
MAX-PLANCK-INSTITUT
••

FUR
INFORMATIK

A Method for Implementing Lock-Free

Shared Data Structures

G. Barnes

MPI-I-94-120 April 1994

o

mPD
_________ IN F 0 R M AT I K _________ _

Im Stadtwald

66123 Saarbrücken

Germany

A Method for Implementing Lock-Free

Shared Data Structures

G. Barnes

MPI-I-94-120 April 1994

A Method for Implementing Lock-Free Shared Data Structures

(Extended Abstract)

Greg Barnes

Max-Planck-Institut für Informatik
Im Stadtwald

66123 Saarbrücken, Germany
barnesQmpi-sb.mpg.de

February 7, 1994

Abstract

We are interested in implementing data structures on shared memory multiproces­
sors. A natural model for these machines is an asynchronous parallel machine, in which
the processors are subject to arbitrary delays. On such machines, it is desuable for algo­
rithms to be loclc-free, that is, they must allow concurrent access to data without using
mutual exclusion. Eflicient lock-free implementations are known ror some specific data
structures, but these algorithms do not generalize weIl to other structures. For most
data structures, the only previously known lock-free algorithm is due to Herlihy [12].
Herlihy presents a simple methodology to create a lock-free implementation of a general
data structure, but his approach can be very expensive.

We present a technique that provides the semantics of exclusive access to data with­
out using mutual exclusion. Using this technique, we devise the caching method, a
general method of implementing lock-free data structures that is provably bett er than
Herlihy's methodology for many weIl-known data structures. The cost of one operation
using the caching method is proportional to TlogT, where T is the sequential cost of
the operation. Under Herlihy's methodology, the cost is proportional to T + C, where
C is the time needed to make a logical copy of the data structure. For many data strue­
tures, such as arrays and weil connected pointer-based structures (e.g., a doubly linked
list), the best known value for Cis proportional to the size ofthe structure, making the
copying time much larger than the sequential cost of an operation. The new method
can also allow concurrent updates to the data structurej Herlihy's methodology cannot.
A correct lock-free implementation can be derived from a correct sequential implemen­
tation in a straightforward manner using this method. The method is also fiexiblej a
programmer can change many of the details of the default implementation to optimize
for a particular pattern of data structure use.

1

1 Introd uction

We are interested in designing efficient data structures and algorithms for shared memory
multiprocessors. Processors on these machines may execute instructions at a varying rate
(due to cache behavior, for example), and are subject to long delays (e.g. when swapped out
by the scheduler, or after a page fault). Programs are executed by a collection of threads,
which are time-shared among the processors. There may be more threads than processors,
so the user can view a program as running on an arbitrarily large collection of processors
subject to arbitrary delays. A natural model to capture this behavior is the asynchronous
parallel machine, where the processors can suffer delays of any length at any time. On such
a model, concurrent access using mutual exdusion is undesirablej a thread that holds the
exclusive access to some data can be delayed indefinitely, forcing other active threads to wait
uselessly. This paper presents a lock-free technique (that is, a technique that does not use
mutual exclusion) that provides the semantics of exdusive access to data. Immediately, this
allows us to convert many existing concurrent algorithms based on mutual exclusion into
lock-free algorithms, and use existing mutual exdusion strategies in lock-free algorithms.
U sing this technique and some common mutual exclusion strategies, we devise the caching
method, a general method for implementing lock-free data structures.

Efficient lock-free algorithms are known for some specific data structures, but such
algorithms are not easy to design or reason about, and they do not generalize well to other
data structures. Herlihy [12] presents a simple methodology to create a lock-free version
of a general data structure. Any sequential data structure implementation that follows
certain conventions can automatically be transformed into a lock-free version using this
methodology. Unfortunately, the methodology can be very expensive, often requiring the
entire data structure to be copied for each operation. The methodology also does not
allow concurrent updates to the structure. Only one thread that is trying to update the
structure is actually doing useful work at any particular time, so it can never achieve better
throughput than the original sequential implementation.

Ideally, a method to create lock-free data structures should work on all data structures,
it should be simple to use and reason ab out , and it should be as efficient as possible,
including allowing concurrent updates. Realistically, any general method is unlikely to
work well for all data structures. Even if it can be shown that a method is theoretically
efficient, in practice a shared memory machine can behave quite differently from the worst
case performance of a theoretical model. In addition to the three characteristics above,
then, a general method should be flexible, so that clever and ambitious implementors can
improve its performance for a given data structure or a given pattern of machine behavior,
while still maintaining guarantees on its correctness and worst-case performance.

2

The caching method is close to this goal. It works for all data structures and achieves a
nearly optimal asymptotic work bound, proportional to T log T per operation, where T is the
sequential cost of the operation. For many data structures, this is a large improvement over
Herlihy's methodology. A correct lock-free implementation can be derived from a correct
sequential implementation in a straight forward manner using this method. For some data
structures, this straightforward lock-free implementation will allow concurrent updates of
the data structure. For other data structures, the implementor can often create a lock-free
implement at ion that allows concurrent updates with only a little extra work. Finally, the
method is flexible, so the implementor is free to change many details of the straightforward
implementation to optimize for a specific pattern of data structure use.

1.1 Background and Previous Work

Lock-free data structures help us to design non-blocking and wait-free parallel algorithms.
An asynchronous algorithm is non-blocking if it always guarantees at least one thread will
complete an operation in a finite number of steps. An algorithm is wait-free if it guarantees
all threads will complete their work in a finite number of steps. The caching method
transforms a correct sequential implement at ion into a non-blocking parallel implementation.
In Section 6 we discuss ways to make an implement at ion wait-free.

Early work on lock-free objects focused on proving the power of various synchronization
primitives. Herlihy [13] unifies much of this work by showing the existence of universal prim­
itives, such as Compare&Swap, which can be used to implement any wait-free object. Using
load.l.inked and Store_Conditional, a universal pair of primitives similar to Compare&Swap,
Herlihy [12] describes a methodology for converting synchronous implement at ions of data
structure algorithms to non-blocking and wait-free implementations. Alemany and Fel­
ten [1] present techniques for improving the performance of Herlihy's protocol in practice.
Herlihy and Moss [14] introduce transactional memory, an architectural approach to sup­
porting lock-free data structures. Efficient lock-free implementations of some specific data
structures are known. Lamport [19] and Herlihy and Wing [15] give non-blocking algo­
rithms for queues. Lanin and Shasha give a non-blocking set manipulation algorithm [20].
Anderson and Woll [4] design non-blocking algorithms for Union-Find sets, and Anderson
analyzes non-blocking algorithms for the related problem of list compression [3]. Massalin
uses a lock-free implement at ion of stacks, queues, and linked lists in his Synthesis operating
system kernel [22].

Many different versions of the asynchronous parallel random access machine, or
APRAM, have been proposed (including [8, 9, 10, 24]), most with differing notions of run­
time. We measure the performance of our algorithm using work, the same measure used in a
series ofpapers on fault-tolerant PRAMs [16, 17,21.]. The work done by an algorithmis the

3

total number of steps taken by all threads. Work is a generalization of the time-processor
product of the PRAM. For a given pattern of delays, the minimum work algoritbm will
yield the minimum time algoritbm on an APRAM, so work is a measure of the efficiency of
an asynchronous algoritbm. We measure the worst case performance of algoritbms against
a strong adversary, previously used by Anderson [2], Anderson and Woll [4], and Buss and
Ragde [7]. The adversary chooses the operations performed on the data structure, and the
order in which threads execute instructions.

Both Herlihy's methodology and our method use the Load-Linked and Store_Conditional
synchronization primitives. Load_Linked acts like a load instruction. Store_Conditional is
similar to a store instruction, but it succeeds only if no other thread has written the variable
since the thread read the variable using Load_Linked. Store_Conditional returns a boolean
value indicating whether the write succeeded or failed. Load_Linked and Store_Conditional
can be efficiently implemented given a cache-coherent architecture, and are supported in
the MIPS-TI architecture [23]. Given these primitives, it is not difficult to construct a lock­
free implementation of a one-word data object, such as a counter. Larger data objects can
also be atomically updated by using Load-Linked and Store_Conditional on apointer to the
object. This strategy is the basis for Herlihy's methodology.

1.2 Herlihy's Methodology and the Copying Algorithm

The main difficulty with concurrent updates to a data structure is that multiple threads
may want to change the same portion of the data structure at the same time. Most im­
plementations of lock-free data structures solve this problem either by proving that, for a
specmc set of operations, two threads working on the same portion of the data structure
do not substantially interfere with each other, or by preventing such interaction. Herlihy's
methodology uses the latter strategy. In his basic methodology, all threads change the
data structure by changing apointer to the structure. To perform an operation, a thread
uses Load-Linked to read the pointer to the data structure, and makes a private copy of
the structure. It then changes its private copy, and tries to replace the old pointer with a
pointer to this private copy, using Store_Conditional to test whether the pointer has been
changed in the interim. H it has changed, the replacement falls and the thread must start
over.

Since copying the entire object can be time-consuming, Herlihy suggests that the pro­
grammer specify ways to reduce the amount of copying for large objects. For example, if
we wish to change the first element in a singly linked list, only the first element needs to
be copied. The new element can use the old element's nezt pointer to logically copy the
rest of the list without actually doing the work. It is not dear that this strategy can be
effective for all data structures. For random access data structures, such as arrays, copying

4

only a portion of the data structure destroys the random access property. For pointer-based
data structures, an algorithm should make a copy of all elements in the structure that are
changed by an operation. But if an element e is copied, all elements that point to e change
and must be copied as well, which means that all elements that point to elements that point
to e must be copied, and so on. So, for example, if the kth element in a linked list is to be
changed, the first k elements should be copied.

Using these observations, we define the copying algorithm for data structures, the best
general algorithm we are aware of that can be derived from Herlihy's methodology. For
a random access data structure, the copying algorithm copies the entire structure. For
pointer-based data structures, the algorithm copies the elements that are changed, and,
recursively, all elements that point to elements that are copied. The copying algorithm
performs work proportional to T + C per operation, where T is, as before, the sequential
tost of the operation, and C is the amount of copying work needed for the operation. This is
much more than the cost of the caching method for many data structures, such as arrays, or
pointer based structures that are well connected (that is, structures where, for any element,
e, there are many elements, ei, such that there is a path of pointers from ei to e). For
these structures, the copying algorithm must copy a !arge portion of the structure on each
operation.

The remainder of the paper is organized as folIows. We begin in Section 2 with a
short explanation of the cooperative techniCJILe, our technique for lock-free exc1usive access.
Section 3 out1ine~ the caching method. In Section 4 we discuss the proofs of correctness
of the technique and of the caching method. In Section 5 we present some performance
bounds for the caching method, and sketch a proof of the bounds. Section 6 conc1udes with
some notes and suggestions for future work.

2 The Cooperative Technique

The cooperative technique uses a different approach to handle thread interference, previ­
ously used by Barnes [6]. We observe that multiple threads can simultaneously work on
the same data structure if all threads write down exact1y what they are doing. H a thread
tl wishes to change some part of the data structure, it first checks whether another thread
t2 was working there first. H so, tl reads t2 's information, and cooperates to complete t2 's
work.

This idea can be used to guarantee the same semantics as standard mutual exc1usion
primitives, such as locks. Let an opdesc be a variable that describes an operation that a
thread wishes to perform on some sets of shared data. Suppose we have a set of locks that
provide exc1usive access to disjoint sets of shared data, D1 ... D N. We can replace each set

5

Di and its lock with apointer to arecord. The record holds the shared data, Di, along
with an opptr field which, if not empty, contains the address of an opdesc. We say a thread
claims a cell Di (that is, acquires the equivalent of exclusive access to Di) by installing its
opdesc in the opptr field of D/s record. To claim. Di, a thread first reads the pointer to
D/s record using Load_Linked, and then reads the record. H the opptr field is not empty,
it cooperates to complete the associated operation, and then begins again. (Note that the
thread only needs to cooperate until the operation releases its claim to Di.) H the opptr field
is empty, the thread creates a new re cord whose opptr field points to its own opdesc, and
tries to replace the old pointer with apointer to this new record, using Store_Conditional.
H the Store_Conditional falls, it begins again. Otherwise it has the equivalent of e.xclusive
access to Di, since it can be assured that no other thread will interfere with its work on Di
until it releases its claim. on Di.

As an immediate consequence, we can convert any algorithm that provide exclusive
access to data using mutual exclusion into a lock-free algorithm. The main quest ion is how
to allow threads to cooperate. One elementary scheme is to write the operation as a sort
of program, and have the threads interpret the program, using astate record to hold a
"program counter" and some auxiliary "memory". A pseudocode version of this scheme is
given in Figure 1.

In this scheme, a thread repeatedly reads the state, tries to e.xecute the next instruction,
and then tries to update the state. H an update oft he state falls, the thread has been delayed,
but this does not matter, since the thread rereads the state in the next step. H an update
of shared data falls, the thread reads the shared data, and checks if the data matches the
values it was trying to write. H so, it assumes another thread succeeded in updating the
shared data, and tries to update the state as if its own update had succeeded. H not, it
assumes no other thread succeeded in updating the shared data, and tries to update the
state accordingly. In general, the process in Figure 1 can be very slow, because the threads
are acting as interpreters, and the size of the state can be large. In practice, we do not
expect the process to be so slow, since critical sections are usually designed to be short and
simple.

3 The Caching Method

The caching method uses the cooperative technique along with standard ideas from the
study of concurrent algorithms to generate a lock-free caching algorithm for any data struc­
ture. Assume the data structure is divided into small cells, corresponding to the disjoint
sets of shared data above. The basic strategy of a thread is to claim all the ceils it wishes
to change. Once it has successfully claimed all cells, the thread has effectively completed

6

proced ure Cooperate (stateptr: pointer to state) j
Load_Linked(stateptr), and determine which instruction should be executed next.
while the operation is not complete do begin

write_status := SUCCESSj

if the next instruction reads or writes shared data then
Use Load_Linked to read or Store_Conditional to write the pointer to the data.
ü the instruction was a write, and the Store_Conditional failed then

Load.l.inked the pointer to the data.
ü the data does not match the values we were trying to write then

writeJtatus := FAILUR.Ej

neztptr:= pointer to an updated version of state (based, if appropriate, on write_status)
Store_Conditional(stateptr, neztptr)j
Load.l.inked(stateptr) , and determine which instruction should be executed next.

endj
end Cooperate.

Figure 1: An e1ementary co operation scheme

its operation, since no other thread can change these ceils until this thread's operation is
finished. Just as we must guard against deadlock when using mutual exclusion, we must
guard against livelock when using this strategy. For example, if two threads, t l and t2, both
want to change ceils Cl and C2, tl could claim Cl, t2 could claim C2, and then both would
have to complete the other's operation before completing their own. We avoid live10ck using
a standard deadlock avoidance technique: assign each ceil a unique key, and require that a
thread claim its cells in increasing order based on their keys. Of course, to claim ceils in
increasing order based on their keys, a thread must know all the ceils that it needs to claim
before it claims its first ceil. For many data structure operations, the thread does not know
exactly which ceils will be changed when the operation begins. We solve this problem by
having the threads first carryout their operation on a private cached version of the ceils.

In the caching method, a thread t performs a lock-free operation in four stages.

1. Perform the operation as usual, but on a cached version of the structure. Read or
write ceils in t's private cache only. If the cache doesn't contain a cell, use Load_Linked
to read the ceil from the structure, and make a private copy.

2. Validate the operation. For each ceil in t's cache, Load_Linked the corresponding entry

7

in the data structure and make sure the cell has not changed since it was initiaIly
copied. H any cell has changed, abort and start over at the first stage.

3. For each cell in t's cache, in ascending order of their keys, try to claim the correspond­
ing cell in the data structure. H any cell has changed since the cell was read by t,
Load_Linked the cell, and then abort the operation: release any claims already made,
and start over at the first stage.

4. Change the cells and release t's claims.

Every time a thread performs a Load_Linked on the pointer to a cell's record, it must
follow the cooperative technique: check whether the opptr field of the corresponding record
is empty, and if not, help the appropriate thread complete its operation.

A complete description of the details of the caching method is deferred to the full paper.
We present some of the more important points below.

Some of the details of the caching method presented above are not necessary for correct­
ness, but help prove better performance bounds. In particular, the second stage (validation)
aIlows us to prove better bounds by ensuring that a thread only claims a cell if it sawa
consistent version of the data (see the proof of Theorem 5.2, below). It can be omitted and
the method will still be correct. Also, note that whenever a thread's operation is aborted (in
the second or third stage), it first performs a Load_Linked operation. Because the threads
follow the cooperative technique, this helps maintain an important invariant-no thread is
aborted more often than the number of operations successfully completed. This invariant
is also used to prove upper bounds on the amount of work per operation.

The division of the data structure into ceIls can be arbitrary, as long as the cells are of
constant size, and structured in some logical way (e.g. as continuous locations in memory, or
in a connected pointer structure). This insures that each read or write takes only constant
time. Most data structures have a natural partition. For example, each entry in a linked
list can be a cello Similarly, the keys assigned to each cell can be arbitrary. For example,
the key could be the address of the pointer to the cello In Section 6, we mention a variant
of the caching method where it is more useful if the ordering of the keys corresponds to the
underlying structure of the data.

The cache used in each operation must hold three values for each cell: the address of
the pointer to the cell, the old pointer the thread, t, originaIly read in this address, and
a new pointer to t's version of the cello Let 8 be the number of cells in the cache. U sing
a balanced tree sorted on the keys of the ceIls, each cache read or write takes 0 (log 8)

steps, and the tree can be converted in 0(8) steps into a linked list of (address, old, new)
records sorted on the keys of the cells. This linked list makes it simple for threads to

8

cooperate to complete the operation. Mter the first cell is claimed, the thread needs only
to execute aseries of Store_Conditional operations. We can use the elementary scheme in
Figure 1, where the state is merely some pointers into the linked list and a status variable
to indicate whether the operation is claiming cells, releasing claims, etc. H the operation
is aborted, any cooperating threads use Load_Linked to read the cell that caused the abort
(and cooperate on the indicated operation, if any), and then return to their own work. The
possible cooperation resulting from reading the cell that caused the abort helps maintain the
invariant mentioned above: no thread is aborted more often than the number of operations
successfully completed. Having the threads return to their own work keeps the cooperation
process simple, since threads never cooperate on thefirst or second stage of an operation.

4 Correctness

The following invariants are used to prove the cooperative technique and the caching method
correct.

1. When using the cooperative technique, if the opptr field in the record for a set of data
is not empty, the pointer to that record is changed only by a thread cooperating to
complete the associated operation.

2. The elementary scheme of Figure 1 (p7) allows multiple threads to properly execute
the indicated operation.

3. Let G.,. be a directed graph associated with a particular time, T, during the execution
of an algorithm generated using the caching method. G.,. has one node per thread,
and an edge from the node representing thread t1 to the node representing thread t2

if and only if t1 is cooperating to complete t2's operation at time T. Then for all T,

G.,. is acyclic.

4. In the caching method, no thread uses the results of an incomplete operation to
perform its operation.

Invariant 3 is true because the cells are claimed in ascending order based on their keys.
This invariant can be used to show that no livelock occurs, and therefore some thread is
always making progress, Le. the implementation is non~blocking.

The standard notion of correctness for asynchronous parallel algorithms is to assume that
the atomic instructions of the threads are interleaved in some linear order. The algorithm is
correct ifit behaves properly for all such interleavings [15, 18]. Let Q be the set of operations

9

performed on a data structure. For a structure's implementation to behave correctly, there
must exist some ordering, ITQ, of the operations in Q such that the results of operations
that extract information from the data structure correspond to the results obtained by a
uniprocessor algorithm given the sequence of operations, ITQ. Invariant 4, which follows
from the first two invariants, allows us to prove an even stronger guarantee for the caching
method.

5 Performance

Consider the caching algorithm for a particular data structure, derived using the caching
method. For simplicity, assume the data structure is always the same size. For an operation
op, let Top be the number of steps· needed to execute op in the sequential implementation of
the data structure, let Cop be the number of steps used by the copying algorithm to make a
logical copy of the data structure when executing op, and let Sop be the number of distinct
cells read or written by op. Let Ta.,e and Sa.,e be the average values of Top and sop, and let
Tma:z:, Sma:z:, and Cma:z: be the maximum values ofTop sop, and Cop, over all operations. Note
that Sop ~ Top, and therefore Sa.,e ~ Ta.,e and Sma:z: ~ Tma:z:. Let p be the number ofthreads
executing in the parallel implementation. Recall that we are using a strong adversary that
picks the operations on the structure and the interleaving of instructions.

Proposition 5.1 The copying algorithm performs O(Kp(Cmaz + Tmaz)) work to com­
piete K operations on the data structure. The adversary can force the copying algorithm to
perform O(Kp(Cm= + Tma:z:)) work to compiete K operations.

Both bounds are based on the observation that if p threads perform their work and then
simultaneously try to change the pointer to the data structure, exactly one will succeed.

The bounds for the caching algorithm depend on one furt her parameter. Suppose there
is only one thread, and let the first cell of an operation op be the first cel1 the thread would
claim if it were to execute op next. Let aD be the number of distinct first cel1s for the
data structure D over all operations, and let a be the maximum value of aD for all possible
data structures, D, of the given size. So, for example, in an implementation of a queue, a
dequeue operation might always claim the head first, while an enqueue claims the taU or,
if the queue is empty, the head. For the queue, then, a is two, since for any queue, at most
two of the cel1s can be the first cel1 claimed by the next operation.

Theorem 5.2 The caching algorithm performs O(Kp(a· Sma:z: + Tma:z:logsma:z:)) work
to compiete K operations. The adversary can force the caching algorithm to perform
O(K p Ta.,e log saue) work to compiete K operations.

10

Proof:[Sketch] The lower bound is achieved when p threads perform the same operation,
complete their first stages simultaneously, and then simultaneously try to claim the same
cello

The upper bound is based on amortizing the cost of operations. Divide an operation
into a series of attempts, where the last attempt succeeds but the previous attempts are all
aborted. By the invariant mentioned in Section 3, for each aborted attempt of a thread
tl, there is at least one successful attempt by another thread. Most of the work done by
tl during an aborted attempt is charged to this successful attempt. The only work not
charged is work tl performed on another thread t2's aborted attempt. Note that t2 must
have successfully clai.med a cell during the attempt in question. Intuitively, though, for
each successful attempt, there can be at most a - 10ther threads that claim a cell (this is
true because the validation stage guarantees that these threads saw a consistent version of
the data). H we charge the work spent on the third stage of these aborted attempts to the
successful attempt, we get the bound in the theoreril. 0

6 Notes and Future Work

As noted before, the bounds for the caching algorithm are much better than the bounds for
the copying algorithm, regardless of the distribution of operations, for many common data
structures, including array-based structures and well connected pointer-based structures
such as doubly-linked lists. For many other data structures, the caching algorithm will
have better bounds under certain common distributions of operations. For example, given
a queue implemented as a linked list, the copying algorithm will always have to copy the
entire structure either on an enqueue or adequeue. H we assume there are as many dequeues
as enqueues, the copying algorithm must copy the entire structure on half of the operations,
while the caching algorithm need only perform constant work per operation.

Still, the bounds for the caching algorithm are not as good as one might hope. The p
term in the lower bound says that the adversary can always force the algorithm to run as
slowly as a sequential version. This is not surprising given such a strong adversary. For
most applications, the adversary is too strong. In particular, the assumption that multiple
threads will perform the same operation simultaneously is not always be1ievable. One open
problem is to analyze the performance of the caching algorithm for specific data structures
using more realistic adversaries. We would like to devise techniques to analyze weaker
adversaries that correspond to common patterns of machine behavior or data structure use.
For example, Anderson and Woll [4] consider the case where there is always a large pool of
operations to perform, and a thread chooses the next operation at random from the pool.
H the adversary has no knowledge of the random bits, such an assumption may allow us to

11

prove better upper bounds.

The (a . Smaz) and (logsmGz) terms in the upper bound are also troublesome. These
terms are constant for some data structures, but not all. We can artificially make a constant
for any data structure, and thus change the upper bound to O(KpTma:logsmGz), by forcing
all threads to claim a sentinel variable before they claim any other cells. With some extra
overhead, the sentinel can be coupled with an idea similar to Herlihy's [12, Section 4.3] to
make any implementation wait-free. Instead of grabbing the sentinel using Store.;.Conditional,
a protocol that prevents starvation is used to decide who will claim the sentinel (and hence,
perform their operation next).

Note, however, that the a parameter is a crude measure of the parallelism of the data
structure, the number of concurrent updates that can be performed at once. Lowering
the value of a by implementing a sentinel has the undesirable side effect of disallowing
concurrent updates. We would like a general method that yields lock-free data structures
which achieve good performance and allow concurrent updates (even for data structures
with a low value of a), and which can be modified to be wait-free if desired. We have
devised a modification of the caching method that seems promising for some structures.

Suppose we can divide an operation into suboperations that claim only a few cells at
once. Furthermore, suppose a suboperation always claims the cell that will have the lowest
key in the next suboperation. For example, consider a heap where a parent cell always
has a lower key than the ce1ls of its children. Note that a = 1 in the standard heap
implementation with delete_min and insert operations, because every operation must claim
the root node. Divide a delete_min operation into a swap suboperation between the root and
the highest numbered leaf, followed by a series of swap sub operations down the tree. Then
the delete_min operation meets the desired criteria, since each swap needs to claim either
the root and a leaf, or anode and its two children, and one of these nodes will be the cell
with the lowest key in the next swap sub operation. So, if a thread is executing a delete_min
operation, it can release its claim on the root once the first few swaps are completed, and
another thread can begin another delete_min operation. H similar guarantees can be made
for all operations, we may be able to devise an algorithm that allows concurrent updates
and eliminates the (a· Sma:) and (log sma:) terms in the upper bound of Theorem 5.2. Such
a scheme can sometimes also be coupled with a sentinel to give a wait-free implementation.
Details of this method are deferred to the full paper. A complete version of the heap
implementation appears in [6].

One can use the caching method exactly as given to transform the sequential imple­
mentation of a data structure into a non-blocking concurrent implementation, but many of
the details of the method, such as the thread cooperation scheme, can be changed without
affecting the correctness of an implementation. One open problem is to devise variants of

12

the caching method that take advantage of particular patterns of data structure use. For
example, if one believes threads will often cooperate, one may want a thread cooperation
scheme with a better division of the work, instead of having every thread work on the same
task. On the other hand, if one believes cooperation will be rare, one would want to op­
timize the procedure so that the original thread works quickly, at the expense of the rare
extra threads.

Finally, the cooperative technique suggests that other ideas from the study of mutual
exclusion can be used in lock-free algorithms. For example, the caching method avoids
livelock by using the well-known deadlock avoidance scheme of ordering the resources. There
are other ways to avoid deadlock, and ways to detect and break deadlock. Can these methods
be used to create different lock-free algorithms with good performance?

References

[1] J. Alemany and E. W. Felten. Performance issues in non-blocking synchronization on
shared-memory multiprocessors. In Proceedings 0/ the Eleventh Annual AGM Sympo­
sium on Principles 0/ Distributed Gomputing, Vancouver, B.C., Canada, Aug. 1992.

[2] R. J. Anderson. Parallel algorithms for generating random permutations on a shared
memory machine. In Proceedings 0/ the 1990 A GM Symposium on Parallel Algorithms
and Architectures, pages 95-102, Crete, Greece, June 1990.

[3] R. J. Anderson. Primitives for asynchronous list compression. In Proceedings 0/ the
1992 AGM Symposium on Parallel Algorithms and Architectures, pages 199-208, San
Diego, CA, June 1992.

[4] R. J. Anderson and H. Woll. Wait-free parallel algorithms for the union-find problem.
Technical Report 91-04-05, University of Washington, 1991. See also [5].

[5] R. J. Anderson and H. Woll. Wait-free parallel algorithms for the union-find problem.
In Proceedings 0/ the Twenty Third A nnual A GM Symposium on Theory 0/ Gomputing,
pages 370-380, New Orleans, LA, May 1991.

[6] G. Barnes. Wait-free algorithms for heaps. University of Washington, Preprint, 1992.

[7] J. F. Buss and P. Ragde. Certified write-all on a strongly asynchronous PRAM. Pre­
liminary Report, 1990.

[8] R. Cole and O. Zajicek. The APRAM: Incorporating asynchrony into the PRAM model.
In Proceedings 0/ the 1989 AGM Symposium on Parallel Algorithms and Architectures,
pages 169-178, Santa Fe, NM, June 1989.

13

[9] R. Cole and O. Zajicek. The expected advantage of asynchrony. In Proceedings of the
1990 AGM Symposium on Parallel Algorithms and Architectures, pages 85-94, Crete,
Greece, July 1990.

[10] P. Gibbons. A more practical PRAM model. In Proceedings of the 1989 AGM Sym­
posium on Parallel Algorithms and Architectures, pages 158-168, Santa Fe, NM, June
1989.

[1.1] M. Herlihy. A methodology for implementing highly concurrent data objects. In Pro­
ceedings of the Second Annual AGM SIGPLAN Symposium on Principles and Practices
of Parallel Programming, pages 197-206, Mar. 1990.

[12] M. Herlihy. A methodology for implementing highly concurrent data objects. Technica1
Report CRL 91/10, DEC Cambridge Research Lab, Oct. 1991. See also [11].

[:1.3] M. Herlihy. Wait-free synchronization. AGM Transactions on Programming Languages
and Systems, 13(1):124-149, 1991.

[1.4] M. Herlihy and J. Moss. Transactional memory: Architectural support for lock-free
data structures. Technical Report CRL 92/07, DEC Cambridge Research Lab, Dec.
1992.

[15] M. Herlihy and J. Wing. Axioms for concurrent objects. In Gonference Record of the
Fourteenth Annual A GM Symposium on Principles of Programming Languages, pages
13-26, Jan. 1987.

[16] P. Kanellakis and A. Shvartsman. Efficient parallel algorithms can be made robust.
In Proceedings of the Eighth Annual AGM Symposium on Principles of Distributed
Gomputing, pages 211-222, 1989.

[1.7] Z. M. Kedem, K. V. Palem, and P. G. Spirakis. Efficient robust parallel computa­
tions. In Proceedings of the Twenty Second Annual AGM Symposium on Theory of
Gomputing, pages 138-148, Baltimore, MD, May 1990.

[18] L. Lamport. 'Sometime' is sometimes 'not never'. Technical report, S.R.I. International,
Menlo Park, CA, Jan. 1979.

[:1.9] L. Lamport. Specifying concurrent program modules. AGM Transactions on Program­
ming Languages and Systems, 5(2):190-222, Apr. 1983.

[20] V. Lanin and D. Shasha. Concurrent set manipulation without locking. In Proceedings
of the Seventh Annual A GM Symposium on Principles of Database Systems, pages
211-220,Mar.1988.

14

[21] C. Martel, R. Subramonian, and A. Park. Asynchronous PRAMs are (almost) as good
as synchronous PRAMs. In 31st Annual Symposium on Foundations 0/ Computer
Science, pages 590-599, St. Louis, MO, Od. 1990. IEEE.

[22] H. Massalin. Synthesis: An Efficient Implementation 0/ Fundamental Operating System
Services. PhD thesis, Columbia University, 1992.

[23] MIPS Computer Company. The MIPS RISC architectuTe.

[24] N. Nishimura. Asynchronous shared memory parallel computation. In Proceedings
0/ the 1990 A CM Symposium on Parallel Algorithms and A rchitectuTes, pages 76-84,
Crete, Greece, July 1990.

15

	94-1200001
	94-1200002
	94-1200003
	94-1200004
	94-1200005
	94-1200006
	94-1200007
	94-1200008
	94-1200009
	94-1200010
	94-1200011
	94-1200012
	94-1200013
	94-1200014
	94-1200015
	94-1200016
	94-1200017
	cover-hinten_2099-2897-300dpi

