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Abstract

This paper concerns the problem of how to exploit parallel-
ism during the phases of compilation involving syntax-
directed anal ysis and translation. In particular, we address
the problem of how to exploit parallelism during the evalua-
tion of the attributes of a derivation tree of a non-circular
attribute grammar. What distinguishes the ideas presented
in this paper from earlier work on parallel attribute evalua-
tion is the use of a data-parallel model: We define a new
variant of attribute grammars, called scan grammars, that

incorporates a data-parallel attribution construct.

1. Introduction

Because symbolic (non-numeric) computations often
involve irregular structures, the task of devising parallel
algorithms for such problems is generally very difficult and
attempts are often unsuccessful. This paper addresses a cer-
tain class of symbolic computational problems and shows
that for these problems speedups on the order of 64-fold
with 100 processors and 100-fold with 250 processors may
well be possible,

The topic that we are concerned with is how to exploit
parallelism during the phases of compilation involving
syntax-directed analysis and translation. Among the tasks
that arise during these phases are symbol-table construction,
name analysis, type checking, and either code generation or
translation to an intermediate representation for subsequent
processing. However, the techniques we present in the
paper are not restricted to just the programming-language
translation tasks listed above; they also apply to many other
problems that can be posed as the translation of a derivation
tree of a context-free language, such as pretty-printing, text
formatting, generation of verification conditions from a pro-
gram annotated with assertions, and verifying the correct-
ness of proofs (for different kinds of mathematical and pro-
gramming logics). Thus, our results contribute to the
development of parallelized implementations of tools in all
of these domains.

The particular question addressed is how to exploit paral-
lelism during the evaluation of the attributes of a derivation
tree of a (non-circular) attribute grammar [18] (see also [27]
or [2]). Although this problem has been addressed by others
[6, 13,17,19, 28], what distinguishes the ideas presented in
this paper from earlier work on parallel attribute evaluation
is the use of data-parallelism. The basic operation in the
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data-parallel model is a scan over a sequence with respect to
an associative operator [5]. (The scan operation is some-
times called parallel-prefix or parallel-suffix.) A scan com-
putes a new sequence whose elements are the “partial sums”
of the original sequence, In general, we are given a
sequence x 1, “ “ ., Xn and an associative binary operator @.
In a Ieft-\o-right @ - scan (or @ - parallel-prefix operation),
the goal IS to compute the sequence y ~, . . . . yn, such that
yi=~,~... @x,, for 1 s is n. For example, the result of
applying the left-to-right +-scan operation to the sequence
(1, 2,3, 4,5) is the sequence (1,3,6, 10, 15),

This paper defines a new variant of attribute grammars,
called scan grammars, in which attributes are defined in a
data-parallel fashion. Scan grammars include a scatz-
attribution construct, which defines a scan over attribute
values located at a derivation tree’s leaves. A scan-
attribution computes the partial sums (with respect to a
given associative operator) in a left-to-right or right-to-left
pass over the derivation tree’s leaves. Each partial sum
computed by the scan is “left behind” at the appropriate
leaf, where it may be an argument to other attribute equa-
tions or used in another scan-attribution operation.
(Although scan-attribution is a data-parallel construct, this
does not mean that scan grammars are only suitable for use
on a SIMD machine; on the contrary, as discussed in Sec-
tion 5.3, there are good reasons to expect that our parallel
scan-grammar evaluator will perform well on a MIMD
machine.)

The scan-attribution construct can be simulated with a
conventional attribute grammar using attribute equations
that are threaded left-to-right (or right-to-left) through the
derivation tree to create the partial sums. Any of a number
of sequential attribute evaluators can then be used to pro-
vide a sequential implementation of a scan-grammar evalua-
tor. However, because scan-attributions are defined in
terms of associative operators, scan grammars can be
evaluated more efficiently in parallel. Instead of a simple
left-to-right flow of information, the parallel-evaluation stra-
tegy uses a different pattern of information flow, which is
based on the one employed in the algorithms for carry-
Iookahead addition [23] and the efficient parallel evaluation
of scan operations [5, 20] (see Section 3.2). Given one pro-
cessor per production instance in the derivation tree, a
scan-attribution can be evaluated in parallel in W + 1 steps,
where D is the depth of the derivation tree. With fewer pro-
cessors than one per production instance, substantial speed-
ups can still be obtained by having each actual processor
simulate the actions that need to be carried out at some
number of production instances, In particular, by a theorem

of Brent [7, 8], a scan-attribution can be evaluated in at most
2N/P + (2D + 1) steps, where N is the number of produc-
tion instances in the derivation tree and P < N is the number
of processors.

The sequential evaluation of the left-to-right-threaded
equations that implement scan-attribution requires 2N steps.
Thus, the parallel-evaluation bounds (2D + 1 steps and
2N/P + (2D + 1) steps) suggest that the parallel evaluation
of scan grammars will be substantially faster than sequential
evaluation. By measuring the size of the abstract syntax
trees of two (uncontrived) Pascal programs, we found that
the ratio 2N/(2D + 1) was 119 for a 478-line Pascal pro-
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gram and 174 for a 776-line Pascal program. Furthermore,
the ratio 2N/(2N/P + (2D + 1)) for the same two programs
suggests that it may be possible to obtain speedups for Pas-
cal programs on the order of 10-fold with 10 processors,
64-fold with 100 processors, and 100-fold with 250 proces-
sors. (See the table presented in Section 3.) These quanti-
ties are likely to increase with larger programs. In all previ-
ous work on parallel attribute evaluation, the speedups
reported for Pascal attribute grammars have been relatively
modest – in the range of 4 to 7 (having tailed off rapidly

beyond about 16 processors).l
While these numbers are suggestive of the potential of

our approach to parallel syntax-directed analysis and trans-
lation, achieving these substantial speedups will require
careful attention to a number of implementation issues.
These issues are discussed in Sections 3,4, and 5.

For expository purposes, this paper presents the core
ideas related to scan-attribution in their simplest form.
Thus, while what is presented in the paper does have some
limitations (in terms of the kinds of analysis and translation
problems that can be easily expressed), we believe that
scan-attribution represents an important advance towards
creating a general attribute-grammar system that exploits
parallelism. Section 6 discusses one approach to creating
such a system —combining scan-attributions with certain
kinds of ordinary attribute equations, while retaining the
ability to perform attribute evaluation efficiently in parallel.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces scan grammars by means of an example.
Section 3 discusses a parallel evaluation algorithm for scan
grammars, which is based on the ideas used in the carry-
Iookahead addition algorithm (and other algorithms for
computing scans quickly in parallel). Section 4 discusses
the representation of lists derived from the “list nontermi-
nals” that are typically used in context-free grammars. Sec-
tion 5 considers one of the most important syntax-directed
computations that arises in attribute-grammar
specifications– the construction of a symbol table – and
shows how to express this computation with a scan-
attribution. Section 6 sketches out one way to create a more
general system based on the scan-attribution paradigm.
Section 7 describes how the ideas presented in this paper
relate to previous work on parallel attribute evaluation.

2. Scan grammars

In this section, we introduce the components of scan gram-
mars by means of a simple example – the computation of
the value of a binary numeral.

Attribution rules are defined with respect to a set of gram-
mar rules. Here we define the abstract syntax of binary
numerals by giving a collection of operator/operand

declarations:z

‘Some of the speedup figures were established by measuring an implement-
ed system [6]; othera come from simulations [19,28].

‘This notation is a variant of context-free grammars in which the operator

names (Numeraf, Pair, Bit, Zero, and One) serve to identify the productions
uniquely. For example, the declaration numeral: Numeral ( b i.ts ) ;
is the arraIogue of the production “numeral + bk”. In general, the nofa-
tion used in this paper’s examples is adapted from the notation used in the

Synthesizer Generator [25], a widely distributed system based on attribute
grammars.

numeral: Numeral (bits ) ;
bits: Pair (bits bits )

I Bit(bi.t)

bit: Zero( )
/ Oneo

:

Aside. Before giving the scan grammar’s attribution
rules for the binary-numeral problem, we first give rules for
a conventional attribute grammar that solves the problem.
In a conventional attribute grammar, two integer-valued
attributes —say “position_in” and “position out” —are used
to define a right-to-left pattern of information flow through
the derivation tree (so-called “right-to-left threading”):

bits, bit { inherited INT position_ in;
synthesized INT position_out;

}:

In this example, these attributes are used to determine a bit’s
position in the numeral. More precisely, the goal is for the
value of bit.position_out to be the bit’s position with respect
to the right end of the numeral (where the rightmost bit is
considered to be at position 1). This is arranged by the fol-

lowing attribute declarations:3

numeral: Numeral { bits .pos~tion_in = O; } ;

bits: Pair {
bits$3 .positlon_in = bits$l .position_in;

bits$2 .position_in = b~ts$3 .position_out;
bits$l .position_out = bits$2 .position_out;

}
I Bit {

bit. position_in = bits .position_in;
bits. position_out = bit. position_out;

}
:

bit: Zero {bit. position_out = bit. position in + 1; }

\ One{ bit. position_out = bit. position_~n + I;}

From the position of a bit in the numeral (i.e., the value of
bit.position_out), the bit’s contribution to the numeral’s
overall value can be determined:

bit { synthesized TNT val; };
bit: Zero { bit. val = O; }

/ One { bit. val = 2 ** (bit. position_out - 1); }

;

The value of the entire numeral is determined by summing
the contributions from each subtree:

numeral, bits { synthesized INT val; };
numeral: Numeral { numeral .val = bits .val; } ;

bits: Pair {bits$l. val = bits$2. val + bits$3. val; }
I Bit { bits. val = bit. val; }

When the derivation tree is consistently attributed according
to these rules, the value of the attribute “numeral. val”,
which occurs at the derivation tree’s root, holds the value
that corresponds to the numeral.
End Aside.

31rrthe attribute equations for a production such as

bits: Pair(bits bits);

it is necessary to distinguish between the three different occurrences of non-

terminal “bits”. We use the notation “bits$l”, “bits$2”, and
“bits$3’’,w here’ ’bi.ts$l’’denotes theleftmostoccurrence,etc. (In this

caae,theleftmost occunenceisthe Ieft-hand-sideoscumence.)
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We now show how the binary-numeral problem is
specified using a scan grammar. The solution involves two
scan-attributions, called “position” and “value”, both of
which are directed right-to-left.

A scan-attribution is declared by specifying a direction
(i.e., LR or RL), a type, an associative operation, and a
“seed’’value. Forexample, the declaration

scan position (RL, [INT]-DIINT], +, O);

defines a scan-attribution named “position” as a right-to-left
scan-attribution that maps a sequence of lNT’s to a
sequence of lNT’s via the addition function, with seed value
O. Such a declaration creates two attributes at each leaf,
denoted by “position’input” and “position’output”. At each
leaf in the derivation tree, the value of position’output is the
appropriate partial sum in a right-to-left scan, with respect
to the addition function, of the sequence formed from the
position’input attributes at the derivation tree’s leaves. (We
wish to stress that the input and output sequences are both
conceptual objects. They are both distributed over the
leaves of the derivation tree, and neither of them ever needs
to be materialized as an explicit data structure.)

In this example, the goal is for the value of
bit.position’output to be the bit’s position with respect to the
right end of the numeral. (The bit.position’output attributes
serve the same function as the bit.position_out attributes in
the conventional attribute grammar given earlier.) Tlms, for
each instance of a bit nonterminal, we want the value of
bit.position’input to be 1, which is easily arranged with the
following attribution equations:

bit: Zero { bit .position’input = 1; }
I one { bit .position’input = 1; }

The value of the entire numeral is defined by declaring a
second right-to-left scan that forms the partial sums of the
individual bits’ contributions:

scan VdUe (RL, [INT] _D [INT], +, O);

bit: Zero { bit. value’input = O; }

1 One { bit.value’input =
2 ** (bit. position’output - 1); }

;

As these rules illustrate, the results from one scan-
attribution (e.g., the values of thevarious bit.position’output
attributes) can be used in creating the input to a second
scan-attribution. The role of bit.value’output is somewhat
different from that of bit.val in the conventional attribute
grammar given earlier- each bit.value’output attribute
defined by the rules given above represents the value the
numeral would have if the left prefix of the numeral up to
the leaf were discarded.

Remark. It is tempting to simplify the rules we have
given, and use only one (left-to-right) scan-attribution
declaration instead of two, as follows:

scan value (LR, [INT]-DIINT], Ax. Ay.2*x+y, O);
bit: Zero { bit. value’ input = O; }

\ One { bit. value’input = 1; }

However, this scan-attribution declaration uses the function
kx. ky.2*x+y, which is notan associative operation. It
will become clear in the discussion of scan operations in
Section 3.2 that the associativity property is of crucial
importance if scans are to be evaluated efficiently in paral-
lel. Associativity provides uswiththe freedom tore-group
operations, and it is this freedom that makes scan-attribution
amenable to parallel processing.

For scan-attributions using such non-associative operators
to be well-defined, the evaluator would have to work either
left-to-right orright-to-left in sequential order. This would
require 2N steps, where N is the number of production
instances in the derivation tree, rather than 2D + 1 or
2N/P + (2D + 1) steps.

End Remark.

Returning to our example, closer inspection reveals that

the scan grammar given above is not quite equivalent to the

conventional attribute grammar that was given earlier. With

the scan grammar, the numeral’s overall value wiII be found
at the leftmost leaf of the derivation tree, not at the deriva-
tion tree’s root as is the case for the conventional attribute
grammar. This is easily rectified by permitting interior
nodes to play a role inscan-attributions directly. Conceptu-
ally, each interior node ofarity-khask+l Ieaves, one to the
left of the leftmost child, one to the right of the rightmost
child, and one in between every pair of consecutive chil-
dren. Forexample, with the declaration

numeral: Numeral (bits);

a “numeral” node has two such conceptual leaves, denoted
by “numeral[O]” for the one on the left and “numeral[l ]“ for
theoneon the right. Using this notation, the following rules
specify how attribute “numeral.val” receives the value that
corresponds to the numeral:

numeral { synthesized INT val; };

numeral: Numeral (bits) {
numeral [O]. position’ input = 1;
numeral [O]. value’mput = O;
numeral.val = numeral[ O].value’output;

}
;

(We will make use of this notation in the examples in Sec-
tion 5.)

It is important to note that although the example given
above only makes use of the integer data type and the “+”
operation, there are a wide variety of data types and opera-
tions that can be used in scan-attributions, including the fol-
lowing: Booleans (A, v), integers (+, *, max, rein),
floating-point numbers (+, *, max, rein), sequences or lists
(append), sets (u, n), and finite functions (see the example
in Section 5).

3. Evaluation ofscan grammars

3.1. Sequential implementation ofscan-attribution

It is straightforward to compile scan-attributions into con-
ventional attribute-grammar specifications, whereupon they
can be evaluated using any of a number of sequential
evaluators. Each scan-attribution construct can be
translated into a left-to-right or right-to-left attribute thread-
ing that creates the partial sums. For instance, in the
binary-numeral example, the “position” scan would compile
into essentially the same set of right-to-left-threaded attri-
bute equations that were given for attributes position_in and
position out in the description of how the binary-numeral
example-is handled in a conventional attribute grammar.
The “value” scan would also be translated into a right-to-
Ieft threading, as follows:

bits, bit { inherited INT value_in;
synthesized INT value_out;

};
numeral { synthesized INT val; };
numeral: Numeral { bits. value_in = O;

numeral .val = bits .value_out;
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}

bits: P~ir { bits$3.value_in = bits$l.value_in;

bits$2.value_in = bits$3.value_out;

bits$l.value_out = bits$2.va~ue_out;

/ B~t {}bit.value_in =blts.value_in;
b~ts.value_out = bit.value_out;

}
;

bit: Zero { bit.value_out = b~t.value_in; }
I One {

bit.value_out = 2 ** (bit.position_out - 1)
+ bit.value_in;

}:

3.2. Parallel implementation ofscan-attribution

Because scan-attributions are defined in terms of associative
operators, they can be evaluated efficiently in parallel. The
pattern of information flow in the parallel evaluation algo-
rithm is based on that employed in the algorithm for the
efficient parallel evaluation of scan operations [5,20] (of
which carry-lookahead addition isoneexample [23]).

A @-scan operation with respect toanassociative opera-

tor @ can be performed on a sequence of length k in
~log~ + 1 steps by decomposing the problem into subprob-
lems and arrangin the subproblems in a balanced binary

ftree ofdepth[logk . One processing element is assigned to
each leaf and interior node of the decomposition tree. Here

is Blelloch’s explanation of the pattern ofinforrnation flow
in the parallel implementation of a left-to-right scan:

The technique consists oftwosweeps of the tree, anup

sweep and a down sweep... The valuestobescrmed
startat the leaves of the tree. On the up sweep, each
unit executes @ on its two children units and passes

the sum to its parent. Each unit also keeps acopyof
the value from the left child in its memory. On the

down sweep, each unit passes to its left child the value

from itsparent andpasses toits right child @ applied
to its parent and the value stored in the memory (this
value originally earne from the left child). After the

down sweep, the values at the leaves are the results of

a scan [5].4 .

It is actually not necessary that the problem-decomposition

tree rebalanced, nor is it necessary that it be a binary tree.

The Q-scan computation can be carried out in parallel on
any fired-arip tree that represents a decomposition of the
problem in 2D+1 steps, where D is the depth of the

decomposition tree.
Because the information flow in each of the two sweeps

can be expressed as an attribution of the decomposition tree
according to the rules of an attribute grammar, we are able
to use the scan-evaluation algorithm to evaluate a scan-
attribution in parallel. The first step is to translate the scan-
attribution construct to a set of attribute equations of a spe-
cial form. We illustrate this translation by means of an
example.

‘Because of a slight technical difference between the way we have defined
the CB- scan of a sequence and the way Blelloch defines it, we must add the
following: It is also necessary for each leaf to retain a copy of its original
value and to apply @ to the value received from the parent and the original
value.

Example. Suppose @ is an associative operation of type
T x T - T, and we are given a left-to-right scan-attribution
of the form

scan foo (LR, [T] -+ [T], @, v);

root: Root(a);

a: Pair(a a)

I Singleton(b)

b: Leafo { b. foo’input = “ “ “ ; };

This scan-attribution can be translated automatically into the
following equations:

I* sweep ~ _____________________________________ ./
a, b { synthesized T fool; };
a: Pair { a$l. fool = a$2. fool@ a$3. fool; }

I Singleton { a. fool = b. fool; }
b: Leaf {b.fool= ‘..;};

I* Sweep II ------- ----------------------------- *I
a, b { inherited T foo2; };
root: Root { a.foo2 = v; };

a: Pair { a$2.foo2 = a$l.foo2;

a$3.foo2 = a$l.foo2@a$2.fool;

\ Singlet~n { b.foo2 = a.foo2@b.fool: }

;

The dependence amomz the attributes in the production
a: Pair(a a eanbe-depicted as follows: ‘

foo2 a fool

{a

foo2 a fool foo2 a fool

We say that equations Iiketheones inthe above example
arein scanform. We now show what the translation to scan
form produces for the two right-to-left scans of the binary-
numeral example.

Example. The’’position” scan is translated into the fol-
lowing attribute equations inscan form:

/+ Sweep I ------------------------------------- *I
bits, bit { synthesized INT positionl; };

bits: Pair {
bits$l.positionl = bits$2.positionl +

bits$3.positionl;

/ ~it { bits.positionl = bit.positionl; }
.

bit: ‘ Zero { bit.positionl = 1; }
\ One { bit.positionl = 1; }

:

/* Sweep II -----------------—--------------——-- ‘/
bits, bit { inherited INT position2; };

numeral: Numeral { bits.position2 = O; };
bits: Pair {

bits$3.position2 = bits$l-position2;
bits$2.position2 = bits$3.positionl +

bits$l.position2;

\ Ait {

bit.position2 = bit.positionl +

bits.position2;

}
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The “value” scan is trdnshited as follows:

I* Sweep I ---------------------- ------- -------- */
bits, bit { synthesized INT valuel; };
bits: Pair {

bits$l.valuel = bits$2.valuel +
bits$3.valuel;

\ ~it { bits.valuel = bit.valuel; }

;
bit: Zero { bit.valuel = O; }

I One { bit.valuel = 2 ** (bit.position2 - 1); }

r

/, sw~~p 11 -------- -------- --------------------- ~1
bits, -bit { inherited INT value2; };
numeral: Numeral { bits.value2 = O; };

bits: Pair {
bits$3.value2 = bits$l.value2:
bits$2.value2 = bits$3.valuel +

bits$l.value2;

I iit {

bit.value2 = bit.valuel + bits.value2;

}

Given equationsin scan form, thereis an obvious parallel
algorithm for evaluating them: Use one processor per pro-
duction instance and have each processor evaluate thetree’s
attributes in accordance with the method quoted above. By
this means, a scan-attribution can be evaluated in parallel in
W +1 steps, where D is the depth of the derivation tree.
When only PziV processors are available, where ZVis the
number of production instances in the derivation tree, each
actual processor must simulate the actions that need to be
carried out at some number of production instances. The
scheduling technique used in the simulation theorem of
Brent can beused [7,8] and consequently a scan-attribution
can be evaluated in at most 2N/P + (2D + 1) steps.

To get a feel for what this means for abstract syntax trees
of actual programs, remeasured two (uncontrived) Pascal
programs: format.p, a simple text-formatting program taken
from Kemighan and Plauger’s book [16], and gradestats.p, a
grading program obtained from a colleague. Figure 1
presents figures on steps, speedup, and efficiency as a func-
tionof number ofprocessors forthe two programs. Figure
1 shows that it may bepossible toobtain speedups for Pas-
cal programs on the order of 10-fold with 10 processors,
64-fold with 100 processors, and 100-fold with 250 proces-
sors.

The measurements reported in Figure 1 were taken on
trees defined by the Pascal attribute grammar that isdistri-
buted with the Synthesizer Generator system for generating
language-sensitive editors [25]. The numbers in Figure 1
reflect three adjustments totheraw figures:

(1) The Synthesizer Generator uses right-recursive produc-
tions to represent lists derived from “list nonterminals”;
in Figure 1 “Depth’’h asbeena djustedtoreflect what the
tree depths would be if such lists were represented as
balanced binary trees. (See Section 4.)

(2) Because atomic leaves of Synthesizer Generator trees
generally do not have attributes, in the formula for cal-
culating “Steps(P)” the number of “Atomic leaves” is
subtracted from “Nodes”.

(3) A1s0 in the formula for calculating “Steps(P)”, the
“Depth” is decreased by two, one for the level of atomic
leaves and onefor the root production.

It is also possible to define a different parallel scan-
grammar evaluation algorithm basedon the same underly-
ing idea, but in which the evaluation of attributes during

Sweep 11 is pipelined (and evaluation is carried out “dif-
ferentially”). Suppose @ is the operation with respect to

which the scan is being performed and that e is the identity
element for @:

(1) Allocate one processor per production instance.
(2) Each attribute inthescan’s scan-form equations is ini-

tially assigned the value e.
(3) Sweep I is carried out in the normal fashion.
(4) During Sweep II, each processor is in charge of evaluat-

ing two attribute instances, say “childl. foo2” and
“child2.foo2”. Whenever new information about
the valueof parent.foo2—in the form of achange
A in the value of parent.foo2–is received from
the processor of the parent node in the derivation tree,
the current values of childl.foo2 and
child2.foo2 areupdatedby making assignments

childl.foo2 := A@chi.ldl.foo2
child2.foo2 := A@child2.foo2.

The value Aisthen passed down the derivation tree to

the processors associated with the appropriate child

nodes.

(5) In a left-to-right scan, the pipelining process is initiated
by setting the values of the tree’s collection of
child2.foo 2 attributesby making assignments

child2.foo2 := childl.fool.

With this method, information is passed to a neighboring
processor whenever possible; an attribute’s value steadily
accumulates as more and more information flows down
from the parent .foo2 attribute. Because thepassingof
information down the derivation tree is pipeIined, an
attribute’s final value is determined only after it has
received all of the information from the collection of attri-
butes along the path from the attribute’s tree node to the
root of the tree.

Remark. Inthepipelined version of theevaluation algo-
rithm, anattribute’s value steadily accumulates as more and
more information flows down from the Sweep II attribute of
its parent node in the derivation tree. This is an unusual
feature for an attribute-evaluation algorithm, but other
examples of such algorithms are known.

One example of previous work in which the final value of
an attribute accumulates from previous values is the “dif-
ferential” algorithm of Hoover and Teitelbaum for incre-
mental updating of aggregate-valued attributes in language-
sensitive editors [10], which may consider an attribute
several times during updating. This is done to compensate
for the evaluator’s use of imprecise information about the
ordering of dependence between attributes. Because the

algorithm is for a sequential processor, the multiple evalua-
tion of attribute instances is not a deskable characteristic of
the algorithm (although it does not appear to hurt the
algorithm’s performance in practice).

Other examples of evaluation algorithms in which the
final value of an attribute is accumulated from previous
values are the various algorithms proposed for evaluating
circular attribute grammars [4, 9,11,12, 26].
End Remark.
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. .“-. ”... . . . . . . . . . .- . . . . . .- —.- -----

Lines 478 Lines 776
Nodes 4889 Nodes 8671

Atomic leaves 1016 Atomic leaves 1787
Depth 34 Depth 41

P Sleps(t’) Speectup(~) Eltr clency(P) Steps(tJ) Speedup(t’) E
1

thcIency(P)
7811 1.00 13847 1 1.00

10 840 ; 0.93 1456 10 0.95
20 452 17 0.86 767 0.90
30 323 0.81 538 ;: 0.86
40 259 z 0.75 423 0.82
50 220 36 0.71 354 :; 0.78
60 194 40 0.67 308 45 0.75
70 176 44 0.64 276 50 0.72
80 162 48 0.60 251 55 0.69
90 151 52 0.57 232 60 0.66

100 142 55 0.55 217 64 0.64
150 117 67 0.45 171 81 0.54
200 104 0.38 148 94 0.47
250 96 :: 0.33 134 103 0.41
500 80 97 0.19 107 130 0.26

1000 73 107 0.11 93 149 0.15
2000 69 113 0.06 86 161 0.08
3873 67 117 0.03
4000 168 0.04
6884 % 171 0.02

Steps(P) = 2 * (Nodes - Atomic leaves)/ P + (2 * (Depth -2)+ 1)
Speedup(P) = Steps(1) / Steps(P)
Efficiency(P) = Speedup(P) / P

Figure 1. Steps, speedup, and efficiency as a function of the number of processors P for two Pascal programs.

4. Representation of lists derived from list nontermi-
nais

In this section, we discuss the representation of lists derived
from the “list nonterrninals” that are typically used in
context-free grammars. For example, a programming-
Ianguage grammar may have a number of different list non-
terrninals, such as stmtList, txpList, idList, etc. In the
abstract syntax trees of programming languages, there are
several different ways to represent lists derived from list
nonterrninals using nodes of fixed-arity. (Recall that the
algorithm for efficient parallel evaluation of scan operations
calls for a fixed-arity problem-decomposition tree.) One
way is to use right-recursive productions:

stmtList + stint stmtList
strntList -B stint
stint+ . . .

However, in the case where N processors are available, the
parallel scan-grammar evaluation algorithm requires 2D + 1
steps, where D is the depth of the tree. If lists are
represented with right-recursive productions, a list of length
k has depth k, and consequently this representation is detri-
mental to the performance of the evaluation algorithm.

From this standpoint, it is better to replace the right-
recursive productions with ambiguous binary productions
and to represent lists as balanced binary trees:

stmtList -D stmtList stmtList
stmtList + stint
stint+ . . .

Using this representation of lists can only reduce the depth
of the tree; a list of length k has depth [log 1.

To determine how much would be gained from using bal-
anced binary trees to represent lists, we gathered some

statistics on the depths of Pascal abstract syntax trees.
Again, the measurements were taken on trees defined by the
PascaI attribute grammar that is distributed with the Syn-
thesizer Generator. Although the Synthesizer Generator
uses right-recursive productions to represent lists, the depth
counts were adjusted to reflect what the depth of the tree
would have been if balanced binary trees had been used.
Figure 2 presents the statistics that were obtained. The
column labeled “Depth” gives the tree’s depth before the
adjustment; “Adjusted depth” gives the adjusted figure.
Because the algorithm for efficient parallel evaluation of
scan operations requires 2D + 1 steps, the two larger exam-
ples show that the balanced-binary-tree representation
would be better by a factor of 4 to 4.5 when N processors
are available. This factor is likely to increase with larger
programs.

(In Figure 1, the figures already reflect the use of the
balanced-binary-tree representation.)

5. Symbol-table construction via scan-attribution

One of the most important syntax-directed computations
that arises in attribute-grammar specifications is symbol-
table construction. For example, attribute grammars that

specify the static semantics of programming languages usu-
ally build symbol tables that map identifiers to a descriptor
of scope and binding information as the starting point for
name analysis (i.e., the detection of undeclared and multiply
declared variables) and type checking. Each node of the

derivation tree is annotated with (a pointer to) a data struc-
ture that records the identifiers known in the current scope
and their properties.
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Program Description Lines Nodes Atomic leaves Depth Adjusted depth

emply.p empty template for a program 15
primes.p sieve of Eratosthenes 3; 235 5! 2: 2:
queens.p eight-queens problem 56 549 116 36
forrnat.p

28
example from Kernighan & P1auger 478 4889 1016 64 34

gradestats.p grading program 776 8671 1787 94 41

Nodes: number of production instances in the tree
Atomic leaves: number of leaves consisting of one of the primitive types INT, CHAR, ID, STR, etc.
Depth: right-recursive “combs” used to represent lists

xf.ist + x xList [ x
x+ .-.

Adjusted depth: balanced binary trees used to represent lists
x -b fiisr ~i~t I x
x+ . . .

Figure 2. Sizes of some representative Pascal abstract syntax trees. The column labeled “Adjusted depth” is (an upper bound on) the
depth of the tree obtained by replacing every list by a balanced binary tree.

In this paper, we use the term “symbol table” in a broader
sense: For our purposes, a symbol table is any jbtite
function – any function defined only for a finite set of argu-
ment values. For example, a text-formatting grammar
might make use of a “symbol table” consisting of the
current formatting properties. The ideas described below
apply to any such finite function.

In this section, we show how symbol-table processing can
be expressed using the scan-attribution construct (i.e., as a
scan-attribution with respect to a certain associative opera-
tor). The key observation is as follows: The basic operatwn

used for building up symbol tables — regardless of their par-

ticular implementation — is associative. Associativity pro-
vides us with the freedom to re-group the symbol-table con-

struction operations to make symbol-table construction
more amenable to parallel processing.

In this section, our examples deal with a simple impera-
tive language whose abstract syntax is defined as follows:

program: Program( declList stmtList ) ;
declLlst: DeclListPair( declList declList )

/ DeclListSangleton (decl )
:

decl: Decl(ID type);
type: Undefined

I Booleano
I Integero

Stmt;ist: StmtLktPalr(stmtList stmtList)
I StmtListSingleton(stmt)
;

stint: Assignment(ID exp)
[ Conditional(exp stmtList stmtList)
I WhileLoop(exp stmtList)

:
exp: IdExp(ID)

. . .

;

The symbol tables for this language will be finite functions
from identifiers to types: env=dflD -type. Thedomainof

types containsa distinguished value “Undefinecl”; ifsr isan
envandst(i) = Undefined, then stisundefinedrm i.

In the presentation below, we initially address the case
where there is only a single global scope. We then extend
our approach to cover the case of nested scopes. Finally,
we address an important performance issue: Because
symbol-table attributes are notunit-sized objects, we cannot

afford the overhead of shipping copies of their values from
processor to processor methods that avoid this potential
overhead are presented in Section 5.3.

5.1. Scan-attribution forasingle global scope

If there is only a single global scope, it is straightforward to
use scan-attribution to specify the annotation of the deriva-
tion tree with appropriate symbol-table values.

In this section, rather than fix on a particular representa-
tion forsymbol tables (i.e., thedomainenv), we treat them
in an abstract fashion. We define two operations on env:

one, denoted by [x:v], creates a symbol table defined at a
single point; the other, denoted by a@b, combines two
symbol tables a and b. More precisely, the two operations
behave as follows:

l-v ifx=i

t

.- .. .
[x:v](~) = Undefined otherwise

{

b(i) if b(i)# Undefined
(a@ b)(i)= a(i) othe~ise

We use e to denote the everywhere-undefined environment:
e(i) =Undefined, for aIli. It iseasyto see that @ isassoci-
ativeand that eisthe identity element for (X).

With this notation, we can now express symbol-table con-
struction using the scan-attribution construct.

Example. Symbol-table construction for our simple pro-
gramming language can be expressed with a left-to-right
scan, with each declaration contributing a symbol table
defined at a single point:

scan spnbol_table (LR, [env]-[env]r @,e);
decl: Decl{decl [2]. symbol_table’input = [ID:tYpe]; };
stint: Assignment { stint [O] .spnbol_table’i nput = e; };
exp: IdExp { exp[O]. syrbol_table’input = e; };

Note that each use of an identifier in a statement or expres-
sion contributes a symbol table as well, but always with
valuee. Asaconsequence, symbol_table’output is available
at that point in the tree; this is employed to access the
symbol-table information for the identifier used at that point
in the program:
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s tmt: Assignment {
stmt.lhs_info =

stmt[O] .symbol_table’output (ID) ;

}:
exp: IdExp {

exp.id_info = exp[O].symbol_table’output( ID);

}:

Similarly, if we wish to detect duplicate declarations, then
we would change the specification so that Decl contributes

two symbol tables, first e and then [ID: typeJ:

decl: Decl {
decl[O] .symbol_table’input = e;
decl[2] .symbol_table’input = [ID:type];
decl.id_info =

decl[O] .syrnbol_table’output( ID);

}

If decl[O].symbol_table’output(ID) is not equal to
Undefined, then this occurrence ofID is aduplicatedeclara-
tion.

5.2. Scan-attribution fornested scopes

With nested scopes, it is still possible to use scan-attribution
to specify the annotation of the derivation tree with
appropriate symbol-table values. In this section, it is con-
venient to fix on a concrete representation for symbol tables;
we will use LISP-like lists whose elements are of the form
CONS(ID, type) (e.g., CONS(CONS(X, Integer),

CONS(CONS(y, Boolean), NIL)) isanexample ofasymbol
table in this representation). With this concrete representa-
tion, the operation @ is l.x. ky. APPEND@,.r) (where
APPEND is the function that appends two lists), and its
identity element e is NIL. Note that the way we express
symbol-table construction in the case of a single global
scope changes only slightly, as follows:

scan symbol_table (LR, [env]+[env],
lx. ky. APPEN~, x), NIL);

decl: Decl {
decl[2] .symbol_table’input =

CONS(CONS(ID, type), NIL);

}:
stint: Assignment {

stmt[O] .symbol_table’input = NIL;

};
exp : IdExp { exp[O].symbol_table’input = NIL: }:

To model nested scopes, we extend the abstract-syntax
declarations for our example language with a block con-
struct:

s tmt: Block(deClList stmtList);

We also introduce two markers, denoted by
BLOCK_ENTRY and BLOCK_EXIT, which will be used
in symbol-table lists to bracket scopes that have been exited.
In particular, the lookup function ignores all symbol-table
entries when a BLOCK ENTRY is encountered until the
matching BLOCK_EXIT-is found. BLOCK_ENTRY and
BLOCK_EXITare used in the scan-attribution equations for
Block, as follows:

s tmt: Block {
Stmt[ ()] .symbol_table’input =

CONS(BLOCK_EXIT, NIL);
stmt[2] .syrnbol_table’input =

CONS(BLOCK_ENTRY, NIL);

};

There is one drawback to this approach: The symbol table
associated with a given node in the derivation tree contains

symbol-table entries for all declarations to the left of the
node—including declarations from scopes that are not

active. This will cause an application of the lookup function
on identifier ito be much less efficient whenever it does not
find a symbol-table entry for i in the local scope.

We would like the symbol-table list to include entries
only for declarations in enclosing scopes. This can be
arranged by filtering symbol-table lists, removing all
symbol-table information between a matching
BLOCK_ENTRY/BLOCK=EXIT pair. This is permissible
because all information between a matching
BLOCK_ENTRY/BLOCK_EXIT pair is ignored by the
lookup function. In theattnbuteg rammarf ort helanguage
given above, such filtering can be done in the Sweep I equa-
tions for the symbol-table scan.

Remark. Technically what we have done is to change
the meaning of the scan operation slightly: We are given a
sequence xl, . . . ,xn and an associative binary operator @.
The goal istocompute thesequenceyl, --. ,Y., such that
yi=xl @... @Xi, for lsisn, where’’a =b’’nowrneans
“equal according to what is observable in a and b“. For
example, in the case of symbol-table lists, “a =b” means
“equal according to what is observable in a and b via the
lookup function”.
End Remark.

5.3. Pragmatic performance considerations

Because symbol-table attributes are not unit-sized objects,
the performance of the parallel scan-grammar evaluator will
degrade seriously from the theoretical speedup of
2N/(2N/P + (2D + 1)) if substantial amounts of symbol-
(able information must be passed from processor to proces-
sor. Consequently, the amount of symbol-table information
that has to be passed between processors is an important
pragmatic issue.

To solve this problem, it is necessary to consider the
manner in which symbol-table data is accessed. In particu-
lar, note that symbol-table construction is carried out during
the evaluation of the “symbol_table” scan-attribution; only
later are the symbol-table attributes accessed in order to per-
form lookups. Furthermore, because of the value semantics
of attribute grammars (i.e., no side effects are permitted in
attribute equations), the symbol-table construction phase
involves the use of memory in a “write-once” fashion.
When lookup operations are carried out, each (virtual) pro-
cessor at a node of the derivation tree accesses the symbol
table in a “read-only” fashion.

Thus, there are three key aspects to reducing the cost of
communicating symbol-table values from processor to pro-
cesso~

(1) The multiprocessor should provide a shared-memory

abstractions
(2) The “handle” to a symbol table needs to be represented

by a small value (such as a pointer to a location in
shared memory).

(3) It must be possible to access a symbol-table entry with
only a few accesses to shared memory.

‘There are many approaches that have been used to provide shared memory
on multiprocessors, either in software (e.g., shared virtual memory on
loosely coupled multiprocessors [21]) or in hardware (via snooping caches

[3] or directory protocols [1]).
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For the case of a single global scope, one way to imple-
ment a symbol table that satisfies these conditions is to use a
balanced tree (such as a 2-3 tree, B-tree, or AVL tree) that
is updated applicatively (i.e., the spine of the tree is copied
on each insertion) [22, 24]. With such structures, the only
information that needs to bc passed explicitly from proces-
sor to processor during a symbol-table construction scan is a
pointer to the root of the tree. A symbol-table entry in a
symbol table of size k can be accessed with O (log k) refer-
ences to shared memory.

To handle nested scopes, we can use a list of balanced
trees. Again, the only information that needs to be passed
explicitly from processor to processor during a symbol-table
construction scan is a pointer, in this case to the root of the
list.

6. Combining scan-attribution with other processing
patterns

The examples in the previous sections show how certain
syntax-directed analyses can be specified conveniently with
scan-attributions. However, because scan-attributions are
constrained to use associative operators, there are some lim-
itations as to what kinds of analysis and translation prob-
lems can be easily expressed. Nevertheless, we believe that
scan-attribution represents an important advance towards
creating a general attribute-grammar system that exploits
parallelism.

One approach to creating a more general system based on
the scan-attribution paradigm is to exploit the fact that some
sets of ordinary attribute equations have dependence pat-
terns that allow them to be evaluated in parallel in O(D)
steps (given a sufficient number of processors). Conse-
quently, when these attributes are combined with scan-
attributions, efficient parallel attribute evaluation is still pos-
sible. Examples of such dependence patterns include

(1) Purely local attribution phases, during which some attri-
bute instances of each production instance are given
values.

(2) Purely bottom-up attribution phases, during which infor-
mation flows from the leaves toward the root.

(3) Purely top-down attribution phases, during which infor-
mation flows from the root to the leaves.

Because we represent lists derived from list nonterminals
as balanced binary trees, it is necessary to impose certain
restrictions on the right-hand-side functions used in the
attribute equations of these productions. In particular, in the
rules for a bottom-up pass, the right-hand-side functions
must be associative. In the rules for a top-down pass, the
right-hand-side functions must be idempotent; in addition,
the function used to pass information to the left child and
the function used to pass information to the right child must
commute.

The reasons why these restrictions need to be imposed
can be seen with the following example. Suppose the attri-
bute grammar contains the following definitions:

xList { synthesized T foo;
inherited T bar;

};
xList: Op(xList xList ) {

xList$l . foo = xList$2 . foo@xList$3 . foo;
xList$2 bar = F( xList$l bar) ;
xList$3. bar = G(xList$l. bar);

}

Ordy when operation @ is associative can we guarantee

that the xList.foo attribute at the root of Op(a, Op(b, c))is
equal to the xLlst.foo attribute of Op(Op(a, b), c). Without
associativity, the attribution of lists represented as balanced
binary trees would not be uniquely defined. Similarly, only
when functions F and G are idempotent (i.e. F(F(x)) = F(x),
for all -r) and commute (i.e. F(G(x)) = G(F(x)), for all x) can
we guarantee that the three xList.bar attributes at the leaves
of Op(a, Op(b, c)) are equal to the corresponding xList.bar
attributes at the leaves of Op(Op(a, b), c). (In effect, these
restrictions mean that there are only three different values of
the xList.bar attribute in any given xList: If x is the value of
xList.bar at the root of the list, then the xList.bar value at
the leftmost member of the list is F(x), the value at the
rightmost member of the list is G (x), and the values at all
other members of the list are F (G (x)).)

For all three of the dependence patterns listed above,
evaluation can be carried out in parallel in at most D steps
(assuming N processors, where N is the number of produc-
tion instances in the derivation tree). When only P c N pro-
cessors are available, they can be evaluated in at most
NIP + D steps. When attribute equations with such depen-
dence patterns are combined with scan-attributions, evalua-
tion can be carried out as a sequence of parallel-evaluation
passes over the tree, where each pass requires either
N/P + D steps or 2N/P + (2D + 1) steps, Thus, the total
cost of parallel evaluation would be O (N/P + D).

(The question of whether it is possible to have an efficient
parallel evaluator that handles a combination of scan-
attributions and ordinary attribute equations whose depen-
dence patterns are not in the three classes listed above is left
for future work. However, from a pragmatic standpoint this
may not be necessary. My conjecture is that for almost all
problems that arise in practice scan-attributions plus the
above three patterns suffice.)

7. Relation to previous work

Other work on parallel attribute evaluation includes
[6, 13,17,19, 28]. Kaplan and Kaiser present a distributed
evaluator for the problem of incremental attribute updating
in language-sensitive editors [ 13]. Boehm and Zwaenepoel
describe an implemented parallel attribute-grammar evalua.
tor that runs on a network multiprocessor of six SUN-2
workstations connected by an Ethernet network [6]. In [28],
Zaring presents parallel algorithms for ordered attribute
grammars [14]; Zaring gives algorithms for both tightly
coupled and loosely coupled multiprocessor architectures.
The approach presented in this paper is much different from
these previous approaches in two respects: (1) we focus on
attribute specifications that employ a data-parallel construct;
(2) the essence of our technique is to exploit associativity,
which provides us with the freedom to re-group the compu-
tation, thereby making it more amenable to parallel process-
ing.

Kuiper’s work is somewhat closer to ours in spirit in that
he makes use of an attribute-grammar transformation to res-
tructure computations [19]. When his transformation is
applicable, the attribute equations of the transformed attri-
bute grammar specify a computation equivalent to the origi-
nal attribute equations, but the derivation tree’s dependence
chains are shorter, which increases the amount of potential
parallelism. However, Kuiper’s transformation modifies the
attribute equations only, leaving the underlying context-free
grammar (and derivation trees) unchanged.

Kuiper’s transformation applies to certain types of
threadings over lists defined as right-recursive “combs”
(i.e., with a production of the form xList - x xList). For a



list of length k, it transforms the dependence graph of the
threading from a chain of length 2k into two chains, each of
length k. In the case of the construction of a symbol-table
attribute via a thread running through a list of declarations,
Kuiper’s transformation applies due to the fact that the list-
concatenation operation he uses to specify the construction
of a symbol table is an associative operator. A key differ-
ence between our work and Kuiper’s is that for this impor-
tant kind of attribute computation, Kuiper’s transformation
does not exploit the associativity property to the fullest. His
transformation is less powerful than the idea introduced in
this paper, which calls for transforming both the derivation
tree and the attribute equations. In particular, with our tech-
nique a right-recursive comb is transformed into a balanced
binary tree; the original dependence chain of length 2k is
replaced by a dependence graph in which the length of the
longest path is Xlogfi + 1.

Klaiber and Gokhale also make use of an attribute-
grammar transformation to restructure computations, in
their case a “list-flattening” transformation [1 7]. However,
their work is more in the spirit of Zaring’s work, which
deals with the parallel evaluation of “plans” for Kastens’s
class of ordered attribute grammars. Klaiber and Gokhale’s
work has similar goals, but is couched in terms of
Katayama’s translation of attribute grammars to mututally
recursive procedures [15]. Klaiber and Gokhale address the
problem of determining which calls to evaluation pro-
cedures can be scheduled in parallel. The list-flattening
transformation is a normalization step that can uncover
additional parallelization opportunities for their scheduling
algorithm.
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