Check for
Updates

Average Case Analysis of Five Two-Dimensional Bubble Sorting Algorithms*

Serap A. Savari

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology
Cambridge, MA 02139 USA

Abstract

For each of five generalizations of the odd-even transposi-
tion sort to a sorting algorithm on a v/N x /N mesh of pro-
cessors, we demonstrate that with “high probability,” the
number of steps required to sort a random permutation of

N numbers is ©(N).

1 INTRODUCTION

The odd-even transposition sort, or bubble sort. is a simple
and widely known algorithm for sorting N numbers on an
N-cell lincar array in at most N word steps. If we number
the cells of the linear from left to right by 1,2,..., N. then
the algorithm can be described as follows. At odd steps. we
compare the contents of cells 1 and 2, 3 and 4. ete., switch-
ing values if necessary so that the smaller value is stored
in the leftmost cell. At even steps, we carry out the same
operations for cells 2 and 3. 4 and 5. etc. A history of this
algorithm and a proof that it requires at most N steps on
any input can be found in {1]. It is also interesting to com-
pule the average time needed to sort a random permutation
of N numbers under the assumption that all N! permuta-
tions are equally likelv. It is not difficult to show that the
average time needed to sort a random permutation is Q(N)
steps. This is because, at the end of the sorting procedure.
the smallest number in the list must be stored in the left-
most cell. In a random permutation. the smallest nuinber
i~ equally likely to be initiallv contained in any of the cells
1,2,...,N. If the smallest number begins in cell d. then at
least d — 1 steps are needed to bring it to cell 1. so the aver-
age tunning time for the entire algorithm is lower bounded
by }lv Zfiix d—1= E{—l In fact, the expected running time
will be at least N — O(+/N) since one of the O(+/N) small-
est items is likely to start in one of the rightmost O(v/'N)
positions.

After understanding how the odd-even transposition sort-
ing algorithm performs on a linear array. it is reasonable to
inveatigate extensions of the bubble sort to two dimensional
arrays. In particular, we would like to sort N numbers on

*This work was supported by an AT&T Bell Laboratories GRPW
Fellowship.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
ACM-SPAA’93-6/93/Velen,Germany.

© 1993 ACM 0-89791-599-2/93/0006/0336...$1.50

a VN x /N mesh of processors. For convenience. we ag-
sume that VN = 2n or VN = 2n + | for some integer
n. We number the columns of the mesh 1,2,...,\/7\7 in-
creasing from left to right and we similarly nnmber the rows
1,2,...,vVN increasing from top to bottom. Since proces-
sors now have four neighbors. there are many possibilities
regarding the comparisons made at any step. We will first
study two algorithms that seem to be the most “natural”
extensions of the bubble sort to a two-dimensional array:
for these algoritiuns. we will assume that VN = 2n. The
goal of each of these sorting procedures is to finish with the
input in row major order: i.e.. the m!t cmallest number will
appear in row | Z=L] 4+ 1 and column {m — 1 (mod 2n)] + 1.

The first algorithm listed below begins with a row sorf.
¢ 15 assumed to be a non-negative integer.

1. At step 47 4+ 1. each row acts as a linear array and
performs an odd step of the bubble sort.

2. At step 41 + 2. each column acts as a linear array and
executes an odd step of the bubble sorting algorithm
In the column sort comparisons. the smaller value is
output in the top-most cell.

3. At step 4¢ + 3, each row acts as a linear array and
carries out an even step of the odd-even transposition
sort. At the same time, the leftmost and right most
columns execute a wrap-around comparison: i.e.. for
h=1,2,...,2n—1. a comparizon ic made between the
pih

s
row of column 2n and the h + 15t row of column

1 and the smaller value is placed in the BN row of
column 2n.

4. At step 417 + 4. each column acts as a lincar array and
performs an even step of the bubble sort.

Why do we need the wrap-around comparisons? Suppose
that we did not have them and the smallest 2n numbers were
initially stored by the cells in column 1 Then the smallesi
2n numbers will be forced 1o «tay in the «ame column at
each step and we would never get the desired ordering. The
penalty of having a wrap-around comparison is that extra
wires are reqnired, but it is known that the <orting procedure
above will correctly sort any set of inputs in O(N) = O(n?)
steps because there is essentially an N-cell linear array em-
bedded in the mesh of processors. In the worsl case. this
upper bound is met when the smallest 2n entries begin in
the same column.


http://crossmark.crossref.org/dialog/?doi=10.1145%2F165231.157381&domain=pdf&date_stamp=1993-08-01

The other row major sorting algorithm that we will con-
sider is similar to the first. except that it begins with a
column sort. For any non-negative integer %, steps 2i + 1
and 27 + 2 of this algorithm are steps 24 + 2 and 22 + 1 of
the first algorithm. respectively. This algorithm also has a
worst case ruuning time of @(N) = ©(n?) steps and the
worst case is atlained when the smallest VN entries of the
mesh begin in the same column.

The other set of algorithms we will study finish with the
input in a snakelike order. Here, at the end of the sort-

th mallest number will appear in row

[m — 1 (mod \/77)] +1,
if R, is odd
VN - [m -1 (mod \/F)],
if R, is even
In order to explain these algorithms, it is necessary to de-
fine another procedure for sorting N numbers on an N-cell
linear arrav.

ing procedure. the m

R, = %‘;—%— J+1 and column

Definition 1 A4 reverse bubble sort is the same as the or-
dinary odd-even transposition sort except that when the con-
tents of two cells are compared, the smaller value is stored
in the rightmost cell.

For the three algorithms described below, we again assume
that ¢ is a non-negative integer. The first algorithm we will
investigate is listed below.

1. Atstep di+1. each row acts as a linear array. The odd
rows perform an odd step of the bubble sort and the
even rows carry out an even step of the reverse bubble
sort.

2. At step 44 + 2, each column acts as a linear array and
executes an odd step of the bubble sort.

3. At step 4i+ 3, each row acts as a linear array. The odd
rows perform an even step of the bubble sort and the
even rows carry out an odd step of the reverse bubble
sort.

1. At atep 41 + 4. each column acts as a linear array and
executes an even step of the bubble sort.

The next algorithm has the same odd-numbered steps
as the preceding sorting procedure and its even-numbered
steps are:

1. At step 4242, each colamn acts as a linear array. The
odd columns execute an odd step of the bubble sort
and the even columns carry out an even step of the
odd-even transposition sort.

[

At step 42+ 4. each column acts as a linear array. The
odd columns perform an even step of the bubble sort
and the even columns carry out an odd step of the
odd-even transposition gort.

The last algorithm that we shall examine has the same
even-numbered steps are the second snakelike sorting pro-
cedure and its odd-numbered steps are

1. Atstep 46+ 1, each row acts as a linear arrayv. The odd
rows perform an odd step of the bubble sort and the
even rows carry out an odd step of the reverse bubble
sort.

2. At step 41+ 3, each row acts as a linear array. The odd
rows execite an even step of the bubble sort and the
even rows carry out an even step of the reverse bubble
sort.

It is possible to show that the worst case running time of
each of these algorithms is @(N) = ©(n?) steps.

As with the case of bubble sorting on a linear array, it
would be interesting to determine the average time needed
by each algorithm to sort a permutation of N nmmbers, as-
suming that all N! permutations are equally likelv. If we
once again lower bound the average number of steps re-
quired by each algorithm by the average number of steps
needed to move the smallest nnmber to the top. left cell of
the mesh. the lower bound is Q(v/N) steps since the diame-
ter of the network is 2v/N — 2. Is this bound tight? In this
paper. we will show that these algoritluns have an average
case performance of Q(N) steps and hence, the average-case
performance is much worse than the diameter lower bound.

2 ANALYSIS OF THE ROW MAJOR ORDERING
ALGORITHMS

Consider a random permutation A of the numbers 1 to 1n?
in a 2n x 2n grid with wrap-around wires. A lower bound
on the number of steps needed to sort the entries of A is the
number of steps needed to sort the cells of A%, where A%
is the matrix derived from A hy substituting zeroes for the
numbers 1 to 2n? and substituting ones for the remaining
numbers. We will focus upon the effects of the sorting al-
gorithms on arbitrary 0-1 matrices and then we will apply
the results to A% . Since half of the entries of A% are ze-
roes and hall are ones, we often observe that after the fiest
row sort and column sort are executed. the odd-nunmhered
columns tend to have more zeroes than onex and the even-
numbered columns are likely to have more ones than zeroes.
We note that when the sorting procedure on A°! is finished.
the first n rows of each column consist entirely of zeroes and
the bottom half of the mratrix contaius only ones. Hence,
we are interested in investigating how these algorithms will
even out the number of zeroes and ones in each column.

Definition 2 For any 0 — 1 matriz, let wi(t) and zx(t) de-

note the number of ones and zeroes, respectively, in column

4t

k immediately after the sorting step.

Definition 8 The weight of a column is the number of ones
in the column.

We have the following results.

Lemma 1 If step t is a column sort, then for all k,

we{t) = welt—1)

zi(t) = zx(t-—=1)
Proof: Column sorts make no change in the weight of any
column. Their only consequence is that they tend to move

the zeroes of a column toward the top and the ones of the
column toward the bottom. 0O

Lemma 2 If step t is an odd row sort, then for all j €
{1,...,n}

way{t) 2> wzj-1(t—1)
z2j-1(t) 2 z2i(t— 1)

337



Proof: Let A; denote column k immediately before step ¢.
We observe that the zeroes of the even-numbered columns
“travel together™ and the ones of the odd-numbered columns
“travel together” in the following sense: let By, Ba,..., Ban
be the new columns after step ¢. For any column vector C,
let C* represent the element in row k of column C. Then
for all 5 € {1,2,...,n} and h € {1,2,...,2n},

e A;‘J = 0} implies B;‘j_l =0,
o A%, =1 implies By; = 1.

Hence, an odd row sort causes the zeroes of the even-num-
bered columns to travel to the odd-numbered columns and
shifts the weight of the odd-numbered columns to the even-
numbered columns. Since the number of ones in Azj_3 is
wzj-1(t —1). the weight of Ba, is wz;(¢). and the number of
zeroes in Az, and Baj.1 are 22;(t — 1) and 22;5-1(¢). respec-
tively, the lemma follows. O

Lemma 8 If step t is an even row sort, then

wyi1(t) 2 wz(t—1), 7€{l,...,n -1}
sz(t) Z 22j+1(t—-1),]€{1,...,n—]}
wilt) > wonlt~1)-—-1
2nlt) 2 zn(t-1)-1

Proof: Let D, and Ei represent column 7 immediately be-
{ore step ¢t and columnn k just after step t. respectively. Then
forje{l,...,n—1} and R € {1,...,2n} .

o D%,y =0 implies E}; = 0.
e D}; =1 implies E3;,; = 1.

Since the weight of Da, is ws, (¢ — 1), the number of ones in
E»; 41 is wa,41(t). and the number of zeroes in Doy43 and
Ea, are za;41(t — 1) and 22;(t), we have demonstrated the
first two inequalities of Lemma 3.

Next we consider the eflect of the step t on the leftmost
and rightmost columns. Here, for b € {1,2,...,2n — 1},

e DM =0 implies EZ, =0,
e D}, =1 implies EF! = 1.

As in the proof of Lemmma 2, we say that an even row sort
causes {he zeroes of column 1 to travel to colummn 2n and
the ones of column 2n to travel to column 1. If D} = 0 and
D3 < 1, then B, may have one fewer zero than D; and
E1 may have one less one than Dz,. Otherwise. Fas will
have at least as many zeroes as I); and the weighl of Ey
will be at least as large as the weight of Dz,. Hence, we
have established the last two inequalities of Lemnma 3. O
From Lemmas 1-3. we have the following theorem.

Theorem 1 For any mesh containing a zeroes and N — a
ones, if after some odd row sorting step

o there is an odd-numbered column containingz > [-j‘ﬁ] :

zeroes, then at least (z — f:}’-ﬁ] — 1) - 24/ N additional
steps will be required to complete the sorting

o there is an even-numbered column with weight y >
[yjﬁ"-], then at least (y — f%:ﬁ?‘-] —1)-2v/' N more steps
will be needed to finish the sorting.

Proof: Suppose that after some odd row sorting step t..
column 23 + 1 contains z > ]'7%] zeroes. From Lemma 1,
we know that column sorts don’t affect the number of zeroes
and ones in a column: therefore, the set of zeroes of interest
remains in the same column during a colnmn sort. Lemma 3
indicates that at the next row sorting step. the zeroes that
had been in column 27 + ! = [2j (mod 2r)] + | travel to
column [27 — 1 (mod 2n)] <+ 1. Lemma 2 implies that at the
following row sorting step. these zeroes are shifted left to
column [27 — 2 (mod 2n)] + 1. Using induction. we see that
this set of zeroes is moved one column to the left at each
row sorting step. except at the step where is it wrapped
around from column 1 to column 2n. Thus, it will take 2/N
steps for the set of zeroes to return to column 25+ 1. From
Lemmas 2 and 3, we also have that the number of zeroes in
the set does not decrease as it is shifted left although it may
decrease by one in the wrap-around stage. Hence. we have
that

22541(ti + 2VN) > zop41(ti) =1 = =z — 1.

Note that if the sorting algorithm is complete at step ¢y,
then for all t > £y,

()= { [ Hi+1<Sa=VN5)
2;41(¢) = .

g lF) 2+1>a-VN| %)
Hence. ty —t: > (z — [&] - 1) - 2VN.

A similar argument applies if there is some even-num-
bered column at time ¢ that has a large weight. In this case.
the set of ones that originate in that column are <hifted
right at the row sorting steps and travels from column 2n
to column 1 at the wrap-around stage. OO

An immediate consequence of Theorem 1 is

Corollary 1 For both algorithms, the worst-case time to
sort N numbers is at least 2N — 4+/N.

Proof: Consider the mesh in which one column ini-
tially consists entirely of zeroes and the remaining cells
of the matrix contain ones. Here, in terms of Theorem 1.
a=X=+N. 0O

Let us return to the matrix A®'. For j € {I,...,n}.
let Z25_1 and Wy, represent the number of zeroes in column
271 and the weight of column 27, respectively. immediately
after the first row sorting step is executed. and let

M =max{ max Ws}—n—1.

Z2.—1, max
ief{l,....,n} re{1,.

-m}
Then we have

Corollary 2 The number of steps needed to sort A°, and
hence A, is greater than dnM . Therefore, the average num-
ber of steps required for the two dimensional bubble sort with
wrap-around wires is lower bounded by in - E[M], where the
expectation is taken over the set of random permutations.

Proof: Apply Theorem | witha =% =2n*. O

In view of the fact that the worst caxe performance of
both of the algorithins is O(N) steps, to demonstrate that
the algorithms require ©(NV) steps on average. it suffices to
show that E[M] = Q(vN). regardless of whether the first
set of comparisons is a row sort or a column sort.

338



Lemma 4 For the algorithm that begins with a row sorting
step, E{JM] > 2 + 53— — L.

Proof: Since M > Z, — n — 1, we have that E[M] >
E[Z:] ~ n — 1. Let A; be column 1 immediately after
the first row sort is perforned and for h € {1,...,2n}, let

1, Ar=u0
zn —{ 0, A{' -1 Then
E[z)) = E[Z%,2)

= Zi:1E[zh]
= 2nE[z]
= In-Prob{zy =1}
= 2n-Prob{([A° 11,[A% }12) # (1,1)}.

If we let M7 and Az denote the number of matrices A% such

that ([A°"]1.1,[A*)12) = (1,1} and the number of 2n x 2n
atrices with 2n? zeroes and 2n? ones, respectively, then

Pl‘Ob{([AOl]l,la[AOI]ltZ) = (1)1)} = %12-.

To evaluate N2. we note that we are looking for the num-
ber of ways to select the 2n? out of 4n? cells that initially
store zeroes since the remaining cells will automatically hold
ones. Similarly. to evaluate Ay, we keep in mind that if
(4°1,1,[A%]12) = (1,1), then the remaining 4n® ~ 2 cells
of A% contain 2n? zeroes and 2n® — 2 ones. Hence,

4n® — 2
n?
Eln]l=1- -~
4n?
2n?

and the lemma follows. OO

3 1
=1t =1

Hence, we have

Theorem 2 The average number of steps required to sort
e random permutation of N numbers by the algorithm that
begins with a row sorting step is lower bounded by -J;i ~24/N.

For the remainder of the paper, let &[y, N] represent the
event that the average number of steps needed to sort a
random permutation of N numbers is less than yN.

Theorem 38 For the algorithm that begins with a row sort-
ing step, given any v < :} and § > 0, there exists No such
that Prob {£[y,N]} < & for all N > Ny.

For the proofs of Theorems 3. 5. and &, we will utilize the
well-known Chebyshev ineyuality: for any random variable
X.
Var(X)

[
We will need a weaker consequence of this inequality. namely
that for any random variable X and any ¢ > 0,

Prob[X < E[X] - ¢] < —2xX),

> 2

Prob[|X — E[X]| > t] <

(1)

Proof: Corollary 2 indicates that it is sufficient to establish
that for any v < %

lim Prob[M < yn}=0.

n— 00

Since M > 2, —n-—1,
Prob[M < 4n] < Prob{Z; < (y+ 1)n+1]. (2)

From the proof of Lemma 4 and (1), we have that for all
t>0,

3 n

\'a'r(Zl)
Prob[Z: < =n + e 1] < /1,

> e

[

Substituting ¢t = n(% e % + s‘i’l":'z') into the preceding
inequality gives
Var(Z;)
5
nz(,} - —o(l))

Using the same notation as in the proof of Lemma 4. we
have that

Prob{Z) <(y+1)m+1] <

(3)

Var( Zl )

E((Ti=)’) - Bz

E( 3;1‘2 + Zh;‘.h‘zhzh')
3 n z

- (fn + 8n? —2)

Ei:lE[zh] + Zh;eh’ Elznz,]

2
- (-g-n+ g;;nt-i) , since zp =0 or |

2n. E{z1] + 2n(2n 1) E[z12;]

3 n 2
—(Zn —_— by svmmetry.
(2 + P 2) y by 8 A

We have already seen that E[z] = %+ "7—'1sn1 — - We note
that
Elz1zz] = Prob{z; =22 =1}
= 1 — Prob{z; =0 or z; = 0}.

For i € {1,2}, the event z; = 0 is eyuivalent to the event
([A° )1, [A% ]2} = (1, 1). Hence.
Prob{z; = 2, = 1}

= T Prob{([A" )i, [A"}i2) = (1, 1)}

— Prob{[A* 11 =[A 12 =[A" 20 =[A"]a2 = 1}

4n? — 2 dn? — 4
mn? n?

= 2.
4n? 4n?
n? n?
S I
T 16 32nf Z3m2 46

nd_3

9
—— &
16 32nt_32n346 and so

Hence. E[z122] =

3n Odn® —12n® - T6nt + 190> + 2107 - 22
w (8n2 — 2)2(4n? — 3)

n (% —o(1 )) .
The previous equation, combined with (2) and (3). implies

3 —oll)

m(E -7 —oll)

Var(Z;)

It

Prob[M < yn] =

completing the proof. O



Theorem 4 The average number of steps required to sort
a random permutation of N numbers by the algorithm
that begins with a column sorting step is lower bounded by

W _3VN.

Proof: Because of Clorollary 2, it is sufficient to show that
for the algorithm that begins with a column sorting step.

3

9
E[M] > 3n 4 - 32

—— ],
& 16nt — 16n2 + 3

After a column sort and a row sort have heen performed.
A®! has been mapped into a matrix which will be denoted
by A: A can be partitioned into n? blocks of the form
@zh-1,25-1 G2h—12j
( Q2h,2;-1 azh,2;
the elements in a block have been compared with any ele-
ments of a different block. We have the following mapping of
initial blocks to blocks immediately after the first row sort:

00 0 0
o o /77 Lo o

with the property that none of

0 0 00 0 1 1 0

0 1 J°v 1 0 /J7L0 0 J2 0 0)

0
0

0

k)

- ot

b

Y

<
(1)1 2)
(5
(1)

- b
[ ot

L N
——’

- TN

TN

e

O -

N’

{
{
{
(:

)—(1)

Since M > Z; —n—1. we have that E[M] > E[Z;]~n-1.

2, At=4At=0
For h € {1,...,n}. let zp = { 1, A1 =g, Al =1
0, Aih—l =4 =1
Then
E[Z] = E[Z 2} = Z E[z1] = nE[z1], by symmetry.
h=1 ha=1

01 01
The probability of any block ( ltﬁm%;'i %ﬁm%:'z ) with z

an® — 4
m? — z

zeroes and 4 — z ones 1s

These probabilities are:

3n3 -4l
16 © 3znf—_32n3+6

e z=0or4d: =

2

- P S
*z=1lor3: 55— gateos

n?_

—9. 1
¢ 2=12: Té'+32n 3212 46

Hence,
1 3n® — 2
Prob =2 = - o —t
rob{z: = 2} (1(5 32nt — 32n? 1 6

3
FIPRY G
16 16nt — 16n2 + 3

1 n?— 3
2| — — 8
* (1(5 * o0t~ 5om2 +¢;>
7 n® - 3

16 32nt —32n2 + 6

4.(

n? - %
Prob{z; = 1} + M)

1
i6
3
LI S
16 T6nt — 16n2 + 3 + 3

8n2 — 2

2 21
_ 3n - ¥

1
16 32nf 3202 4 6

N =

Prob{z1 = 0} =

and thus.
2

11 n? — 3
Elz] = Tt T 13

Hence,

E[M)

v

E[Z,]

11 n® -3
= n|l—4-——t | —n—1
<8 Y om —Temrt3) "

ns—xn

gL ],
8 + 16nt — 1602 + 3 o

Theorem 5 For the algorithm that begins with a column

sorting step, given any v < 3 and § > (), there exists N,
such that Prob {€[7,N]} <6 for all N > N1

Proof: Asin the proof of Theorem 3, it is sufficient to show
that for all v < %,

lim Prob[Z; < (v +1)n+1]=0. (1)

T b OO

From the proof of Theorem 4 and (1). we have that for all
t>0,

11 n® —%n Var(Z;)
Prob[Z, < — IS S ——17
blZs S Tt e m s U S o

2_2
| ' . _ 3 1 ni= .
Sulfsln'utmg t= n('i — ¥ = & + emetays ) into the pre-
ceding inequality gives

Var{Z;)
nz(% - —o(l))z.

Prob{Z: < (v +1in+1] <

ot
-

Using the same notation as in the proof of Theorem 4. w
have that

Var(Z:) =

E ((21}::12")2)

— (E[2:1])?

340



where E[z]]

and Bz 25}

Z;::lE[z,’,] + Zh;eh' Elznz,]

3
(v, _m-in
8 16n* — 16n2 + 3

n-E[2l] + n(n—1)- E[z123)

11 n —-‘-n
“\FT" T Tt —Tonz 13

3 9

- n?_3
" "5
16 32nt —32n2 + 6
1 1
1.{= -
+ (2 + 8n? —2)
2 _ 21
+o. (L - s
16 32nt — 32n2 +
9 3
4 64n? _64n® + 12

Prob{z; = z» = 1}

+2-Prob{z1 =1, 22 =

2}

+ 2-Prob{z1 =2, 22 = 1}
+ 4 - Prob{zy = 2, = 2}.

y
).

6

)

is either

. There

Ay Asp
, e Az Azp
The event 2; = 22 = 1 means that Ay Ass
Asq Asz
0 0 0 0 01 0 1
1 1 L1 11 11
n o0 01 00 "] o 1
1 1 1 1 11 1
- — R
are IG—( 3:’2 >+16 < jnz )+1() ( on? —
. An® =R . 01 i g
16-1 . many matrices A% satisfying z; = z; = 1.
mn? —2 8
Hence.

Prob{z; = 2; = 1} =

1 2, 18
in® - 11n" + 5

64n°

The event 23 = 1,2, = 2 implies

0

1
0

0

0
1
0
f)

0
1
0
0

or

— A e

foo]

— bt e

144nt + 92n2 — 15

A
Az
3,1
A
0

{

)

0

Ar 2
Az
Az
Ay
1

1
)

0

Prob{z; =1, 22 = 2} = Prob{e1 = 2, 22 = 1}

32

2

97 .2

nt — &’ + B

64né — 14int + 92n2 — 15

is either

=l

— D b

. Hence, it is straightforward to show that

341

Ayy Ag
Similarly. z; = 22 = 2 if and only if Azn Asp is
Asy Az
Adx Al
0 0 0 0 0 0 1 0 00
0 0 0 0 0 0 01 0 1
0 0 0 0 0 1 0 0 (]
0 0 0 1 0 1 [ 0 1
0 0 0 1 0 1 0 1
0 1 0 1 0 1 0 1 H
0o 1 | 0 0 o oo |-or g 1 |- Hence.
0 1 0 0 0 1 0 1
Prob{z; = 2 = 2}
49 13n® — 13?4 170n% — 1318
256 256n® — 1024n® + 1376n* — 704n? + 105~
Therefore,
121 20"6 219 4 + 211," 12495
Elnz] =320 - i
64  256n® — 1uz4n6 + 1376nt — T04n2 + 105

and hence,

-2—3—0(1)

"<(>4 )

The previous equation. combined with (4) and (5) implies

Var(Z:1) =

B -o(

Prob[Z) < (v+ I)n+1] < —2A
n(} =7 =-o)’

proving Theorem 5. O

3 ANALYSIS OF THE SNAKELIKE SORTING Al-
GORITHMS

We assume that VN = 2n in this section. The analysis for
VN = 2n + 1 is similar and ontlined in the appendix. A
and A are defined as before. We begin by considering the
first snakelike sorting procedure. For any 61— 1 matrix. we
utilize the following definitions for this algorithm:

Definition 4 Let Z,(i) denote the number of zeroes in the
odd-numbered columns and the even-numbered rows of col-
umn In immediately after step 41 + 1.

Definition 5 Let Z;(i) denote the number of zeroes in the
odd-numbered columns and the odd-numbered rows of column
2n just after step 41+ 2

Definition 8 Let Z3(1) denote the number of zeroes in the
even-numbered columns and the odd-numbered rows of col-
umn 1 right after step 41 + 3.

Definition 7 Let Z4(i) denote the number of zeroes in the
even-numbered columns and the even-numbered rows of col-
umn 1 immediately after step 41 + 4.

We have the following relationships among Zy(z). Z2(%)
Z3(t) and Z4(1):

Lemma 5 Z:(i) > Z1{3).



Proof: Let Azn, Ban represent column 2n immediately be-
fore and after step 41 + 2 is executed, respectively. Then for
h e {1,2,...,n}, A = 0 implies B2*~! = 0. Hence. the
number of zeroes in the odd-numbered rows of column 2n
just after step 44 + 2 is no less than the number of zeroes
in the even-numbered rows of column 2n immediately after
step 4t + 1. To complete the proof, we observe that a col-
umn sort will have no effect on the number of zeroces in the
odd-numbered columns. O3

Lemma 6 Z3(z) > Z2(7).

Proof: Let Ci and D, represent column k immediately
before step 4¢ + 3 and column ! just after step 4¢ + 3.
respectively. For h € {1,...,n}, C?*=1 = D=1 apd
C2h=1 = D3*-! because the contents of cells of the form
(2h — 1,1) and (2h — 1,2n) are not compared with the con-
tents of other cells during step 4i43. Therefore. the number
of zeroes in the odd-numbered rows of columns 1 and 2n is
the same before and after step 4: + 3. We observe that for
he{l,...,n},

° C2h—1

21 = 0 implies Dg;"‘l =0,7€{l,...,n—1}

e C3F , =0 implies D3 =0, j e {1,...,n}

Hence. the nnmber of zeroes in columns 2,4,...,2n ~ 2 and
the. even-numbered rows of column 2n immediately after
step 417 + 3 is greater than or eyual to the number of ze-
rocs in columns 3,5,...,2n—1 and the even-numbered rows
of column 1 just before step 47 + 3 was performed. finishing
the proof. O

Lemma 7 Z4(1) > Z3(z) — 1.
Lemma 8 Z,(1 4+ 1) > Z4(3).

We omit the proofs of these lemmas because thev are like

the proofs of Lemmas 5 and 6.

Let fla,N)=[& + ;7“17] From Lemmas 5-8. we have
the following theorem.

Theorem 6 For any mesh containing a zeroes and N — a
ones, if after the first step the number of zeroes in the odd-
numbered columns plus the number of zeroces in the even-

numbered rows of column VN is ¢ > f(a,N), then at least
4(z — fla,N) — 1) additional steps will be required to com-
plete the sorting. i

Proof: The preceding four lemnmas imply that for all non-
negative integers %,

Zi{t+ 1) 2 Z1(2) - 1.

When the sorting algorithm is complete, each column will
either have [7“;] or [7"‘1?_! zeroes and so the number of

zeroes in the odd-numbered columns and the even-numbered
) ' - l'a &
rows of column 2n is at most f(e,N) = [§ + 57!71 Hence,

there is some minimal 75 such that for all ¢ > 4y,
Z1(i) < fla, N)

and the theorem follows. OO

If we apply Theorem 6 to A%,
result.

we have the following

342

Corollary 8 The average number of steps required for this
algorithm is lower bounded by 4 (E[Zl(())] - f(g,N) - J),
where the ezpectation is taken over the set of random per-
mutations.

Since the worst case performance of this algorithm is
O(N} steps, to demonstrate that it requires ©(N) steps on
average, it is enough to show that E[Z,(0)] — ¥ = Q(N).

Lemma 9 E[Z:(0)]={N + @_{_ w {ﬁl).

Proof: Let A he the matrix immediately after the first

row sort is performed and for h,j € {1,...,vVN}. let
zn ——{ L A;i:[) Then
7 U, AJ =1
w w
E[z\(0) = E(Zﬁszzh,za—wzﬁm,m)

(Eg Blzapn_1.1]+ Z;/___Fl ng E[n,z;-x])

+ (EZZEE[ZMA] + Z:g E[%n,ﬁ])
(N vN
2

[A%%]2,1, El224] = }. As in the proof of

7 ) E[21.1]+WE[22,1]7

by symmetry.

Since A4z,
Lemma 4,

Elz11] = Prob{([A"]1,0,[A"]12) # (1,11} =

[Lo XY

AN -4
and the lemma follows. O

Hence, we have

Theorem 7 The average number of steps required to sort a
random permutation of N numbers by the first two dimnen-
sional snakelike bubble sorting algorithm is lower bounded by

We have the following stronger result.

Theorem 8 For the first snakelike sorting algorithm,
given any v < 3.and § > 0, there ezists N such that
Prob {€[v,N]} < 6 for all N > N.

Proof: Theorem 6 indicates that it is sufficient to establish
that for any ¥ < },

{4 (Zl(m —n? - .'?i - 1) §1-4n2}

lim Prob{Z:(0) <’y +1)+ 7 +1} = 0. (6)

n—oo

lim Prob

n—oo

3

n

Lemma 9 and (1) imply that for all £ > 0.
_ Var[Z1{0)]
&n+4

=g

H?-ﬁ%) into the preceding

n?+ 24
3

Prob{Z;(U) <

1 1

2 4n

Setting t = n? (
inequality gives
\”ar[Z;((l)]

]
. (1)

Pt A
(M)

Prob {Z1(U) <nPy+1)+ = +1} <
2 nt

(



If we maintain the notation from the proof of Lemima 9 and
let

2,
22

z::l 22h-1,1 + Zi:l. Z;=2 Zh,25-1

Z:=1 Z2n1 + Z:___l Z2h.2n,

il

we find that

2n
h=

2
Var[Z1(0)] = E (( 1 E;lzh,z,_x + Z:=lzzh.2n) )
- (E[Z:(0)])
2
n
E((214+2.)) - ( n’ 4+ - +an+4)

=E(2:%) + 2B (2:2,) + E(zz’)

2
"(; 2+4+8n7:-4) '
We have that
E(le) = {2n® -~ n)E[27,]
+[(2n® = n)® = (2n® — n)]- E[z1,121 5]

In the proof of Lemma 9. we saw that

3 1
E[z1a] = Blzi,] = Tt eE T

With an argnment cxactly like the one used in the proof of
Theorem 3, it is straightforward to show that

. 2_ 3
Elz13213] = Prob{z1y=z13=1} = —i—+-———"—‘-—_§—
i ! ’ 16 32nt — 32n2 4+ 6
Hence.
] 9 17 5 n 3 nf—n
EzZ_____i__S _2__.__ 2. .
(20)=gn* -0 + o - fntd R Eno6
We also find that
2E(2,22) = 2(2n° — n) - 2nE[z,122,]

= (8n3 - 4n2)Prob{z1,1 =z21 =1}
(8n® — 4n?)[1 — Prob{z1,; = 0 or 22,1 = 0}].

We know that

Prob{zn1 =0 or 22y =0} = Z;‘.’:lProb{z;,; = 0}
— Prob{zl'g =221 = 0}.

We have seen in the proofs of Lemmas 4 and 9 that
Prob{z;y =0} = } - 75=5— and Prob{z;; =0} = }.
Prob{z;,; = 2z, =0}
= Prob{[A%]1,1 = [A"]12 = [A"]z, =1}
n?_3

n? 1 3

4n? 8 32n% —8

2n?
Hence.

_ 3 3 2 n n
2E(2122)-—3n 2n +4 Py

343

Finally,
E(2°) = 2nElz,]+4n" - 2n)Elz20 2]
—_— D 1 2 ¥ (3 1 )
= megtUn =it T o
= -2+
S S e
Therefore.
) 17, 7 11n? + 6n n’ ~n
Y 0)] = —n®-— e
a.I'[Zl( )] R n 16" (&n + 1)2 R 8n?2—¢6

n (1‘ +o(1)

The previous expression, combined with (6) and (7) implies

17
pabfo{ 0wt -3-1) ) ¢ B
: n?($—v-o(1))?

completing the proof. O

The analysis of the second snakelike sorting procedure is
nearly replicates the preceding analysiz. so we will merely
outline the results here.

Definition 8 Let Yi(7) denote the number of zeroes in the
odd-numbered columns immediately after step Ai+1, or equiv-
alently, just after step 41 + 2.

Definition 9 Let Y2(:) denote the number of zerces in
columns 2,4,...,2n — 2, the odd-numbered rows of column
1, and the even-numbered rows of column 2n just after step

41 + 3.

Definition 10 Let Y3(i) denote the number of zeroces in
columns 2,4,...,2n — 2, the even-numbered rows of column
1, and the odd-numbered rows of column 2n just after step
4z + 4.

We have the following results.

Lemma 10 o Y2(¢) > Y1(9).

o Y3(4) > Ya(i) ~ L.
e V(i 41) > Y;3(7).

Theorem 9 For any mesh containing o zeroes and N — a
ones, if after the first step the number of zeroes in the odd-
numbered columns is z > [£], then at least 4 (z — [2] — 1)
additional steps will be required to complete the sorting.
Therefore, the average number of steps required for the sec-
ond snakelike bubble sorting algorithm is lower bounded by

(E[Y;((])] - — - 1), where the ezpectation is taken over

all VN x /N ()—1 matrices with & 3 zeroes.

S R

Theorem 10 The average number of steps required to sort
a random permutation of N numbers by the second two
dimensional snakelike bubble sorting algorithm is lower

-t

Lemma 11 E[Y;(0)] = $N -

bounded by -21! -

Theorem 11 For the second snakelike sorting algorithm,
given any v < } and § > 0, there ezists N* such that
Prob {E[y,N}} <6 forall N> N*.



Although we have not done so here, it is not difficult to
show that the sorting procedures we have investigated until
this point all satisfy the property that the average time for
the smallest element to move to the top, left cell is ©(vN)
steps. To conclude this paper, we will establish that the last
snakelike sorting procedure needs ©@(N) steps with “high
probability™ for the smallest element to move to the top. left
cell: hence, this algorithm also takes ©O(N) steps with “high
probability”™ to sort a random permutation of N numbers.

Definition 11 Let (j(2),k(z)) denote the cell containing
the smallest element of the mesh immediately after step
21, {F{0),k(0)) denotes the cell initially storing the smallest
entry.

Lemma 12 If (5(21), k(21)) is the cell occupied by the mth
smallest element at the end of the sorting procedure, then

(7(2e4+ 1), k(21 + 1)) is the cell occupied by either the mth or
m — 1%t smallest element when the sort is complete.

Proof: There are three cases to consider:
Case 1: 3(2:) = k(2¢) (mod 2). Neither step 47+ 1 nor step
414 2 moves the smallest entry of the mesh. Hence,

(7(22 + 1), k(22 + 1)) = (5(24), k(24)),

th siallest element at the end of the

the location of the m
sorting procedure.
Case 2: 7(2¢) = 0 (mod 2), k(2¢) = 1 (mod 2). Stcp 4¢+1
moves the smallest element to (7(2:),k(2:) 4 1). and step
4z + 2 leaves it there. Hence.

(3020 + 1), k(2e + 1)) = (5(21), k(2) + 1),

the location of the m — 15% smallest element when the sort
is complete,

Case 3: j(2¢) = 1 {mod 2}, k(27) = 0 (mod 2). Step 44 + 1
shifts the smallest element to (7(2¢),k(2¢) — 1), and step
41 4+ 2 doesn’t move it. Hence,

(3(2e+ 1), k(2e + 1)) = (5(20), k(23) - 1),

the location of the m — 15% smallest element at the end of
the sorting procedure. OJ

Lemma 13 If (7(2: + 1),k(2¢ + 1)) is the cell occupied by
the mt? smallest element at the end of the sorting procedure,

then (j(2i 4 2),k(2i + 2)) is the cell occupied by the m — 1%t
smallest element when the sort is complete.

Proof: From the preceding lemma, we see that there are
only two cases to consider:

Case 1: (2t + 1) = k(2i+1) = 0 (mod 2).

Subcase la: k(2: + 1) # 2n. Here, step 4t + 3 moves the
smallest element to {§(2¢ + 1), k(2 + 1)+ 1) and step 42+ 4

lcaves it there. Hence,
(3204 2), k(20 + 2)) = (5(20 4+ 1), k{20 + 1) + 1).

Subcase 1b: k(2¢ + 1) = 2n. Here, step 42 + 3 does not shift
the smallest element, but step 41 4 4 causes it to travel to

(722 + 1) — 1,2n) = (5(2t + 2), k(2: + 2)).

Case 2: j(2i+ 1) = k(2¢+ 1) = 1 (mod 2).
Subcase 2a: k{2t + 1) # 1. Here. step 4¢ + 3 moves the

344

smallest element to (7(2¢41),k(21+1) — 1) and step 41 + 4
leaves it there. Ilence.

(720 4+ 2),k(2¢ + 2)) = (J(2e + 1), k(2e + 1) — 1).

Subcase 2b: k(2i + 1) = 1. Here, step 4¢ + 3 does not shift
the smnallest element, but step 4¢ + 4 causes it to travel to

(3(224+ 1) — 1,1) = (5(2¢ + 2), k(2¢ 4 2)).

In each case, cell (§(2¢ + 2),k(2i + 2)) holds the m — 15
smallest entry when the sort is complete. O
Hence, we have

Theorem 12 The third snakelike sorting procedure requires
O(N) steps with “high probability.”

Proof: Lemmas 12 and 13 imply that if the cell initially

storing the smallest entry is the cell occupied by the mih
smallest entry at the end of the sorting procedure. then at
least 2m — 3 steps are required to bring it to the top, left
cell. Siuce the smallest entry is equally likely to be initially
contained in any of the cells of the mesh. for any § > 0, the
probability that the algorithm needs fewers than 6N steps
is upper bounded by £ + sw- O

4 CONCLUSION

We have investigated five generalizations of the odd-even
transposition sort to a vN x VN mesh of processors. The
first two sorting procedures finish with the input in row ma-
jor order and require wrap-around wires between the lefi-
most and rightmost columns. We demonstrated a lower
bound on the number of steps required to complete the sort
on any 0— 1 matrix based on the number of zeroes and ones
in each column at the end of the first row sorting step. We
then used this bound to establish a @(N) bound on the worst
case and average case performance of thesc algorithms, We
concluded our investigation of these algorithms by proving
that with “high probability.” each requires ©(N) steps to
sort a random permutation of N numbers.

The other three algorithms we considered finished with
the input in a snakelike order. For the first two of these three
algorithms, we studied how the zeroes and ones “travel”
in certain well-defined patterns. With this information, we
were able to establish a ©(N) bound on the average case
performance of these algorithms and proved that with “high
probability.” each needs ©(N) steps to sorl a random per-
mutation of N numbers. Our approach to demonstrating a
O(N) step bound on the time required. with “high probabil-
ity.” by the third snakelike sorting procedure was to examine
the path taken by the sinallest entry as it moves to the top,
left cell of the mesh.

Acknowledgment

I am grateful to Dr. F. T. Leighton for his guidance and
encouragement throughout the course of this work.

References

[1] F. T. Leighton, Iniroduction to Parallel Algorithms and
Architectures: Arrays, Trees and Hypercubes. Morgan
Kaufmann, San Mateo. California, 1992.



[2] W. Feller. An Introduction to Probability Theory and its
Applications, Vol. 1, Wiley, New York. 1950 (3rd ed.,
1968).

APPENDIX

We begin by ontlining our approach to the analysis of the
first two snakelike sorting procedures when VN=2m+1. A
is defined as before: we redefine A% as the matrix derived
from A by substitnting zeroes for the smallest 2n? + 2n + 1
entries of the mesh and substituting ones for the remaining
entries.

For the first snakelike sorting algorithm. we redefine Z;(z)
and Zz2(¢): we maintain the earlier definitions of Z3(2) and
Za(1).

Definition 12 Let Z;(i) denote the number of zeroes in
columns 1,3,5,...,2n — 1, and in the even-numbered rows
of column 2n + 1 immediately after step 41+ 1.

Definition 18 Let Z;(¢) denote the number of zeroes in
columns 1,3,5,...,2n — 1, and in the odd-numbered rows
of column 2n + 1 just after step 41 + 2.

With these Z;(z), 7 € {1,2,3,4}. Lemmas 5-8 again apply
with similar proofs. The analog of Theorem 6. Coorollary 3.
and Lemma 9 are listed below: we omit most of the proofs
hecause of their great resemblance to earlier ones.

Theorem 18 For any mesh containing a zeroes and N —a
ones, if after the first step the number of zeroes in columns
1,3,5,...,2n — t, and the even-numbered rows of column

Mm4+tisz > ff‘i—?ﬁ—ﬂ], then at least 4 (z — }'ﬂgﬁu] -1)

additional steps will be required to complete the sorting.

Corollary 4 The average number of steps required for this
algorithm is lower bounded by 4 (E[Z1(U)] - [N"l] -1
where the ezpectation is taken over the set of random per-
mutations.

Lemma 14 E[Z,(0)] = N — @ + ’—"-‘—8‘%7;2

Proof: Using the same notation as in the proof of Lemma
9. we have that

YN-3

E[Zl 0 = zh,zj—-l + Eh=51

p (T o
- Zf”’ﬁ

zzh.ﬁ)

VN1
El22p-1,] +E;ﬁi 2,-_2’ Efzn,2;-1]

+ E,,_ Elzyn,vw] + Zn— Elzzn.1]
(1—:- — g) Elz1.]+ ﬂQ:—l'E[zz'l]!

by symmetry.
Since A2_1 = [on]z,l, E[z:,l] = %‘fﬁ-

Efz1,) Prob{([A%]1,1,[4% ]1,2) # (1,1)}

4n? +dn ~1

2n’+2n+1 3
= T Tttt 17

<2n2+2n+1>

3
Y

and the lemma follows. O
Theorems 7 and & still apply and have proofs like the ones
given earlier.

For the second snakelike sorting algorithm. it turis ount
that the preceding analvsis for the first snakelike sorting
algorithm is applicable here: i.e.. we can use the same def-
initions and theorems with some minor variations in the
proofs.

We conclude the appendix by studying the last snakelike
sorting procedure in the case where VN = 2n+1. We main-
tain the earlier notation (7(z), k(z)) for non-negative integers
1. We omit the proof of Lemma 16: it is very similar to the
proof of Lemma 13.

Lemma 15 If (7(21),k(22)) is the cell occupied by the mth
smallest entry at the end of the sorting procedure, then
(7(26+1), k{214 1)) is the cell occupied by either the mth or
m — 1% smallest entry when the sort is complete.

Proof: There are three cases to consider:

Case 1: 7(21) = k(22) (mod 2).

Neither step 44 + | nor step 41 + 2 moves the smallest entry
of the mesh. Hence.

(3(28 + 1), k(22 + 1)) = (5(22), k(22)),

th smallest element at the end of the

the location of the m
sorting procedure.
Case 2: 3(2i) = 0 (mod 2), k(2¢) = 1 (mod 2).

Subcase 2a: k(2i) # v N. Here, step 4i+ 1 moves the small-
est element to {(7(2:),k(2¢) + 1), and step 42 4+ 2 leaves it
there. Hence.

(3(2i + 1), k(2i + 1)) = (5(21), k(22) + 1),

15! smallest element when the sort

the Jocation of the m —
is complete.
Subcase 2b: k(2i) = ~/N. Here. step 47 + | does not <hift

the smallest element, but step 42 + 2 causes it to travel to
(7(2e 4+ 1), k(20 4+ 1)) = (3(22 + 1) — 1,2n),

- lSt

the location of the m smallest element at the end of

the sorting procedure.

Case 3: 7(2t) = 1 (mod 2), k(2:) = 0 (imod 2).

Step 47 -+ 1 shifts the smallest element to (7(2¢), k(2:) — 1).
and step 4t + 2 doesn’t move it. Hence,

(7(2¢+ 1), k(2¢ + 1)) = (5(24), k(24) ~ 1),

the location of the m — I5* smallest element at the end of
the sorting procedure. O
Lemma 18 If (j(2: + 1),k(2¢ + 1)) is the cell occupied by

the m*P smallest entry at the end of the sorting procedure,

then (7(21+2), k(21 + 2)) is the cell occupied by the m — 18t
smallest entry when the sort is complete.

Finally, Theorem 12 and its proof still apply.



