1] row of
column 2n.

At sten 4i + 4. each column acts as a linear arrav and
perfor;ns an even step ,of the h~lhl)le sort.

lf’by do we need the wrap-around comparisons’? Suppose
that we did not have them aIId the smallest 2n num Iwrs were

initially store(l hy the cells in COIIIIIIII 1 Then I lie SInallmi

2?2 ntlmbrrfi will Le forced {0 s{ *Y i,, t he eat,,.. ,. O111,,,,, :If

each step and we would never get the desire{l ord<,rill,q. ‘[’lie
penalty of having a wrap-around comparison is that extra
wires are reqnired, hut it is known t hat. t I]e wrf i tlg procmllt re

above will correctly sort any set of inputs in 0(N) = 0( n2 )

steps because there is essentially an N-ceil linear array em-
beclded in the mesh of processors. In the wors(, case. t Ilis

upper bound is met when the Smalltst 2n eatrieh Iwgin in
the same column.

336

http://crossmark.crossref.org/dialog/?doi=10.1145%2F165231.157381&domain=pdf&date_stamp=1993-08-01


The other row major sorting algorithm [hat we will con-
sider is similar to the first. except that, it begins with a

co] nmn sort., For any non-negative integer i, steps 2; + 1

rrnd 2i + 2 of this algorithm are steps 2i + 2 and 2i + 1 of
the first algorithm. respectively. This algorithm also has a
worst case running time of @(IV) = @(n2 ) steps anti the

worst case is atlained wkcu the smallest JR entries of the

mesh Iwgi n in the same column.

The other set of algorithms we will stncly finish with the
iutmt in a snalwlike order. Here. at tke end of the sort-

in~ procedure. the rntl’ smallest number will appear in row

( lrrt - 1 (mod m+ 1,

Rm = 1%] +1 SJICICOIUIUII

{’

if R“~ is “odd

W- [m-1 fmocl ~)],
if R- is even

In order to exIJaill these alg;rit hms, it is necessa”~v to de-
fiue auot.her procedure for sorting N numbers on an N-cell

linear array.

Definition 1 A reverse bubble sort is the same as the or-
dinary odd-even transposition sort except that when the con-

tents of two cells are compared, the smaller value i.r stored

in the rightmost cell.

For the three algorithms described below, we again assume
that i is a non-negative iuteger. The first algorithm we will

iuyestigate is listecl Mow.

1.

2.

3.

.1.

At st q 4i + 1. ear-h row acts m a linear array. The odcl

rows perform an OCIII step of the bubble sort and the

even rows carry out an even step of the reverse bubble
sort.

..\t $tep .li + 2, each column acts ~. a linear array and

executes an odd step of the bubble sort.

.+( step 4i + 3, each row acts as a linear array. The ocld
rows perform an even step of the Imbble sort and the

even rows carry out an odd step of the reverse bubble

sort.

.1 t step ~li + 4. each COIUrnn acts as a linear array and

executes an eveu step of the bubble sort.

The next algorithm has the same ocl,l-nurnbered steps
as t he preceding sorting procedure and its even-n um Imred

steps are:

1.

2.

At step 4i + 2, each column acts as a linear array. The

odd columns execute an odd step of the babble sort
and the even columns carry out an even step of the

odd-even t ransposit ion sort..

A( step 4i + 4. each dnmn acts as a linear array. The
odd columns perform an even step of the bubble sort
and the even columns carry out an odd step of the
odd-even transposition sort.

The M algorit km that we shall examine has the same
even-a umhered steps are the second snakelike sorting pro-
cwl u re and i 1.soclcl-num berecl steps are

1. At step 42+1, each row acts as a linear array. Tbe odd
rows perform an odd step of the bubbie sort and the
even rows carry out au OC1.I step of tile reverse bubble
sort,.

2. At step 4i+ 3, each row acts as a linear array. ‘he ml(l
rows execute an even step of tbe ho hble sort ilIl(l the

even rows carry out, an even step of the reverse bubble
sort.

It is possible to show that the worst m.se rnnniug time of

each of these algorithms is Q(N) = (9( n2 ) M pps.
As with the case of bubble sorting on it linear array, it

would he interesting to determine the average time nw(le[l

by each algorithm to sort a permutation of N mIIII hers. as-

suming that, all N! permutations are equally likely. [f we

once again lower bouud the average nnmher of steps rc-

qllired by each a.lgorit km hy the average Numl x-r of S(vps

needed to move the smallest number to “the top. left cell of

the mesh. the lower bound is Q(w) steps since the dianle-

ter of the network is 2fi – 2. Is this houn(l tight’? In this

paper, we will show that these algorithms have an :)1 cl’iig~

case performance of 0(N) steps and hence. the average-case

performance is much worse than the diameter lower IWUIKI.

2 ANALYSIS OF THE ROW MAJOR ORDERING
ALGORITHMS

Consider a random permutation A of t be numbers 1 to lrz2

in a 2n X 2rz grid with wrap-around wires. A lower hound

on the number of steps needed to sort the entries of A is the
number of steps needed to sort the cells of AO*. where AO1
is the matrix derived fronl ..4 hy suhstitut ill,< zeroes for lhe
numbers 1 to 2n2 anti slllmtit uti ng ones for t hc rcmnini ng
numbers, We will foclw upon the etl’ects of the sor[i]]~ tll-

gorithms on arbitrary 0-1 matrices and t hen we will apply
the results to AO1. Since half of the eat ries of A“l :uw ZCJ-

roes and half are ones. we often observe that after t IIV first

row sort ancl colamn sort are execu t ml. the o(l[l-n u m Iwrrxl
colutnns tenc[ to have more zeroes t hau ouw and the CYCII -

numberwi columns are likely to have more ones t bun zrroes.
We note that when the sorting procedure 01] AO1 is linishtd.

tbe first n rows of each COllInul consist entirely of zercws a n[l
the bottom half of the ntatrix contains oltly olIes. Iieltrw,

we are interested in investigating how these alqxi thins will

even out tlhe number of zeroes ancl onw in each COIum n.

Definition 2 For anv o – 1 rnatriz, let zv~(t) and Zk(t) de-
note the number of ones and zeroes, respectively, in column

k immediately after the tth sorting step,

Definition 3 The weight, of a column is the number of ones

in the column.

M’e have the following results.

Lemma 1 If step t is a column sort, then for all k,

Wk(t) = wk(t– 1)

Z&(t) = Zk(t — 1)

Proofi Column sorts make no change in thr weight of rm.v

colnmn. Their only conwquence is t h:] t t he}- tend t o move
the zeroes of a column toward the toll and t be ones of the

column toward the bottom. ❑

Lemma 2 I} step t is an odd vow sort, then for all j E

{1,..., n}

rm,(t) ~ w’zj_l(t–1)

z2j-l(t) > Z2j(t – 1)

337



Proofi Let Ak demote column k immediately before step t.
We observe that the zeroes of the even-numbered columns

“travel together” and the ones of the odd-numbered columns
“travel together” in the following sense: let 1%, &, ..., Bz~
l~e t,he new co] nmns after step t.For any column vector C,

let Ch represent. the element in row h of column C. Then

fora.ll jG{l,2,..., rz}anclh E{l,2, . . ..2n}.

● A$j_l = 1 implies B~j == 1

Hcmce, an odd row sort causes the zeroes of the even-nun~-

berecl columns to travel to the ocld-numbered columns and

shifts the weight of the odd-nurnberecl columns to the even-
n am berecl columns, Since the number of ones in A2j-1 is

W2j-1 ( t – 1). the weight of B2J k W2j ( t ) and the number of
zeroes in A2~ and B2; _1 are z2j (t — 1 ) and %Zj-1 (t) t respec-
tively, the lemma follows, ❑

Lemma S If step i is an even row sort, then

VJ2j+l (t) > W2j(t– 1), iE{l, . . ..1}l}

%~j(t) > Z2j+1(t– 1), JG{l, . . ..71}I}

w,(t) ~ w2n(t -1)-l

Zzn(t) > Zl(t–1)–l

Proof: Let D, and Ek represent column z immediately be-

fore step tand column k just after step t.respectively. ‘Men

forj~{l,..., rl}andlz e{l,l,2n},2n} ,

SinCe the weight of DZJ is UJZJ(t - 1). the number of ones in

Ezj+l is 7.V2J+I(t), and the number of zeroes in D2:+1 and
Ezj are 223+1( t – I ) and Zzj (t ), we have demonstrated the
first two inequalities of Lemma ~.

Next we consider the effect oft he step t on theleftmost
and rightmost columns. Here, for h ~ {1,2, . . . . 2n - 1},

o Df+l = O implies -@n = 0,

h+l = J.. D~n = 1 implies El

AS in the proof of Lemma 2, we say that an even row sort
muses the zeroes of column 1 to travel to column 2r2 ancl

the ones of column 2n to travel to column 1. If D; = (] and
D;: z 1, thenEz~ may have one fewer zero than D1 and
El may have one less one than Dz~. Otherwise. E2~ will

have at least as many zeroes as D1 and the weight of El

will be at least< as large rM the weight of Dzm. Ilence, we

have established the last two inequalities of Lemma 3. ❑

From Lemmas 1-3, we have the following theorem.

Theorem 1 For any mesh containing a zeroes and N - a
ones, if aftev some odd row sorting step

e there is an odd-numbered column containing z > [al

zeroes, then at least (z – [~] - 1) . 2@ additional

steps will be required to complete the sorting

t there is an even-numbered column with weight y >

I’*l J~~e~at~east(v– [*1 – 1).zfi morestew
will be needed to finish the sorting.

Proof: Suppose that after some ocld row sorting step t,.
Colunlll 2j + 1 contains z > [~] zeroes. From Lemmti 1.

we know that colnmn sorts don ‘t affect. the n nm her of zeroes

and ones in a column: therefore, the set. of zeroes of in terwt

remains in the same COJUmn during a column sort. I,emma 3
indicates that, at the next row sorting step, the zeroes that

had been in column 2j + 1 = ~~j (mod 2n)] + 1 travel to
colnmn [2j - 1 (mod 2n)] + 1. Lemma 2 implie~ that at ~he
following row sorting step. thc,se zeroes are shifted left to
column [2j - 2 (mocl 2n )] + 1. Iflsing induction. we see t hat

t,his set of zeroes is moved one column to (he left at each
row sorting step. except at the step where is it wrappe(l

around from column 1 to column 2n. ‘llus. it will take 2@

steps for the set, of zeroes to return to colnmn 2j’ + 1. From

Lemmas 2 and 3, we also have that the number of zeroes in
the set does not decrease as it is shifted left although it may

decrease by one in the wrap-around stage. Hence. we have
that

z2J+l(ti + Xfi) z .22; +l(ti) - ] = 2! – 1.

Note that, if the sorting algorithm is complei e at step tf.
then for all t~ tt,

Hence. tj – t; > (z – [Al – 1). 2~.

A similar argument applies if there is some even-nil 111-

bered column at time t that has a large weight,. In this case.
the set of ones that originate in that co]amn arr Slliftctl

right at the row sorting steps and travels from column M
to column 1 at. the wrap- arouncl M age. Q

An immediate consequence of Theormu 1 is

Corollary 1 For both algorithms, the worst-case time to

$ort N numbers is at least 2N - 4m.

Proof: Consider the mesh in which one co] II 11111illi-

t.ially consists entirely of zeroes and the renlaiaing, cells

of the matrix contain ones. Here, in terms of ‘lleoren~ 1.

a=x=fi.o
Let us return to the matrix A“l. For j c { 1,..., n}.

let. z2j_1 and Wzj represent, the nutnt)er of zeroes in CO] UJIID

2j - 1 and the weight of column 2j, respect i~<l~. iIII mediaf ely

after the first row sorting step is executed. and Iel

M = max{, max Z2,–1, ITIaX Wz, } - n – 1.
te{l,... ,n} JE{I,. -,m}

Then we haye

Corollary 2 The number of steps needed to sort AO’, and

hence A, is greater than 4nM. Therefore, the average num-

ber o~ steps required for tke two dimensional bubble sort with
wrap-around wires is lower bounded by 4n . E[M], where the

expectation is taken over the set of random permutations.

Proofi Apply Theorem 1 with a = $ = ~n2. ❑

In view of the fact thai the worst case perforn]ancc of
both of the algorithms is 0(N) steps, to denlonstra,te that
the algorithms require @(N ) steps on a~era,ge. it suffices to

show that E[M] = R( ~), regardless of whether the first

set of comparisons is a row sort or a. column sort.

338



Lemma 4 For the algorithm that begins with a row sorting

step, E[M] ~ ;+* – 1.

Proofi Since M > 21 – n – 1, we have that .??[M] >
EIZ1] – n – 1. Let. Al be column 1 immediately after

the first row sort. is performed and for h G {1,..., 272}, let

E[zl] = q~~=l a]
= ~~lE[zh]
= 2nE[zl ]

= %n. Prob{zl = 1}

= 2rz . Prob{([AO’]l,l, [AO’]1,2) # (1, 1)}.

If we let Ml and J’& denote the number of matrices A.”l suck

that ( [A”l]l,l, [A01]l,2 ) = (1, 1 ) and the number of 2?2 x 2n
matrices with 2r32 zeroes and 2n2 ones, respectively, then

prob{([AO’]l,l, [A01]l,2) = (1,1)} = ~.

To ewd uate A6. we note that we are looking for the num-
ber of ways to select the 2n2 out of 4r22 cells that initially

slore zeroes since the remaining cells will automatically hold
ones, $iimilarly. to evaluate NI, we keep in mind tkat if

([AOl]l,l, [A01]1,2 ) = (I, 1 ), then the remaining 4n2 -2 cells
of AO1 contain 2n2 zeroes and 2722 — 2 ones. Hencei

E[zl] = 1-
(4n~~2) ;+ 1

()

=
4n2 lfw -4

2n2

and the lemma follows. O

Hence. we have

Theorem 2 The average number of steps reguired to sort

a random permutation of N numbers by the algorithm that

begins with a row sorting step ia lower bounded by ~ - 2~.

For the remainder of the paper, let t[y, N] represent the
eyent t.hai the a~erage nnmher of steps needed to sort aJ
random permutation of N nnmhers is less than yN.

Theorem 3 For the algorithm that begins with a row sort-

ing step, given any y < ~ and b > 0, there exists No such

that Prob {C[7, N]} < S for all N ~ NO.

For the proofs of Theorems 3. 5, and 8, we will utilize the
well-known (:heb,vshev inequality: for any random variable

x,

JVe will ueed a weaker conseclueuce oft his inequality, namely

thal for any ramiom variabie X and any t> ‘Oi

Prob[X < E’[X] -t] < *-

Proof: Corollary 2 indicates that it is sufficient
th~t fOI illlj- y < $.

lim Prob[M < yn] = ().
.-.W

(1)

to establish

Since M~Z1 -n-1,

Pro13[M < ~n] < Pro13[Zl < (~+ 1 )n + 1]. (2)

Frour the proof of Lemma 4 and ( 1), we have that for all
t>o,

Prob[Zl < ~n + ~ –
l’ar( ZL )

t]<
~n2 _ 2 ~“

Substituting t = n(~ – ‘y – * + * ) into the preceding

inequality gives

Va,r( ZI )
(3)Prob[Zl <(7+l)n+ll S n2[~_7

-0(1) )2”

Llsing the same notation ~~ in the proof of Lemma 4. we
have that

Var(Zl) = E ((~&zh)2) – (E[Z1])2

(
= E ~;=lz; + ~hdhlZhZh,

)

(

3 n

)

2

— p+- ~n2 _ ~

= X~,E[ZFJ + ~&# E[zkzk]

(

3 n

)

2

—
-n+~n2_~

, since z~ = () or 1
2

= 2n . E[zl] + 2n(2n - 1) . E[zlzz]

(

n 2
— ~n+—

)
, I)y symmetry.

@n2 – 2

We have already seen tkat E[zl ] = $ + ~6n\ _4. l~-e uot e

that

E[zlzz] = Prob{z~ = .2 = 1}

= 1 – Prob{zl = (1 or zz = 0}.

For i E {1, 2}, the event Z; = (1 is equivalent to the e~t,nl

([Aoi]t,l, [A”l],,z ) = (1,1). Hence.

Prob{zl = 22 = 1}

—— ~~=lprob{([AO1] i,l, [A01]i,2 ) = (1, 1)}

Prob{[d”’]l,l =[A01]1,2 =[AO1]Z,I =[-4°’]2,2 = J}

= :.(4n~~2) (’n~~’)

(a - (a

7 n2-~

= i?-32n4-32n2 +6”

Hence, E[zlzz] = ~ +
32?4’’:42+6 ““i ‘0

3n (;4r26 - 12n5
\“ar( Z1 ) = ~ –

-76r2’+1%z3+’2 InZ—*

(tlnz –2)2(4732 –3)

= ‘(:+
The previous equation, combined wit h (L?) and (3), implies

3--o(1)
Prol>[A4 < w3] = 8

n($–y– o(l))”

completing the proof. ❑

339



Theorem 4 The average number of steps required to sort
a random permutation of N numbers by the algorithm
that begins with a column sorting step is lower bounded by

y – 2/77,

Proof: Becarwe of (’orollary 2, it is sufficient to show tlmt

for the algorithm that begins with a colnnm sorting step.

n’ — &3
E[itf] > $2+ – 1.

16n4 – ltbzn + 3

After a column sort and a row sort have Iwen performed.

AO1 lIILS bwn ulappecl into ‘a matrix whick will be denoted
by A: A can be partitioned into rzz blocks of the form

( azh-l,zjd a2h-l,2j

a2h.2i-l a2h.2i )
with the property that. none of

. .
tile elellIeuls in a I)locli (lave Iwwn compared will] rmy ele-

Illellt.s ofa<lifferellt) block. kVella\’e tllefollo\villgl tla~>plllgof
initial blocks to blocks immecliat.ely after (he first row sort:

w)+)
Since M ~ 21 -n— 1. we have that E[lkf] ~ EIZl]-n - 1.

{

2, A;h–l = A;h = (I

~or h E {1,. ... n}. let Zh = 1, A~h-l =0, d~h= 1
0. A;h-l = A;h = 1

Then

n n

EIZ1] = E[~ z~] = ~ E[zI] = nE[zl], by symmetry.

h= 1 h= 1

T’lLe I)roba l,ili t y of my block
(

[do’],,,

[A01]2,1

P

473’ – 4

2n2 - z
zeroes an{l 4 — z ones is

)

4?32

2n2

These probabilities are:

3*~-ax
sz=Oor 4:*- 32n4-32m2+6

[A”’],,z

)
~Ao112,2 with .2

● .2 =2:&++

IIence,

+=1: (1 1%~–
l(jr34 – l(jn2 + 3)

(+2. -h3;n4 nz-$

1f) - 32rz2 + G)
7 n2-~

——
= 16 32n4 – 3h2 + 6

(+’!” &- T%
16r34 – 16n2 + 3 )

=] 1
~+—

8n2 – 2

Prob{zl = ()} = ~ –
3732 – ~

32n4 – 32n2 + 6

and t kns,

E[z,] =
7?2-;

;+
16r44 – 1673’2 + 3 “

Ifence,

E[iw] ~ E[z, ]

(-n 11 ~z—;
= ~+

)16n4 – 16n2 + 3 –
n—1

3 n’ - ~n
= —n +

8 16n4 – lthz + 2
-1.0

Theorem 5 For the algorithm that begins with a column

sorting step, given any 7 < $ and 6 > (), there ezista N1

such that Prob {t[-y, N]} <6 for all N > N1.

Proofi .As in the proof of Theorem 3, it is sufficient to show
(hat for all -y < ~,

linr Prob[Z1 s (7 + l)n + I] = (). (4)
n4w

From the proof of Theorem 4 and ( 1). we have t hat for all
t> (l,

n3 — ~rz
Prob[Zl s ~rz +

I’ar( Z1 )

1t5n4 - 16r22 + :] –
t]<— tz

ceding inequality ~ives

IIsing the same notation ~< in the proof of Theorem
hale that

(5)

-1. we

I“ar( Z~ ) = E ((z;= l~dz) – (E[Z11)2

340



where E[z~

= r? . E[z;] + n(n – 1) . E[Z1Z2]

-(

11
2

n3 — ~n
—n
8+ )lCW – 1%2 + 3 ‘

( n2—~
= 4.;–

16 32n4 - 32n2 + 6 )

+1.
(

1
;+— fJn2 _ 2 )

( 3n2–+
+[). &

32n4 – 32n2 + 6 )

$) 3
=--

4 64n4 – 64n2 + 12

ancl E[zl 22] = Prob{zl = Z2 = 1}

+ 2. Prob{zl = I, ZZ = 2}

+ 2 .Proh{zl = 2, 22 = 1}

+ 4. Proh{zl = 22 = 2}.

49 -lks - ~n4 + 1711n2 – J.!j&
—-

= 256 2.56n8 – 1024n8 + 1376nd - 70-inz + 105 “

Therefore,

E[zlzz] = # –
20n6 – Z&n’ + 241n2 – *

256n8 – lU24nG + 13i(jn~ – ~~]~nz + IOS ‘

(2H=,,
\W J

The event zl = .22 = 1 means that
The previous eqaat ion. combined with (-I) and ( 5 ) inlpliw

‘(’”(=)many matrices AO 1 satisfying 21 = 22 = 1.

Hence.

Prol,{zl = zz = 1} = ~ +
4r34 – llnz + $

64n6 – 144n4 + 92n2 – 15

Proh[Zl ~ (~+ I)n+ 1] ~ %
-o(1)

n($-y-o(l))z’

proving Theorem 5. Q

3 ANALYSIS OF THE SNAKELIKE SORTING AL-
GORITHMS

W-e assun]e that fi = 2n ill this section. Tl,e an alj sis for

@ = 2n + 1 is similar and outlined i,, the appm(lis A
am{ /l”l are defined as before. W-e begin IJ! ccrnsitlering 1he
first snakelike sorting procedure. For” any () – 1 nl:]( rix. we

u! ilize the following definitions for this algoril hm:

Definition 4 Let Z1 ( i) denote the number oj zeroes in the

/ A,,, A1,2 \ odd-numbered columns and the even-numbered rows of CO1.

‘he well t .2A = 1, Z2 = 2 implies
I

Az,l Az,2

I
is eit,her umn 2n immediately after step 4Z + 1.

A3,1 A3,2

()
() 1)

11

(1 () ‘

(1 ()

(
o 1

11
or

1) 1
() 1

Proh{zl =

\ -&,, A4,2 j

VK’KWH

lIence, it is straightforward to show t Ila I

22 = 2} = Prol){zl = 2, 22 = 1}

Definition 5 Let Z2 (i) denote the number of zeroes in the

odd-numbered columns and the odd-numbered rows of column

2n just after step 4;+ 2.

Definition 6 Let Z3 ( i) denote the number of zeroes in, the

even-numbered columns and the odd-numbered rows of col-

umn 1 right after step 4i + 3.

Definition 7 Let Z4 ( i) denote the number of zeroes in the

even-numbered columns and the even-numbered rows of col.

umn 1 immediately after step .Ii + 4.

\Ye have the following relationfihipti anlolls ZI (2). Z2(2).

Z3(Z) and Z4(Z):

Lemma 6 Z2(i) ~ Zl(i).

341



Proof: Let A2~, B2n represent. column 2n immediately be-
fore and after stc~p 4i +‘2 is executed, respectively. Then for

h E {1,2, . . . ,rz}, A~~ = 0 implies B~~-l = O. Hence, the
nun) her of zeroes in the odd-uumberecl rows of column 2n

just after step iti + 2 is no less than the number of zeroes
in the even- nnmbered rows of column 2n immediately after

Step AZ + 1. To complete the proof, we observe that. a col-
umn sort will have no effect on the number of zeroes in the
odd-n nmbered colnmns. ❑

Lemma 6 Z3(Z) ~ Zz(i).

Proofi Let ck and D1 represent colnmn k immediately
before step % + 3 ancl column 1 just after step 4i + 3.

respectively. For h G {1,..., n}, C~h-’ = D~h-l and
C;;–1 = D;~-l 1>ecause the contents of cells of the form

( 2/3 – 1, 1) and ( 2h – 1, 2n ) are not compared with the con-
tell ts of other cells during step 4i + 3. Therefore, the Number

of zeroes in the odd-numbered rows of columns 1 and 2n is

the same before and after step 4i + 3. We observe that, for

heal,..., n},

2h–1 = {) implies D2,
● Czj+l

2h-1
=0, jC{l, . . ..1}l}

● C~,A_l = O implies Dij~ = O, j c {1, . . ..n}

Hence, tbe nmnher of zeroes in columns 2,4, . . . . 2n – 2 and
the. eyen-n umbered rows of column 2n immediately after
step ~i + $ is greater than or equal to tJle number of ze-

roes in columns 3, 5 , . . . . 2r2 – 1 ancl the even-numlwrcd rows
of column 1 just, before step 4i + 3 WIM performed, finishing

the proof. ❑

Lemma 7 Z4(i) ~ Z3(i) – 1.

Lemma 8 Zl(i+l) z Z4(i).

PYe omit t be proofs of these lemmas because they are like

the proofs of Lemmas 5 and 6,

Let ~(a, N) = [~ + *1. From Lemmas 5-8. we have

the following theorem,

Theorem 6 FOT any me~h containing a zeroes and N – a
ones, if after the first step the number of zeroes in the odd-

numbered columns plus the numbe? of zeroes in the even-

numbered rows Of column fi is z > f (a, N), then at least
4 (x – f ( a, N) – 1 ) additional steps will be required to com-

plete the sorting.

Proofi The preceding four lemmms imply that for all non-

negative integers i,

Zl(i+l)~Zl(i)–1.

kThen the sorting algorithm is complete, each column will
ei t,her h~ve [~1 or [~] zeroes and so the number of

zeroes in th~ odcl-uumhered columns and the even-nllmbered
rows of COIUWI Zn is at most f (a, N) == [~ + *1. Hence,

there is some minimal if snch that, for all i ~ if,

ZI(i) < f(a, N)

zn(l t he t.heorenl follows. ❑

If we apply Theorem 6 to AOl, we have the following
result.

Corollary 8 The average number of steps required for this

algorithm is lower bounded by 4 (EIZ1 (o)] – f( $, N) – 1),

where the expectation is taken over the set of random per.

mutations.

Siuce the worst. c~~e performance of this algorit hnl is

O(N) steps, to clemonstrate that it re(lllire~ @(N) st clw 011

average, it is enough to show that EIZI ( ())] – $ = Q(N).

Lemma 9 EIZI(U)]= ~N+ ~+ ~.

Proof: Let.

row sort is

{

1,
Zk,j =

u,

-E[z,(o)] =

.

—

A be the matrix immediately after the first

performed and for h,j e {1, . . . . ~}, let

Since Az,l = [A”1]2,1, EIzz,IJ = ~. As in the proof of

Lwuma ~,

EIzI,I] = Prob{([AO*]l,l, [AOl]l,, ) # (1,1)} = ~ + &

and the lemma follows. ❑

Hence. we have

Theorem 7 The average numbeT of steps ~equired to soTt a

random permutation of N numbers by the first two dimen-

sional snakelike bubble sorting algorithm is lower bounded by

$–~–i.

lYe have the following stronger result

Theorem 8 For the first wzakelike sorting algorithm,

given any 7 < ~. and 6 > (), there ezast.g N such that

Prob {t[y, N]} < IS for all N z N.

Proof: Theorem 6 indicates that it is sufficient to esta.bli:h
that for any 7< *,

{( )lim Prob 1 ZI(t~) –rz2 – ~ – 1 ~ -f.4n2
n-m }

{ }
= Iim Prob Zl(0) ~n2(y+l)+~+l =(). (6)

?l+ca

Lemma 9 and ( 1 ) imply that for all t > [).

Setting t = n2 (* – -y – & – .*) i],to the pr~~eflil]g

iuequali ty gives

{ }
Prob ZI(U)<rZ2(7+l)+~+l <

Var[Z~((l)]

n4(*–7–o(l))2”

(7)

342



If we maillt.ain the notation fron~ the proof of Lemma 9 and
let

- (E[z, (o)])’

=.E((Z, +22)2) – (;r2’ +:+&)2

=E(Z12) + 2E(Z1Z2) + E(Z22)

-(

32

)

2
~n+~+~ .

&t+4

N-e have that

E (Z12) = (2n2 – n)l?[zf,l]

+[(2s22 –n)’ - (2r22 -n)] .E[Z1,1ZI,3].

IU the proof of Lemma 9. we saw that

E[zl,l] = E[z?,l] = ; + -.

Jyi t h an argument exactly like the one usccl in the proof of

Theorenl 3, it is straightforward to show that

9 ~ 1725 3 n2–r3
.E(Z12)=jr34-zn +nn –fin+*+ ‘g”=”

2E(.Z1Z2) = 2(2r32 - r3) . 2r3E[zl,lz2,1]

= (f In’ - 4r32 )Prob{zl,l = ZZ,I = 1}

= (&t3 – 4n2 )[1 – Prob{zl,l = O or Z2,1 = o}].

Prob{zl,l = 0 or Zz,l = (J} = ~7=1Pro13{zi,l = O}

- Prob{zl,l = 22,1 = O}.

\Ye have seen in the proofs of J,emmm 4 and 9 that

Prob{zl,l = 0} = ~ - ,,n~_4 and Prob{z2,1 = 0} = *.

Prob{zl,1 = z2,1 = ()}

= PrOI){[AO1],,l = [A”’],,, = [/L”’] z,, = I}

(’$;’) , ~=

()

=——
4n2 8 32n2 – 8”

2n2

Hence.

2E(Z1Z’) = 3r33 - ~n’ + ~ – ~.
%+4

Finally,

E (ZZ2) = 2nE[z~,l] + (&2 – 2s3)E[zz,1 2,,1]

= 2s 3.++(4n2-2n). (;+ 1

10n2 – 4 )

= 3r32-~+~.
4n+2

Therefore.

\’ar[Z~((J)] = ~nz - ln+ 1*n2 ‘(;n + ~ . *
10 (%3+4)2

—— n2
(: )

y+o(l) .

The previous expression. combined wit h (6) an,i (i) implies

{(Prob 4 Zl(U)–n2–f-
1, ~v”’n’} < Jl;:y,,,2

completing the proof. ❑

‘I%e analysis of tbe second snakeliiw sorting procedurp is
nearly replicates the preceding analysis. so we will mert,ly

outline the results here.

Definition 8 Let Y1( i ) denote the number of zeroes in the

odd-numbered columns immediately after step .4i+ 1, or equiv-

alently, just after step =li + 2.

Definition 9 Let Y2 ( i) denote the number of zeroes in

columns 2,4, ..., 2n – 2, the odd-numbered rows of column

1, and the even-numbered rows of column 2n just after step

‘li+:l.

Definition 10 Let Y3 ( i) denote the number of zeroes in

columns 2,4, . . . . 2n – 2, the even-numbered rows of column

1, and the odd-numbered rows of column 2n just afier step

4i+4.

lf’e have the following results.

Lemma 10 ● Y2(i) ~ I“l(i).

● Y3(i) ~ Y2(Z) – 1.

Theorem 9 For any mesh containing a zeroes and N – a

ones, if after the jirst step the number of zeroes in the odd-

numbered columns is z > [~1, then at least 4 (z – [~1 – 1)

additional steps will be required to complete the sorting.
Therefore, the average number of steps required for the sec.

ond wzaketike bubble sorting algorithm is lower bounded by

4 (EIY1 ( () )] – # – 1), where the expectation is taken over

all e x n O-1 matrices with ~ zeroes.

Lemma 11 EIYI(0)] = ~N– ~+ ~.

Theorem 10 The average number of steps required to sort

a random permutation of N numbers by the second two

dimensional snakelike bubble sorttng algorithm is lower

bounded by ~ – @ – 4.

Theorem 11 For the second snakelike sorting algorithm,

given any ~ < $ and 6 > (1, there exists N* such that

Prob {E[T, N]} <6 for all N > N“.

343



Although we have not done so here, it is not, difficult to
show that the sorting procedures we have investigated until
this point, all satisfy the property that the average time for

the smallest element, to move to the top, left cell is @(~)
stel}s. ‘TO COnCIUCIe this paper, we will establish that the l~ct

snakelike sorting procedure needs @(N) steps with “high
probability” for the smallest element to move to the top. left.

cell: hence, this algorithm also takes @(N ) steps with “high

probability” to sort a ranclom permutation of N numbers.

Definition 11 Let ( j( i), k(i)) denote the cell containing
the smallest element of the mesh immediately after step

2i. (j(() ), k( O) ) denotes the cetl initially storing the smallest

entry.

Lemma 12 It (j(2i), k(2z) ) is the ceil occupied by the nzth

smallest element at the end of the sorting procedure, then

(j(2i+ 1 ), k(22 + 1 )) is the cell occupied by either the rnth or

m — 1‘t smallest element when the sort is complete.

Proof: There are three casses to collsidcr:

Case 1: j(2i) s k(2z) (mod 2). Neither step 4i + 1 nor step
4i + 2 moves the smallest entry of the mesh. Hence,

(j(22+l), k(2i+ l)) = (j(2i), ~(2i)),

thtIocatiou of the mt’ll smallest element at the end of the
sorting proceclure.
Case 2: j(2i) ~ () (mod 2), k(2i) a 1 (mod 2). Step % + 1
moves the smallest, element. to (j( 2;), k( 2i) + 1). and step
-li + 2 leaves it there. Hence.

(j(2i+l ),~(2i+ l))= (j(2i), k(2i)+ l),

the Iocrition of the m – 1st smallest, element, when the sort
is complete.

Case 3: j(2i) ~ 1 (mod 2), k(2i) s 0 (mod 2). Step 4i + 1
shifts 1he smallest. element, to (j( 2i), k( 2i) — 1 ), and step

4i + 2 doesn”t move it. Hence,

(j(2i+ l), k(2i+ l)) = (j(2i), k(2i)– 1),

the location of the m – lst’ smallest element, at the end of

the sorting procednre. Cl

Lemma IS I! (j(2i + l), k(2i + 1)) is the cell occupied by

the mth smallest element at the end of the sorting procedure,

then (j(2z+ 2), k(2i+ 2)) is the cell occupied by the m – 1st

smallest element when the sort is complete.

Proof: From the preceding lemma, we see that there are

only two cases to consider:
Case 1: j(2i+l) ~k(2i+l)SO(nlod 2).

Subcme 1a: k( 2i + 1 ) # 2n. Here, step 4i + 3 moves the

SIIlilllWt element to (j(2i + 1 ), k(2i + 1 ) + 1)and step 42 + 4
leaves it there. Hence,

(j(2i+2), k(2i+2)) =(j(22+ l), k(2i+l)+ l).

Subcase 1 b: k( 2i + 1 ) = 2n. Here. step 4i + ~ cloes not. sllift,

the smallest element,, but step 4i + 4 canses it to travel to

(j(2i+ 1) – l$2n) = (j(2i+2), k(2i+ 2)).

Case 2: j(2i+l) Sk(2i+l) Z 1 (mod 2).
Subcase 2a: k( 2i + ] ) # 1. Here. step 4i + 3 moves the

smallest element to (j(2i + 1), k(2i + 1 ) -1 ) and step 4i + 4

leaves it, there. Ilence,

(~(2i+2), ~(2i+2)) =(j(2i+ l), k(2i+l)– 1).

Subcase 2b: k(2i + 1) = 1. Here. strp 4i + 3 does not shift
the smallest element. but, step .li + 4 muses it to t ravel tO

(j(2i+l )-1,1)= (j(2i+2), k(2i+ 2)).

Iu each case, cell (j(2i + 2), lc(2i + 2)) holds the m – lst’

smallest entry when the sort is complete. ❑

Heuce, we have

Theorem 12 The third snakelike sorting procedure requires

@(N) steps with “high probability. ”

Proof: Lemm~s 12 and 13 imply that, if the cell initially

storing the smallest entry is the cell occupied by the m t h

smallest entry at the end of the sorting procedure, t hen at

least 2m - 3 steps are re[luired to bring it to [ lte 101), left
cell. Siuce the smallest entry is eql~a]ly likely to he initially

contained in any of the cells of the mesh. for auy $ > l), the
probability that the algorithm needs fewers than SN stt,ps
is upper bouncled by $ + ~. ❑

4 CONCLUSION

We have inves! igated five generalizations of f IIe od(l-el,f,li

transposition sort. to a wGV x w mesh of processors. ‘1’he
first two sorting procedures finish wit h 1he inl)llt in row JII:I.

jor order and require wrap- a,roun{l wires bel wecn thy km.
most, ancl rightmost, columns. n-e dr-monstrate{l a Jo\ver
bound on the number of steps required to COIII1>]eIe i Ite sort

on any i)— I matrix based on t Ile namber of zeroes an(l oaes
in each column at the end of the first row sorting st (<p. \Ye

then used this bouu[l to est al)lish a 63(N) bound on the worst
case and average case performance of these algorithnls. W-e

concluded our investigation of these algorithms by proving
that, with “high probability.” each re(lnires (3(N) steps t o

sor[ a random permutation of N numlwrs.

The othm three algori{ hms we considered finishfe,l wi ( h
the input in a snakelike order. For the first two of t hew, three
algorithms, we studiecl how the zeroes and ones “’t ravel”’

in cert aiu well-defined pat term. \Yil h this inform Zltion. w~
were al>le to est.a,bllsh a 0( N ) l>OUUC[ on the al, erage case

performance oft hcse algorithlns and l)ro~w.1 t Ilat \vit 1] “high
probability,”’ each needs (3( N ) steps to sort a raltdom per-
mutation of N numbers. Our approach to {Iemonst rating a
~(N) step bound on the time required. Ivith ‘(high l}rol,al>il-
ity.” by the third snakelike sorting procetlu re was to exalnine
the path taken l~y the smallest entry w it nlo~,es to the top,

left cell of the mesh.

Acknowledgment

J am grateful to Dr. F. T. Leighton for his gui(lauce Mld
encouragement throughout the course or t l~is work,

References

[1] F. T. Leighton, Introduction to Parallel Algorithms and

Architectures: Arrays, Trees and Hypercubes. Morgan
Kaufmann, Sail hIateo, California. 1!)92.

344



~2] W. Feller. An Introduction to Probability Theory and its
Applications, Vol. 1, M’iley, New York, 1950 (3rd cd.,

1968).

APPENDIX

}Ve begin by outlining onr approach to the analysis of the

firs~, t,~t;osnakelike sorting procedures when m = 2n + 1. A
is definecl as l)efore: we redefine ~01 as the matrix derived

from ~ by snbst itut ing zeroes for the smallest 2n2 + 2n + 1

entries of tbt mesh and .wb.stitnting ones for the remaining
entries.

For the first snalwlike sorting algorit hm. we redefine Z1 ( i)
and 22( i): we maillt.ain the earlier definitions of ZS ( i) and

Z,(i).

Definition 12 Let Z1 ( i) denote the number of zeroes in

columns 1,3, 5,..., 2n – 1, and in the even-numbered rows

of column 2n + 1 immediately after step 4i + 1.

Definition lS Let Z2 (i) denote the number of zeroes in
columns 1,3, 5,..., 2n – 1, and in the odd-numbered rows

of column 2n + 1 just after step 4i + 2.

}l-it,h these Zj (z), j G {1,2,3, 4}. Lemmas 5-8 again apply

wit h similar proofs. The analog of Theorem 6, Corollary 3.

aJd Lemma, {) are listed below: we omit most of the proofs
beta nse of { heir great resemblance to earlier ones.

Theorem 13 For any mesh containing a zeroes and N – a

ones, if after the first step the number of zeroes in columns

l,3,5,...,2n- 1, and the even-numbered rows of column

Yn + 1 is z > (*.1, then at least 4 (z – [*)] – 1)

additional steps will be required to complete the ~orting.

Corollary 4 The average number of steps required for this

algorithm is lower bounded by 4 (EIZ1 ( 0 )] – [*1 – l),
\ ,

where the expectation is taken over the set of random per-

mutations.

Lemma 14 EIZ, (0)] = ~N– ~+ ---

Proofi 1Ising the same notation as in the proof of Lemma
9. we have that,

by symrnet r.v.

Since A2,1 = [A01]2,1, l?[~~,l] = ~.

EIzI,I] = Prob{([.4°’]1,1, [A01]1,2) # (1, 1)}

(

4n2 + 4n — 1

2n2+2n+l
= l–

) 3—

( )

*+A—.
4n2+4n+l

2n2+2n+l

and the lemma follows. ❑

Theorems ‘i ancl 8 still apply and have proofs like t be ones

given earlier.

For the second sna.kelike sorting algrsrit hm. it t urils oat

that the preceding analysis for the first ~l~i~kelike sorting
algorithm is applicable here: i.e.. we can nse the same def-

initions and theorems with some minor variations in the
proofs.

We cone.lnde the appendix by stndying the last snnkrlike

sorting procedure in the case where W = 2n+ 1. M-e ltlain-

tain the earlier notation (j(z), k(i)) for non-negative integers
i. We omit. the proof of Lemma 16: it is very similar t o the

proof of Lemma 13.

Lemma 15 If (j(2z), k(2z) ) is the cell occupied by the rnth

smallest entry at the end of the so~ting procedure, then

(j(2i + 1 ), k(2i + 1 )) is the ceil occupied by either the mth or

m- 1‘t smallest entry when the sort is complete.

Proof: There are three cases to consider:
Case 1: j(2i) Sk(2i)(nlod 2).
Neither step 4i + 1 nor st cp 4i + 2 moves the smallest eat ry

of the mesh. Hence.

(j(z~+ 1), M2z+ 1)) = (j(2i), H2i)),

the location of the rnt”l’ smallest element at the entl of the

sorting procedure.
Case 2: j(2i) s O (mod 2), k(2i) = 1 (mod 2).

Subcase 2a; k( 2i) # w. Here, step -ii+ 1 mows t be small-
est, elenlellt, to (j(2i), k(2i) + I ). and step .li + 2 lea,~es it

there. Hence.

(j(2i+ l), k(2i+ l)) = (j(2i), k(2i)+ 1),

the location of the m – lst’ smallest element when t he sort
is complete,

Subcase 2b: k(2i) = fi. Here. step ~i + I does not shift
the smallest element. bnt step -li + 2 causes it to travel to

(j(2i+l), k(2i+ 1)) = (j(2i+ 1) – l,2n),

the location of the m – lst’ smallest element at the en(l of

the sorting procedme.
Case 3: j(2i) -1 (mod 2), k(2i) - t) (mod 2).
Step 4i + I shifts I he smallest element to ( j( 2Z), k( 2i ) – I).

and step 4i + 2 doesn.t move it. Hence.

(j(2i+ l), k(zi+ l)) = (j(2i), k(2i) – 1),

thelocation of the m - Ist’ smallest, element at the end of
the sort ing procednre. •!

Lemma 16 If ( j(2i + 1), k(2i + 1 ) ) is the cell occupied bg

the mth smallest entry at the end of the sorting procedure,

then (j(2i +2), k(2i+ 2)) is the celi occupied b~ the m – 1st

smallest entry when the sort is complete.

Finally, Theorem 12 and its proof still apply

345


