
A Survey of X Protocol Multiplexors

John Eric Baldeschwieler, Thomas Gutekunst, Bernhard Plattne r
<gutekunst@tik .ethz.ch>, <plattner@tik .ethz .ch>

Swiss Federal Institute of Technolog y
Computer Engineering and Networks Laboratory (TIK )

ETH-Zentrum, ET Z
CH-8092 Zurich, Switzerland

Abstrac t

An X multiplexor allows a single X Window System client to be displayed and interacted with on several X server s
simultaneously . Such a service is necessary for the construction of a computer-supported cooperative work (CSCW )
environment such as JVTOS (Joint Viewing and Tele-Operation Service) which is being implemented within RACE

II project CIO 1 . This paper describes several existing X multiplexors and evaluates their usefulness for JVTOS .

Keyword s

Application Sharing, Computer Conferencing, Computer-Supported Cooperative Work (CSCW), Distributed Sys-
tems, Joint Viewing and Tele-Operation Service (JVTOS), X Protocol Multiplexer, X Window System .

1 Introduction
A computer-supported cooperative work (CSCW) environment requires joint viewing . This allows multiple users, eac h
on his own computer workstation, to view and interact with a single application . One solution to this problem is to
build a new set of cooperation-aware applications which explicitly support this requirement . Such an approach has sev -
eral problems . Perhaps the most critical of these is that users would be limited to the use of only special cooperation -
aware applications . Given the diversity of computer applications available, this requirement appears very limiting .

An Xprotocol multiplexor (MUX) is another solution to the joint viewing problem . A MUX is a special program whic h
exploits properties of the X Window System to allow joint viewing with unmodified X applications (clients) . Such an
approach is called application sharing and has several advantages . First, users are not required to use new application's ,
they can share their existing applications . Also, the joint viewing system does not need to be modified to incorporat e
new applications or changes to existing applications . And finally, the task of developing a CSCW environment will be
greatly reduced . Instead of reimplementing many existing programs, the developers need only implement the MU X
program .

The X Window System uses a client/server model . Each workstation is an X server which presents information to the
user and receives his responses . Each application program which receives user input or generates output is an X client .
Clients and servers communicate using the X protocol through a network connection . This allows a client to execute
on a different machine than its user interface, which is presented by its server . The X protocol describes a list of re-
quests, events, responses, and errors that can be sent over a client/server connection . A client sends a series of request s
to its server . The server then performs the requested actions, such as reporting its status, or drawing windows and thei r
contents . An X server sends a series of responses and events to each of its clients . Responses contain answers to clien t
requests, and events allow the server to report user activity such as key presses and mouse movement . Because all user
interface activity of an X client must pass through the client/server connection, it is possible to manipulate this strea m
with a MUX to provide joint viewing functionality .

A MUX must provide three services : connection, multiplexing, and filtering . Connection consists of intercepting th e
X client/server connection . A MUX appears to be a normal server to X clients . When a client connects to such a MUX ,
the MUX then connects to several servers . To each server the MUX appears to be a client . After the connection has
been established, the MUX sends a copy of every client request to each connected server . This action is called multi-
plexing . Responses, events, and errors from all of the servers are then collected by the MUX and reported to the clien t
as if they come from a single server . This collection must involve filtering of unwanted responses and events . For ex -

1 Participation in CIO was financed by the Swiss Confederation under grant no . BBW-R2122 .

ACM SIGCOMM

	

-16—

	

Computer Communication Review

http://crossmark.crossref.org/dialog/?doi=10.1145%2F165299.165304&domain=pdf&date_stamp=1993-04-01


ample, when an application requests information from its server it only expects one answer, not one for each server t o
which the MUX is connected . The result of this combination of connection, multiplexing, and filtering is a solution t o
the joint viewing problem . An unmodified X client is displayed and interacts with several users on separate worksta-
tions simultaneously.

Unfortunately, design and implementation of a MUX is not simple [Abdel-Wahab 92a] . Several of the design problem s
are inherent in the concept of the MUXes, such as the floor control problem described below . Other problems, such as
the late connection problem (also detailed below), are caused by details of the current X protocol . Following is a lis t
of major MUX design issues which we have observed during our survey .

A MUX's floor control policy is the technique it uses to determine which user actions will be passed to the client an d
which will be filtered out. There are both protocol and user interface issues to be considered when designing a MUX' s
floor control policy . The default answer of passing all user actions generated by any user to the client is potentiall y
confusing to the users and also to the client . If three people type simultaneously to a word processing program, the
resulting text is unlikely to be useful . If two users push their mouse button simultaneously, the result may violate th e
X protocol . As a result of this action, two button down events without a button up event would be reported . A normal
X server would not generate such a sequence of events . One approach is a lecture-style policy in which one master
user is allowed to interact with the application and the other users may only watch . This is clearly limiting . A more
complicated policy is a token-based model, in which the floor is passed from one user to another . The current floor
holder can then interact with the application and others are excluded . This approach requires a user interface to allo w
users to request and pass the floor to each other .

Another design issue is the late connection problem, caused by adding a new server to the list of servers displaying a n
already executing client . In principle this should not be difficult to implement, but the current X protocol lacks suppor t
for this operation. The problem is that a client must create and then reference X resources, such as windows, on its
servers in order to generate its user interface . The X protocol provides no way for the MUX to later request enoug h
information from either the client or the server to create the resources on the new server. Without these resources, th e
new server cannot correctly interpret client requests .

Heterogeneous servers are also a great source of problems . A simple example of this is byte ordering . If a client i s
MUXed to servers on two different machine architectures then the MUX must provide byte order translation . A more
complicated problem is heterogeneous displays . How should a MUX react if its servers have different bitmap depth s
or formats ?

This paper reports the results of our evaluation of currently available MUXes . We plan to incorporate X application
sharing functionality into a so-called Joint Viewing and Tele-Operation Service (JVTOS) [Dermler 92], [Gutekuns t
93] . JVTOS is issue of work package 4 .2 within RACE II project CIO (R2060) [Bauerfeld 92] . For this reason, we are
concerned not only with the current functionality of the products, but also with the ease with which these products ca n
be incorporated into a larger development project . We have acquired and tested the following MUX products : X Ter-
minal View (XTV) [Abdel-Wahab 91], SharedX (ShX) [Altenhofen 90], Xmux [McFarlane 91] and XMX . Our evalua-
tion consisted of first conducting a set of black box functionality tests of the various products and then considerin g
issues such as source code availability and product architecture . Section 2 of this paper introduces the tested MUXes .
Section 3 describes the test suites we used for evaluation . Section 4 discusses our more detailed review of the products .
Section 5 summarizes our results and concludes this paper .

2 The Multiplexors
At their core, each of the MUXes has apseudo server, a program which presents an X server interface to clients share d
over the MUX. Clients connect to this application in exactly the same fashion as they connect to a normal X server ,
by specifying a target machine and a display number . By choosing pseudo server display numbers which do not con-
flict with a machine's normal server, a MUX may be run on any host computer . This pseudo server is then responsible
for transmitting multiplexed protocol streams to the actual X servers among which an application is to be shared . To
have an application shared, a user must simply specify the MUX as the server . For example: After starting a MUX o n
the computer `myhost' with display number two, a jointly viewed xtenn could be started with the following comman d
line :

xterm -display myhost : 2

Comparing the currently available MUXes is complicated by their dissimilarity . The varied target environments of th e
MUXes have effected their designs and have resulted in different strengths and weaknesses . Before presenting our test
results we will introduce the MUXes and describe their origin and major features .

ACM SIGCOMM

	

-17—

	

Computer Communication Review



2.1 XMX
XMX was developed by John Bazik at Brown University to support presentation of computer programs to students in
a class room where each student has a computer on his desk . Several simplifying assumptions were made in XMX' s
design . The floor control policy is lecture mode, all servers are assumed to be identical to the lecturer 's server, an d
only black and white displays are handled . The source code of this product is provided . It is small and comprehensible .
Brown University holds the source code copyright, but allows free non-profit use .

XMX is very simple to use . The XMX pseudo server is launched with a command line which specifies a list of X serv-
ers to be used as displays . The first server specified is the master server . Once the pseudo server is running, applica-
tions connecting to it are automatically multiplexed to all of the servers on the list . The master server is the lecturer
and will always hold the floor of all MUXed clients .

2.2 Xmux
Xmux [McFarlane 91] was developed by the Australian company OTC Ltd . It has proven to be both relatively robus t
and full featured . Unfortunately it is a commercial product, source code is not available, and our copy was lent to u s
on a short-term trial basis . All of the other MUXes we have reviewed have been freeware, with source code and the
right to copy and modify granted . This seriously limits Xmux's value in a research environment .

Xmux can be launched in the same manner as XMX . However the floor control policy can be either lecture or anarch y
in which all users can act at once . In anarchy mode, mouse event filtering is provided to avoid protocol errors . Floor
control commands can also be provided through a command socket interface to the pseudo server . We did not test thi s
interface, all testing was done with a lecture or anarchy policy .

Like XMX, Xmux does not address the late connection problem . All servers are specified at pseudo server start-u p
time. Xmux is the only MUX tested which handled the shape extensions to the X protocol correctly .

2.3 X Terminal View (XTV )
XTV [Abdel-Wahab 91] was developed by researchers located in Old Dominion University and the University o f
North Carolina at Chapel Hill . The software is copyrighted by the universities, which grant permission to use th e
source code . A version is also distributed in the contrib section of the X11R5 release of the X Window System . Un-
fortunately all versions we have tested have proven to be unstable and crash prone . We have tested both the first versio n
of the XTV, and the recently distributed second version (denoted as XTV/2) .

XTV was developed specifically as a CSCW tool and as such contains user interface features not present in the othe r
MUXes. These include a graphical user interface to control client launching and floor control as well as chat and sketc h
windows to facilitate communication . XTV/2 also provides a virtual screen feature [Lin 92] .

Unlike the other MUXes tested, XTV is started as a client on each machine . The users can join an XTV session b y
specifying a host and a session number at XTV start-up time . A solution to the late connection problem is provided to
facilitate this joining process [Chung 91] . XTV/2 also provides a graphical user interface to session selection which i s
based on a conferencing information service for the internet [Abdel-Wahab 92b] . However, we did not test this .

The floor control policy supported is a chaired token passing model, in which users request the token and are queued .
When the floor holder chooses to release the floor, the first user in the queue receives it . The creator of the session is
the chairman and may forcefully take the floor at any time . This is the only MUX we reviewed which provided a user
interface to such functionality .

2.4 SharedX (ShX)
SharedX [Altenhofen 90] was developed by Michael Altenhofen at the University of Karlsruhe with support from th e
Digital Equipment Corporation (DEC) to be used in a tutorial/classroom environment . The original version (ShX-1 )
was developed as a master thesis project and is no longer under development .

We have tested this original version and two more recent versions : ShX-UCL and ShX-DFKI . Both of these versions
are the result of further work by other research groups . Both groups have improved SharedX ' s color support . ShX-
UCL comes from the University College London (UCL) and is used in the CAR multimedia conferencing project at
UCL. ShX-DFKI was developed by Siemens/DFKI Saarbrucken for integration into a JVTOS demonstration proto-
type .

SharedX is implemented as a set of modifications to the standard X library, xlib, yielding the new library shXlib . Ap-
plications linked with shXlib, instead of the standard xlib, can then be used for joint viewing . One application built

ACM SIGCOMM

	

-18–

	

Computer Communication Review



with this library is a more typical MUX pseudo server named shXbridge . We have tested shXbridge . The source cod e
to both shXlib and shXbridge is copyrighted by DEC, which allows its free use .

ShXbridge is started in the same fashion as the other pseudo servers, but only one X server is specified . When client s
connect to the shXbridge they are displayed on this X server . The user may at any point connect application windows
to other servers, using the program helper (a solution to the late connection problem is used to allow this) . Floor control
policy is then token based, the helper program can again be used to pass the floor or to remove the client from selecte d
applications . The user interface to this functionality is primitive, but the documentation explains how a more sophis-
ticated interface can be built .

3 Test Suites
We used three test suites to evaluate the MUXes : afunctionality, a robustness and a heterogeneity test suite. This sec-
tion provides an overview of the three test suites and explains the motivation behind the various tests .

3.1 Functionality Test Suite
Our first test suite was designed simply to test functionality of the MUXes in a homogeneous environment . A pair of
Sun3 servers were used as display servers and MUXes were executed on a single Sun Sparc2 .

The following tests were used :

• Clients :
Can a list of standard X clients run? The clients used for this test were : xterm, emacs, xtetris, xeyes, xfig an d
FrameMaker . All can be found in the MIT X11R5 distribution, with the exception of FrameMaker . FrameMaker
is a commercial word processing/desktop publishing program .

• Window expose :
Are MUXed windows correctly redrawn when they generate expose events? This tests a MUX's event filtering .
XMX only does redraws for the master server !

• Shapes :
Are the X shape extensions supported? Xeyes run as a test . If the shape extensions are not supported, then th e
eyes will be placed in a rectangular window . Xeyes is part of the MIT X 11R5 distribution .

• Resources :
Test handling of pixmaps and other resources . Xfig run as a test . It creates and uses a larger number of serve r
resources . Xfig can be found in the contrib section of the MIT X11R5 distribution .

• Cut&paste :
Can all users cut and paste to and from the MUXed windows? If not, can the floor holder do so ?

• Child window :
Are dialogue box style windows handled correctly? FrameMaker produces many small windows which are dis-
played at fixed locations without title bars when the application is not MUXed . How are they placed when it i s
MUXed ?

• Floor control :
How well does the floor control interface work ?

• Late connection :
Does the MUX allow a new server to connect to an already running client ?

3.2 Robustness Test Suite
The robustness suite tests exceptional cases which do not require handling heterogeneous servers .

The following tests were used :

• Client kill :
Does the MUX handle a client terminating gracefully? This was tested by starting an xterm and then giving it the
exit command . Correct behaviour is to simply remove the xterm from all servers .

• Connection kill :
Does the MUX handle a server discarding a window gracefully? This was tested by using the twm (a standard X
window manager) destroy window command . One can imagine many possible responses to this . The simples t

ACM SIGCOMM

	

-19—

	

Computer Communication Review



response is just to continue the application on the remaining servers . Crashing or freezing the application are no t
good responses !

3.3 Heterogeneity Test Suite
Unfortunately, due to our limited number of machines, we could not perform too many tests of heterogeneous envi-
ronments . The only standard UNIX development environment we had available was on a Sun Sparc2 . So all code was
compiled and executed on one of our Sparcstations . However, this did not limit our choice of servers . We tested each
MUX with a mix of Spares, Sun3s and Apple MaclIs (running MacX 1 .2) as servers . This allowed us to test heteroge-
neous server and display mixes, but did not let us test code portability or byte order issues .

The following tests were used :

• Server types :
Can the application MUX a client to a Sun3, a Sparc2 and a MacII ?

• Color :
Are color applications well supported? Xcolors was used along with color xfig and FrameMaker documents . Due
to our limited selection of workstations this could only be tested between an 8bit-color Sparc2 and an 8bit-colo r
MacII .

• Color depths :
Can the MUX display a color application on an 8bit-color display and a monochrome display simultaneously ?

3.4 Items Removed from the Test Suite Report s
The following test items were removed from the test suite reports because of uniform results or testing problems :

• Menu location :
Ideally an application ' s pop-up menus should be drawn over window on every server, even if the window is no t
in the same location on every server . This was tested by bringing up xterm's and FrameMaker's menus . None of
the tested MUXes did this correctly . In all cases the pop-up appeared in the same screen location on all screens ,
regardless of the application window's position .

• Window resize :
What happens when a user resizes a multiplexed window? None of the MUXes handled this well . The solution
commonly used was simply to allow the different instances of the window to become different sizes . Drawing
commands are then cropped or fail to fill the full window on some server . A preferable solution would maintain
a single common window size .

• Key remap :
How does the MUX respond to miscellaneous server control commands such as those used to reconfigure th e
keyboard mappings? None of the MUXes handled this well . A common response was to report errors and appl y
the changes to one of the MUXes' servers .

• Many clients:
Can the MUX support many clients simultaneously? Every MUX passed this test! In all cases the limit seemed
to be the OS imposed limit of open connects a process may possess . The XTV floor passing interface require s
the user to select the client one wishes to use from a scrolling list . This list does not scroll correctly, so that if
more than six clients are created, not all can be used .

• Many servers :
This robustness test involved multiplexing a client to several (five and more) servers simultaneously . All of th e
MUXes passed this test .

4 Test Results
This section presents our test results for each of the tested MUXes . They are shown in table 1, a dash indicating a fail -
ure, `+/-' a conditional pass, and `X' a strong pass . The results are discussed on a MUX by MUX basis .

4.1 XMX

XMX is clearly the most limited of the MUXes tested . It was designed to be a lecture support tool, not a full functio n
MUX. It was the only MUX tested that could not redraw windows that did not belong to the floor holder and it als o
lacks any support for heterogeneous servers .

ACM SIGCOMM

	

-20 —

	

Computer Communication Review



One particularly strange aspect of its behaviour is that it appears to make only a single connection to each slave server ,
not a connection per client as the other MUXes do . This caused it to fail the connection kill test. Whenever a singl e
window belonging to XMX is destroyed on a slave server, that server is disconnected from XMX, destroying al l
MUXed windows on that server . A related oddity is that all windows on the slaves appear as top-level untitled win-
dows . This is particularly annoying when an application tries to create a dialogue box . Each slave running a twm-lik e
window manager then freezes and waits for its user to position the dialogue box . The application's dialogues do no t
behave like this on the Master . The only MUX which did worse on the child window test was the UCL version o f
SharedX, which simply failed to display the window on all but the original server .

Despite its obvious failings XMX is an interesting reference application . At about 7 .000 lines of source code, it is muc h
smaller than any of the other MUXes . The code is simply and clearly structured, and the MUX itself is fairly stable .
When we tested unsupported features XMX reported errors where other MUXes simply crashed . So in conclusion, al -
though XMX is not suitable for direct use in the JVTOS project, it may provide a useful example or base for futur e
MUX development work .

XMX Xmux XTV XTV/2 ShX-1 ShX-UCL ShX-DFK I

clients X X +/- +/- +/- X X

window expose - X X X X X X

shapes X - - - - -

resources - - - X +/- X X

cut&paste - X - +/- +/- +/- +/-

child window - X X X X X

floor control - X X X X X X

late connection - - X X X X X

client kill X X - X X X X

connection kill - - X X +/- +/- +/-

server types - X +/- +/- X X X

color - X - - - +/- +/-

color depths - X - - - +/- +/ -

Table 1 : Test Result s

4.2 Xmux

Interesting results for Xmux included having the only working solution to cut&paste and the shape extensions . It als o
had the best support for color . This was the only MUX that appeared to account for the available resources of all of it s
target servers when making color allocation decisions . The late connection problem is not addressed . The connectio n
kill test left the effected client frozen on all but the connection-killing server . Other clients were not effected, so thi s
was not fatal, but this is not an optimal solution .

Xmux tested very well . It proved to be stable and robust in comparison to the other MUXes . One major lacking is its
failure to address the late connection problem . However, its largest disadvantage is the fact that it is a commercial prod -
uct . Greg McFarlane and OTC Ltd . have been very helpful, but we have not been able to access source code to th e
system and have not been lead to believe that the research community will have free access to their product . For this
reason we do not recommend its use in the JVTOS project .

4.3 XTV

In its first version, XTV performed very badly during testing . It crashed very frequently . It was the only MUX to fai l
the client kill test . It responded by crashing . It crashed when we tried to run it on MacX . It crashed while loading the
xfig and FrameMaker program and during cut&paste testing. It crashed within every heterogeneity test suite test a s
well . In short, it crashed a lot .

ACM SIGCOMM

	

-21—

	

Computer Communication Revie w



Most of these bugs are fixed in XTV/2 . However, FrameMaker still causes XTV/2 to crash! Another oddity of XTV /
2 is that it is not independent of the window manager . We tried to use the same X display for the chairman as well a s
for a second participant intending to join the session . This failed when using the window manager which comes wit h
OpenWindows 2 .0 and caused the X server (!) to crash, whereas everything went fine when using the twm windo w
manager .

In both versions, a problem with XTV's floor control interface emerged during the many clients test . The scrolling
region used to select clients for floor passing and other actions does not scroll . This prevented floor passing and other
actions for all but the first six clients on the list .

On the other hand, XTV outperformed all of the other MUXes in some areas . It was the only MUX to behave well i n
the connection kill test. It has the most advanced floor passing system, and it provides a solution to the late connection
problem .

XTV's source code proved to be a mixed bag as well . At about 25 .000 or 30 .000 lines respectively, it is not very large .
The architecture of the system is distributed and thus similar to the proposed architecture for JVTOS' application shar -
ing service [Gutekunst 921 . As such it offers a lot of potential leverage and time savings . Unfortunately the code itself
is not well documented . It seems to be fairly well organised, but lacks the summary documentation that should hel p
explain its user interface code and multiple processes .

Our final evaluation of XTV is very mixed . It is the only MUX tested that was designed specifically for CSCW appli-
cations such as those we intend to develop. As such it offered many interesting features, such as late joining, good floo r
passing control, and a general session control user interface, that were not provided by the other MUXes . On the other
hand XTV proved not to be a stable enough to pass the testing suites . For the present we cannot recommend incorpo-
rating XTV into the JVTOS project, although its approach warrants study, and some of its modules may prove directl y
usable .

4.4 SharedX (ShX)
All three versions of SharedX tested are covered within this section .

ShX-DFKI was the best performing of the freeware MUXes in the test suites . Both ShX-UCL and ShX-DFKI have
better color support than their predecessor ShX-1 . Neither handled the case of multiplexing to a second server wit h
less color map entries available than the number already in use on the original server . This may not be easily solvable
in the context of the late joining problem . ShX-UCL has introduced at least one new problem : Dialogue boxes an d
menus created by MUXed clients appeared only on the original server's screen . ShX-1 handled dialogue boxes wel l
(child window test) . The UCL version failed this test .

All SharedX versions had some problems with cut&paste . Although the floor holder could usually successfully cut&-
paste we experienced one crash during testing, the display was often not correctly updated and the shXbridge ofte n
reported errors . Paste behaviour of non floor-holding users was also erratic . Xfig {resource test) reported many color
related errors and all versions had pixmap related complaints . Connection kill was also erratic, but never fatally so .

The SharedX design approach is unique . The shXbridge incorporates a modified version of the complete xlib library .
For this reason, the source code is much larger than for the other MUXes (about 53 .000 lines) . This size is slightl y
deceptive, because most of the files in the modified xlib have only a few lines changed from their original forms . How -
ever, xlib itself has changed with every release of the X Window System and SharedX is now two releases behin d
(Xl 1R3 versus X11R5) . The fact that no one has updated the shXlib system to the Xl iR5 leads us to believe that thi s
update will be difficult . We believe that SharedX's dependency on the internals of the xlib implementation is a seriou s
design weakness . All of the other MUXes reviewed are only dependent on the X protocol specification, which is wel l
documented and stable. This dependency problem alone would be enough to cause us to reject SharedX if any of th e
other freeware MUXes had proven to be both stable and full featured .

4.5 Other Comparative Results
Table 2 contains a mix of non-test data that influenced our final recommendation :

• MUX freeware :
Is the MUX a freeware product, i .e . is the source code available, and can it be legally copied, modified, and re -
distributed for non-profit uses ?

• Source lines :
Number of lines of MUX source code . This is a somewhat useful measure of how difficult the source code wil l
be to understand, modify and maintain .

ACM SIGCOMM

	

-22–

	

Computer Communication Review



•▪ Least crashes :

The number of times this MUXes crashed during its best run through the test suites .

• Current product :
Is this MUX currently under development? Can the product's developer be contacted? Note that with the excep-
tion of Xmux, these products are all freeware . The developers have made no commitment to product support ,
they have simply made it available to the research community .

• New version soon :
Have the developers of this product promised a new release of the MUX in the near future ?

XMX Xmux XTV XTV/2 ShX-1 ShX-UCL ShX-DFKI

MUX freeware yes no yes yes yes yes yes

source lines 7 .107 ? 25 .798 30 .465 52 .811 53 .168 53 .18 9

least crashes 0 0 6 4 2 1 1

current product yes yes no yes no yes yes

update expected yes ? no ? no ? ?

Table 2 : Other Comparative Result s

5 Summary and Conclusion s
We find XMX to be an interesting teaching example . Its code is small and simple . However it is not nearly full featured
enough to consider use as is . Its most serious lacking is that the servers supported are not equal . One server is the maste r
and the others are simply slaves, displaying the actions of the master . A new version with a much larger feature se t
entered alpha test in January 1993 . We plan to review it as soon as it has become stable .

Xmux seems to be a well designed and implemented product . It is stable and full featured, although it does not provide
a solution to the late connection problem . However, unlike all of the other X wedges reviewed, it is a commercial prod -
uct . Hence, no source code is available . For this reason we are not considering using it for JVTOS .

XTV has the most promising architecture and feature set of all of the MUXes reviewed . It provides solutions to the late
connection problem and full floor control features . Its first version has proven to be very unstable . XTV/2 crashed les s
but is not stable enough yet . We do not believe that the code can be used as is for JVTOS . However some module s
may prove directly usable .

We reviewed three versions of SharedX : ShX-1, ShX-UCL and ShX-DFKI . Both ShX-DFKI and ShX-UCL improved
color support, but ShX-UCL has introduced a serious child window handling bug . For these reasons ShX-DFKI ap-
pears to be the best choice of the three . SharedX is full featured and well documented . Two related flaws are its larg e
source code size and its grounding in the outdated release 3 of the X Window System . The fact that it has not been
updated from this release in over two years of development cause us to believe that such a renovation has proven dif-
ficult .

Our survey has not yielded an obvious best choice MUX for inclusion in the JVTOS project . By process of elimination
ShX-DFKI appears to be the best choice for as is inclusion into a development project . The factors influencing thi s
recommendation are : First, ShX-DFKI is freeware . Secondly it is full featured, providing support for heterogeneou s
servers, color, the late connection problem, and has a token-based floor control policy . And finally, it has proven to b e
fairly reliable and crash resistant. However, ShX-DFKI has enough detrimental features that we shall be forced to con -
sider either waiting for improvements in the existing MUXes or building a new MUX, perhaps incorporating technol-
ogy from XMX and/or XTV .

The process of elimination that yields ShX-DFKI results from the following ranked requirements :

(1) freeware ; (2) full featured; (3) reliable ; (4) simple, clean and maintainable code .

Requirement one is based on the fact that we anticipate needing to modify any system we use over time. This requires
source code . We also expect to be able to freely distribute the result of our work . Hence our insistence on freeware .
This eliminates Xmux from consideration .

Requirement two eliminates XMX and ShX-1 . ShX-DFKI is a super-set of ShX-1's functionality . It also is currently
under development, whereas ShX-1 is a finished thesis project .

ACM SIGCOMM

	

-23—

	

Computer Communication Revie w



This leaves only XTV and ShX-DFKI under consideration . The test suite has convincingly eliminated XTV . It has
proven very unreliable . XTV crashed more often than all of the other MUXes combined .

So we are left with ShX-DFKI . Unfortunately the fourth requirement also brings ShX-DFKI under question . It is base d
on an outdated version of X and includes a very large amount of modified X l 1R3 library code . This is not very clean
or reliable . Despite this, we see ShX-DFKI as the best as is MUX option .

Instead of a strong recommendation, we are forced to present two options for consideration . If it is decided that JVTOS
development must not focus on MUX development, then, in our opinion, ShX-DFKI currently presents the best base .
The second option is to develop a new MUX . Given that the reviewed MUXes provide plenty of source code example s
and that code from them can be borrowed under the normal freeware conditions (i .e . credit the original authors), this
option should also be considered .

6 Acknowledgement s
The authors would like to thank the partners of CIO work package 4 .2 for their discussions, advice and comments . Jtirg
Ehrbar, Michael Frass, Thomas Schmidt, Gunter Schulze, and Wladimir Minenko have been of particular assistance .

7 References
[Abdel-Wahab 91] Hussein M . Abdel-Wahab, Mark A . Feit : "XTV : A Framework for Sharing X Window Client s

in Remote Synchronous Collaboration" . Proceedings, IEEE Tricomm `91 : Communications fo r
Distributed Applications & Systems . Chapel Hill, 1991 .

[Abdel-Wahab 92a] Hussein Abdel-Wahab, Kevin Jeffay : "Issues, Problems and Solutions in Sharing X Clients o n
Multiple Displays " . Technical Report TR92-042, University of North Carolina. Chapel Hill ,
1991 .

[Abdel-Wahab 92b] Hussein Abdel-Wahab: "Reliable Information Service for Internet Computer Conferencing" .
Technical Report TR92-043, University of North Carolina . Chapel Hill, 1991 .

[Altenhofen 90]

	

Michael Altenhofen : "Erweiterung eines Fenstersystems fur Tutoring-Funktionen" . Diploma
Thesis at Universitat Karlsruhe . Karlsruhe, 1990 .

[Bauerfeld 92]

	

Wulfdieter Bauerfeld: "RACE-Project CIO (R2060) : Coordination, Implementation and Ope-
ration of Multimedia Tele-Services on Top of a Common Communication Platform" . IWACA
`92 - International Workshop on Advanced Communications and Applications for High Speed
Networks. Munchen, 1992 .

[Chung 91]

	

Goopeel Chung : "Accommodating Latecomers in a System for Synchronous Collaboration" .
Master Thesis at University of North Carolina . Chapel Hill, 1991 .

[Dermler 92]

	

Gabriel Dermler, Konrad Froitzheim: "JVTOS - A Reference Model for a New Multimedia Ser-
vice " . 4th IFIP Conference on High Performance Networking (hpn `92) . Liege, 1992 .

[Gutekunst 92]

	

Thomas Gutekunst : "Proposed Implementation Architecture for the Application Sharing Ser-
vice " . Internal Report of RACE/CIO WP 4 .2 . Zurich, 1992 .

[Gutekunst 93] Thomas Gutekunst, Thomas Schmidt, Gunter Schulze, Jean Schweitzer, Michael Weber : "A
Distributed Multimedia Joint Viewing and Tele-Operation Service for Heterogeneous Worksta -
tion Environments" . GI/ITG Workshop on Distributed Multimedia Systems . Stuttgart, 1993 .

[McFarlane 91] Greg McFarlane: "Xmux - A system for computer supported collaborative work" . Proceedings ,
1st Australian Multi-Media Communications, Applications & Technology Workshop . Sydney ,
1991 .

[Lin 92]

	

Jin-Kun Lin : "Virtual Screen : A Framework for Task Management" . The X Resource 1, Winter
1992, pp . 191 - 198 . 1992 .

ACM SIGCOMM

	

-24–

	

Computer Communication Review


