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Abstract 

We are interested in implementing data structures on shared memory multiproces­
sors. A natural model for these machines is an asynchronous parallel machine, in which 
the processors are subject to arbitrary delays. On such machines, it is desuable for algo­
rithms to be loclc-free, that is, they must allow concurrent access to data without using 
mutual exclusion. Eflicient lock-free implementations are known ror some specific data 
structures, but these algorithms do not generalize weIl to other structures. For most 
data structures, the only previously known lock-free algorithm is due to Herlihy [12]. 
Herlihy presents a simple methodology to create a lock-free implementation of a general 
data structure, but his approach can be very expensive. 

We present a technique that provides the semantics of exclusive access to data with­
out using mutual exclusion. Using this technique, we devise the caching method, a 
general method of implementing lock-free data structures that is provably bett er than 
Herlihy's methodology for many weIl-known data structures. The cost of one operation 
using the caching method is proportional to TlogT, where T is the sequential cost of 
the operation. Under Herlihy's methodology, the cost is proportional to T + C, where 
C is the time needed to make a logical copy of the data structure. For many data strue­
tures, such as arrays and weil connected pointer-based structures (e.g., a doubly linked 
list), the best known value for Cis proportional to the size ofthe structure, making the 
copying time much larger than the sequential cost of an operation. The new method 
can also allow concurrent updates to the data structurej Herlihy's methodology cannot. 
A correct lock-free implementation can be derived from a correct sequential implemen­
tation in a straightforward manner using this method. The method is also fiexiblej a 
programmer can change many of the details of the default implementation to optimize 
for a particular pattern of data structure use. 
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1 Introd uction 

We are interested in designing efficient data structures and algorithms for shared memory 
multiprocessors. Processors on these machines may execute instructions at a varying rate 
(due to cache behavior, for example), and are subject to long delays (e.g. when swapped out 
by the scheduler, or after a page fault). Programs are executed by a collection of threads, 
which are time-shared among the processors. There may be more threads than processors, 
so the user can view a program as running on an arbitrarily large collection of processors 
subject to arbitrary delays. A natural model to capture this behavior is the asynchronous 
parallel machine, where the processors can suffer delays of any length at any time. On such 
a model, concurrent access using mutual exdusion is undesirablej a thread that holds the 
exclusive access to some data can be delayed indefinitely, forcing other active threads to wait 
uselessly. This paper presents a lock-free technique (that is, a technique that does not use 
mutual exclusion) that provides the semantics of exdusive access to data. Immediately, this 
allows us to convert many existing concurrent algorithms based on mutual exclusion into 
lock-free algorithms, and use existing mutual exdusion strategies in lock-free algorithms. 
U sing this technique and some common mutual exclusion strategies, we devise the caching 
method, a general method for implementing lock-free data structures. 

Efficient lock-free algorithms are known for some specific data structures, but such 
algorithms are not easy to design or reason about, and they do not generalize well to other 
data structures. Herlihy [12] presents a simple methodology to create a lock-free version 
of a general data structure. Any sequential data structure implementation that follows 
certain conventions can automatically be transformed into a lock-free version using this 
methodology. Unfortunately, the methodology can be very expensive, often requiring the 
entire data structure to be copied for each operation. The methodology also does not 
allow concurrent updates to the structure. Only one thread that is trying to update the 
structure is actually doing useful work at any particular time, so it can never achieve better 
throughput than the original sequential implementation. 

Ideally, a method to create lock-free data structures should work on all data structures, 
it should be simple to use and reason ab out , and it should be as efficient as possible, 
including allowing concurrent updates. Realistically, any general method is unlikely to 
work well for all data structures. Even if it can be shown that a method is theoretically 
efficient, in practice a shared memory machine can behave quite differently from the worst 
case performance of a theoretical model. In addition to the three characteristics above, 
then, a general method should be flexible, so that clever and ambitious implementors can 
improve its performance for a given data structure or a given pattern of machine behavior, 
while still maintaining guarantees on its correctness and worst-case performance. 
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The caching method is close to this goal. It works for all data structures and achieves a 
nearly optimal asymptotic work bound, proportional to T log T per operation, where T is the 
sequential cost of the operation. For many data structures, this is a large improvement over 
Herlihy's methodology. A correct lock-free implementation can be derived from a correct 
sequential implementation in a straight forward manner using this method. For some data 
structures, this straightforward lock-free implementation will allow concurrent updates of 
the data structure. For other data structures, the implementor can often create a lock-free 
implement at ion that allows concurrent updates with only a little extra work. Finally, the 
method is flexible, so the implementor is free to change many details of the straightforward 
implementation to optimize for a specific pattern of data structure use. 

1.1 Background and Previous Work 

Lock-free data structures help us to design non-blocking and wait-free parallel algorithms. 
An asynchronous algorithm is non-blocking if it always guarantees at least one thread will 
complete an operation in a finite number of steps. An algorithm is wait-free if it guarantees 
all threads will complete their work in a finite number of steps. The caching method 
transforms a correct sequential implement at ion into a non-blocking parallel implementation. 
In Section 6 we discuss ways to make an implement at ion wait-free. 

Early work on lock-free objects focused on proving the power of various synchronization 
primitives. Herlihy [13] unifies much of this work by showing the existence of universal prim­
itives, such as Compare&Swap, which can be used to implement any wait-free object. Using 
load.l.inked and Store_Conditional, a universal pair of primitives similar to Compare&Swap, 
Herlihy [12] describes a methodology for converting synchronous implement at ions of data 
structure algorithms to non-blocking and wait-free implementations. Alemany and Fel­
ten [1] present techniques for improving the performance of Herlihy's protocol in practice. 
Herlihy and Moss [14] introduce transactional memory, an architectural approach to sup­
porting lock-free data structures. Efficient lock-free implementations of some specific data 
structures are known. Lamport [19] and Herlihy and Wing [15] give non-blocking algo­
rithms for queues. Lanin and Shasha give a non-blocking set manipulation algorithm [20]. 
Anderson and Woll [4] design non-blocking algorithms for Union-Find sets, and Anderson 
analyzes non-blocking algorithms for the related problem of list compression [3]. Massalin 
uses a lock-free implement at ion of stacks, queues, and linked lists in his Synthesis operating 
system kernel [22]. 

Many different versions of the asynchronous parallel random access machine, or 
APRAM, have been proposed (including [8, 9, 10, 24]), most with differing notions of run­
time. We measure the performance of our algorithm using work, the same measure used in a 
series ofpapers on fault-tolerant PRAMs [16, 17,21.]. The work done by an algorithmis the 
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total number of steps taken by all threads. Work is a generalization of the time-processor 
product of the PRAM. For a given pattern of delays, the minimum work algoritbm will 
yield the minimum time algoritbm on an APRAM, so work is a measure of the efficiency of 
an asynchronous algoritbm. We measure the worst case performance of algoritbms against 
a strong adversary, previously used by Anderson [2], Anderson and Woll [4], and Buss and 
Ragde [7]. The adversary chooses the operations performed on the data structure, and the 
order in which threads execute instructions. 

Both Herlihy's methodology and our method use the Load-Linked and Store_Conditional 
synchronization primitives. Load_Linked acts like a load instruction. Store_Conditional is 
similar to a store instruction, but it succeeds only if no other thread has written the variable 
since the thread read the variable using Load_Linked. Store_Conditional returns a boolean 
value indicating whether the write succeeded or failed. Load_Linked and Store_Conditional 
can be efficiently implemented given a cache-coherent architecture, and are supported in 
the MIPS-TI architecture [23]. Given these primitives, it is not difficult to construct a lock­
free implementation of a one-word data object, such as a counter. Larger data objects can 
also be atomically updated by using Load-Linked and Store_Conditional on apointer to the 
object. This strategy is the basis for Herlihy's methodology. 

1.2 Herlihy's Methodology and the Copying Algorithm 

The main difficulty with concurrent updates to a data structure is that multiple threads 
may want to change the same portion of the data structure at the same time. Most im­
plementations of lock-free data structures solve this problem either by proving that, for a 
specmc set of operations, two threads working on the same portion of the data structure 
do not substantially interfere with each other, or by preventing such interaction. Herlihy's 
methodology uses the latter strategy. In his basic methodology, all threads change the 
data structure by changing apointer to the structure. To perform an operation, a thread 
uses Load-Linked to read the pointer to the data structure, and makes a private copy of 
the structure. It then changes its private copy, and tries to replace the old pointer with a 
pointer to this private copy, using Store_Conditional to test whether the pointer has been 
changed in the interim. H it has changed, the replacement falls and the thread must start 
over. 

Since copying the entire object can be time-consuming, Herlihy suggests that the pro­
grammer specify ways to reduce the amount of copying for large objects. For example, if 
we wish to change the first element in a singly linked list, only the first element needs to 
be copied. The new element can use the old element's nezt pointer to logically copy the 
rest of the list without actually doing the work. It is not dear that this strategy can be 
effective for all data structures. For random access data structures, such as arrays, copying 
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only a portion of the data structure destroys the random access property. For pointer-based 
data structures, an algorithm should make a copy of all elements in the structure that are 
changed by an operation. But if an element e is copied, all elements that point to e change 
and must be copied as well, which means that all elements that point to elements that point 
to e must be copied, and so on. So, for example, if the kth element in a linked list is to be 
changed, the first k elements should be copied. 

Using these observations, we define the copying algorithm for data structures, the best 
general algorithm we are aware of that can be derived from Herlihy's methodology. For 
a random access data structure, the copying algorithm copies the entire structure. For 
pointer-based data structures, the algorithm copies the elements that are changed, and, 
recursively, all elements that point to elements that are copied. The copying algorithm 
performs work proportional to T + C per operation, where T is, as before, the sequential 
tost of the operation, and C is the amount of copying work needed for the operation. This is 
much more than the cost of the caching method for many data structures, such as arrays, or 
pointer based structures that are well connected (that is, structures where, for any element, 
e, there are many elements, ei, such that there is a path of pointers from ei to e). For 
these structures, the copying algorithm must copy a !arge portion of the structure on each 
operation. 

The remainder of the paper is organized as folIows. We begin in Section 2 with a 
short explanation of the cooperative techniCJILe, our technique for lock-free exc1usive access. 
Section 3 out1ine~ the caching method. In Section 4 we discuss the proofs of correctness 
of the technique and of the caching method. In Section 5 we present some performance 
bounds for the caching method, and sketch a proof of the bounds. Section 6 conc1udes with 
some notes and suggestions for future work. 

2 The Cooperative Technique 

The cooperative technique uses a different approach to handle thread interference, previ­
ously used by Barnes [6]. We observe that multiple threads can simultaneously work on 
the same data structure if all threads write down exact1y what they are doing. H a thread 
tl wishes to change some part of the data structure, it first checks whether another thread 
t2 was working there first. H so, tl reads t2 's information, and cooperates to complete t2 's 
work. 

This idea can be used to guarantee the same semantics as standard mutual exc1usion 
primitives, such as locks. Let an opdesc be a variable that describes an operation that a 
thread wishes to perform on some sets of shared data. Suppose we have a set of locks that 
provide exc1usive access to disjoint sets of shared data, D1 ... D N. We can replace each set 
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Di and its lock with apointer to arecord. The record holds the shared data, Di, along 
with an opptr field which, if not empty, contains the address of an opdesc. We say a thread 
claims a cell Di (that is, acquires the equivalent of exclusive access to Di) by installing its 
opdesc in the opptr field of D/s record. To claim. Di, a thread first reads the pointer to 
D/s record using Load_Linked, and then reads the record. H the opptr field is not empty, 
it cooperates to complete the associated operation, and then begins again. (Note that the 
thread only needs to cooperate until the operation releases its claim to Di.) H the opptr field 
is empty, the thread creates a new re cord whose opptr field points to its own opdesc, and 
tries to replace the old pointer with apointer to this new record, using Store_Conditional. 
H the Store_Conditional falls, it begins again. Otherwise it has the equivalent of e.xclusive 
access to Di, since it can be assured that no other thread will interfere with its work on Di 
until it releases its claim. on Di. 

As an immediate consequence, we can convert any algorithm that provide exclusive 
access to data using mutual exclusion into a lock-free algorithm. The main quest ion is how 
to allow threads to cooperate. One elementary scheme is to write the operation as a sort 
of program, and have the threads interpret the program, using astate record to hold a 
"program counter" and some auxiliary "memory". A pseudocode version of this scheme is 
given in Figure 1. 

In this scheme, a thread repeatedly reads the state, tries to e.xecute the next instruction, 
and then tries to update the state. H an update oft he state falls, the thread has been delayed, 
but this does not matter, since the thread rereads the state in the next step. H an update 
of shared data falls, the thread reads the shared data, and checks if the data matches the 
values it was trying to write. H so, it assumes another thread succeeded in updating the 
shared data, and tries to update the state as if its own update had succeeded. H not, it 
assumes no other thread succeeded in updating the shared data, and tries to update the 
state accordingly. In general, the process in Figure 1 can be very slow, because the threads 
are acting as interpreters, and the size of the state can be large. In practice, we do not 
expect the process to be so slow, since critical sections are usually designed to be short and 
simple. 

3 The Caching Method 

The caching method uses the cooperative technique along with standard ideas from the 
study of concurrent algorithms to generate a lock-free caching algorithm for any data struc­
ture. Assume the data structure is divided into small cells, corresponding to the disjoint 
sets of shared data above. The basic strategy of a thread is to claim all the ceils it wishes 
to change. Once it has successfully claimed all cells, the thread has effectively completed 
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proced ure Cooperate (stateptr: pointer to state) j 
Load_Linked(stateptr), and determine which instruction should be executed next. 
while the operation is not complete do begin 

write_status := SUCCESSj 

if the next instruction reads or writes shared data then 
Use Load_Linked to read or Store_Conditional to write the pointer to the data. 
ü the instruction was a write, and the Store_Conditional failed then 

Load.l.inked the pointer to the data. 
ü the data does not match the values we were trying to write then 

writeJtatus := FAILUR.Ej 

neztptr:= pointer to an updated version of state (based, if appropriate, on write_status) 
Store_Conditional( stateptr, neztptr)j 
Load.l.inked( stateptr) , and determine which instruction should be executed next. 

endj 
end Cooperate. 

Figure 1: An e1ementary co operation scheme 

its operation, since no other thread can change these ceils until this thread's operation is 
finished. Just as we must guard against deadlock when using mutual exclusion, we must 
guard against livelock when using this strategy. For example, if two threads, t l and t2, both 
want to change ceils Cl and C2, tl could claim Cl, t2 could claim C2, and then both would 
have to complete the other's operation before completing their own. We avoid live10ck using 
a standard deadlock avoidance technique: assign each ceil a unique key, and require that a 
thread claim its cells in increasing order based on their keys. Of course, to claim ceils in 
increasing order based on their keys, a thread must know all the ceils that it needs to claim 
before it claims its first ceil. For many data structure operations, the thread does not know 
exactly which ceils will be changed when the operation begins. We solve this problem by 
having the threads first carryout their operation on a private cached version of the ceils. 

In the caching method, a thread t performs a lock-free operation in four stages. 

1. Perform the operation as usual, but on a cached version of the structure. Read or 
write ceils in t's private cache only. If the cache doesn't contain a cell, use Load_Linked 
to read the ceil from the structure, and make a private copy. 

2. Validate the operation. For each ceil in t's cache, Load_Linked the corresponding entry 
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in the data structure and make sure the cell has not changed since it was initiaIly 
copied. H any cell has changed, abort and start over at the first stage. 

3. For each cell in t's cache, in ascending order of their keys, try to claim the correspond­
ing cell in the data structure. H any cell has changed since the cell was read by t, 
Load_Linked the cell, and then abort the operation: release any claims already made, 
and start over at the first stage. 

4. Change the cells and release t's claims. 

Every time a thread performs a Load_Linked on the pointer to a cell's record, it must 
follow the cooperative technique: check whether the opptr field of the corresponding record 
is empty, and if not, help the appropriate thread complete its operation. 

A complete description of the details of the caching method is deferred to the full paper. 
We present some of the more important points below. 

Some of the details of the caching method presented above are not necessary for correct­
ness, but help prove better performance bounds. In particular, the second stage (validation) 
aIlows us to prove better bounds by ensuring that a thread only claims a cell if it sawa 
consistent version of the data (see the proof of Theorem 5.2, below). It can be omitted and 
the method will still be correct. Also, note that whenever a thread's operation is aborted (in 
the second or third stage), it first performs a Load_Linked operation. Because the threads 
follow the cooperative technique, this helps maintain an important invariant-no thread is 
aborted more often than the number of operations successfully completed. This invariant 
is also used to prove upper bounds on the amount of work per operation. 

The division of the data structure into ceIls can be arbitrary, as long as the cells are of 
constant size, and structured in some logical way (e.g. as continuous locations in memory, or 
in a connected pointer structure). This insures that each read or write takes only constant 
time. Most data structures have a natural partition. For example, each entry in a linked 
list can be a cello Similarly, the keys assigned to each cell can be arbitrary. For example, 
the key could be the address of the pointer to the cello In Section 6, we mention a variant 
of the caching method where it is more useful if the ordering of the keys corresponds to the 
underlying structure of the data. 

The cache used in each operation must hold three values for each cell: the address of 
the pointer to the cell, the old pointer the thread, t, originaIly read in this address, and 
a new pointer to t's version of the cello Let 8 be the number of cells in the cache. U sing 
a balanced tree sorted on the keys of the ceIls, each cache read or write takes 0 (log 8 ) 

steps, and the tree can be converted in 0(8) steps into a linked list of (address, old, new) 
records sorted on the keys of the cells. This linked list makes it simple for threads to 
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cooperate to complete the operation. Mter the first cell is claimed, the thread needs only 
to execute aseries of Store_Conditional operations. We can use the elementary scheme in 
Figure 1, where the state is merely some pointers into the linked list and a status variable 
to indicate whether the operation is claiming cells, releasing claims, etc. H the operation 
is aborted, any cooperating threads use Load_Linked to read the cell that caused the abort 
(and cooperate on the indicated operation, if any), and then return to their own work. The 
possible cooperation resulting from reading the cell that caused the abort helps maintain the 
invariant mentioned above: no thread is aborted more often than the number of operations 
successfully completed. Having the threads return to their own work keeps the cooperation 
process simple, since threads never cooperate on thefirst or second stage of an operation. 

4 Correctness 

The following invariants are used to prove the cooperative technique and the caching method 
correct. 

1. When using the cooperative technique, if the opptr field in the record for a set of data 
is not empty, the pointer to that record is changed only by a thread cooperating to 
complete the associated operation. 

2. The elementary scheme of Figure 1 (p7) allows multiple threads to properly execute 
the indicated operation. 

3. Let G.,. be a directed graph associated with a particular time, T, during the execution 
of an algorithm generated using the caching method. G.,. has one node per thread, 
and an edge from the node representing thread t1 to the node representing thread t2 

if and only if t1 is cooperating to complete t2's operation at time T. Then for all T, 

G.,. is acyclic. 

4. In the caching method, no thread uses the results of an incomplete operation to 
perform its operation. 

Invariant 3 is true because the cells are claimed in ascending order based on their keys. 
This invariant can be used to show that no livelock occurs, and therefore some thread is 
always making progress, Le. the implementation is non~blocking. 

The standard notion of correctness for asynchronous parallel algorithms is to assume that 
the atomic instructions of the threads are interleaved in some linear order. The algorithm is 
correct ifit behaves properly for all such interleavings [15, 18]. Let Q be the set of operations 
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performed on a data structure. For a structure's implementation to behave correctly, there 
must exist some ordering, ITQ, of the operations in Q such that the results of operations 
that extract information from the data structure correspond to the results obtained by a 
uniprocessor algorithm given the sequence of operations, ITQ. Invariant 4, which follows 
from the first two invariants, allows us to prove an even stronger guarantee for the caching 
method. 

5 Performance 

Consider the caching algorithm for a particular data structure, derived using the caching 
method. For simplicity, assume the data structure is always the same size. For an operation 
op, let Top be the number of steps· needed to execute op in the sequential implementation of 
the data structure, let Cop be the number of steps used by the copying algorithm to make a 
logical copy of the data structure when executing op, and let Sop be the number of distinct 
cells read or written by op. Let Ta.,e and Sa.,e be the average values of Top and sop, and let 
Tma:z:, Sma:z:, and Cma:z: be the maximum values ofTop sop, and Cop, over all operations. Note 
that Sop ~ Top, and therefore Sa.,e ~ Ta.,e and Sma:z: ~ Tma:z:. Let p be the number ofthreads 
executing in the parallel implementation. Recall that we are using a strong adversary that 
picks the operations on the structure and the interleaving of instructions. 

Proposition 5.1 The copying algorithm performs O(Kp(Cmaz + Tmaz )) work to com­
piete K operations on the data structure. The adversary can force the copying algorithm to 
perform O(Kp(Cm= + Tma:z:)) work to compiete K operations. 

Both bounds are based on the observation that if p threads perform their work and then 
simultaneously try to change the pointer to the data structure, exactly one will succeed. 

The bounds for the caching algorithm depend on one furt her parameter. Suppose there 
is only one thread, and let the first cell of an operation op be the first cel1 the thread would 
claim if it were to execute op next. Let aD be the number of distinct first cel1s for the 
data structure D over all operations, and let a be the maximum value of aD for all possible 
data structures, D, of the given size. So, for example, in an implementation of a queue, a 
dequeue operation might always claim the head first, while an enqueue claims the taU or, 
if the queue is empty, the head. For the queue, then, a is two, since for any queue, at most 
two of the cel1s can be the first cel1 claimed by the next operation. 

Theorem 5.2 The caching algorithm performs O(Kp(a· Sma:z: + Tma:z:logsma:z:)) work 
to compiete K operations. The adversary can force the caching algorithm to perform 
O( K p Ta.,e log saue) work to compiete K operations. 
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Proof:[Sketch] The lower bound is achieved when p threads perform the same operation, 
complete their first stages simultaneously, and then simultaneously try to claim the same 
cello 

The upper bound is based on amortizing the cost of operations. Divide an operation 
into a series of attempts, where the last attempt succeeds but the previous attempts are all 
aborted. By the invariant mentioned in Section 3, for each aborted attempt of a thread 
tl, there is at least one successful attempt by another thread. Most of the work done by 
tl during an aborted attempt is charged to this successful attempt. The only work not 
charged is work tl performed on another thread t2's aborted attempt. Note that t2 must 
have successfully clai.med a cell during the attempt in question. Intuitively, though, for 
each successful attempt, there can be at most a - 10ther threads that claim a cell (this is 
true because the validation stage guarantees that these threads saw a consistent version of 
the data). H we charge the work spent on the third stage of these aborted attempts to the 
successful attempt, we get the bound in the theoreril. 0 

6 Notes and Future Work 

As noted before, the bounds for the caching algorithm are much better than the bounds for 
the copying algorithm, regardless of the distribution of operations, for many common data 
structures, including array-based structures and well connected pointer-based structures 
such as doubly-linked lists. For many other data structures, the caching algorithm will 
have better bounds under certain common distributions of operations. For example, given 
a queue implemented as a linked list, the copying algorithm will always have to copy the 
entire structure either on an enqueue or adequeue. H we assume there are as many dequeues 
as enqueues, the copying algorithm must copy the entire structure on half of the operations, 
while the caching algorithm need only perform constant work per operation. 

Still, the bounds for the caching algorithm are not as good as one might hope. The p 
term in the lower bound says that the adversary can always force the algorithm to run as 
slowly as a sequential version. This is not surprising given such a strong adversary. For 
most applications, the adversary is too strong. In particular, the assumption that multiple 
threads will perform the same operation simultaneously is not always be1ievable. One open 
problem is to analyze the performance of the caching algorithm for specific data structures 
using more realistic adversaries. We would like to devise techniques to analyze weaker 
adversaries that correspond to common patterns of machine behavior or data structure use. 
For example, Anderson and Woll [4] consider the case where there is always a large pool of 
operations to perform, and a thread chooses the next operation at random from the pool. 
H the adversary has no knowledge of the random bits, such an assumption may allow us to 
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prove better upper bounds. 

The (a . Smaz) and (logsmGz) terms in the upper bound are also troublesome. These 
terms are constant for some data structures, but not all. We can artificially make a constant 
for any data structure, and thus change the upper bound to O(KpTma:logsmGz ), by forcing 
all threads to claim a sentinel variable before they claim any other cells. With some extra 
overhead, the sentinel can be coupled with an idea similar to Herlihy's [12, Section 4.3] to 
make any implementation wait-free. Instead of grabbing the sentinel using Store.;.Conditional, 
a protocol that prevents starvation is used to decide who will claim the sentinel (and hence, 
perform their operation next ). 

Note, however, that the a parameter is a crude measure of the parallelism of the data 
structure, the number of concurrent updates that can be performed at once. Lowering 
the value of a by implementing a sentinel has the undesirable side effect of disallowing 
concurrent updates. We would like a general method that yields lock-free data structures 
which achieve good performance and allow concurrent updates (even for data structures 
with a low value of a), and which can be modified to be wait-free if desired. We have 
devised a modification of the caching method that seems promising for some structures. 

Suppose we can divide an operation into suboperations that claim only a few cells at 
once. Furthermore, suppose a suboperation always claims the cell that will have the lowest 
key in the next suboperation. For example, consider a heap where a parent cell always 
has a lower key than the ce1ls of its children. Note that a = 1 in the standard heap 
implementation with delete_min and insert operations, because every operation must claim 
the root node. Divide a delete_min operation into a swap suboperation between the root and 
the highest numbered leaf, followed by a series of swap sub operations down the tree. Then 
the delete_min operation meets the desired criteria, since each swap needs to claim either 
the root and a leaf, or anode and its two children, and one of these nodes will be the cell 
with the lowest key in the next swap sub operation. So, if a thread is executing a delete_min 
operation, it can release its claim on the root once the first few swaps are completed, and 
another thread can begin another delete_min operation. H similar guarantees can be made 
for all operations, we may be able to devise an algorithm that allows concurrent updates 
and eliminates the (a· Sma:) and (log sma:) terms in the upper bound of Theorem 5.2. Such 
a scheme can sometimes also be coupled with a sentinel to give a wait-free implementation. 
Details of this method are deferred to the full paper. A complete version of the heap 
implementation appears in [6]. 

One can use the caching method exactly as given to transform the sequential imple­
mentation of a data structure into a non-blocking concurrent implementation, but many of 
the details of the method, such as the thread cooperation scheme, can be changed without 
affecting the correctness of an implementation. One open problem is to devise variants of 
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the caching method that take advantage of particular patterns of data structure use. For 
example, if one believes threads will often cooperate, one may want a thread cooperation 
scheme with a better division of the work, instead of having every thread work on the same 
task. On the other hand, if one believes cooperation will be rare, one would want to op­
timize the procedure so that the original thread works quickly, at the expense of the rare 
extra threads. 

Finally, the cooperative technique suggests that other ideas from the study of mutual 
exclusion can be used in lock-free algorithms. For example, the caching method avoids 
livelock by using the well-known deadlock avoidance scheme of ordering the resources. There 
are other ways to avoid deadlock, and ways to detect and break deadlock. Can these methods 
be used to create different lock-free algorithms with good performance? 
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