A Survey of X Protocol Multiplexors

) John Eric Baldeschwieler, Thomas Gutekunst, Bernhard Plattner
Sheck op <gutekunst@tik.ethz.ch>, <plattner@tik.ethz.ch>

Swiss Federal Institute of Technology
Computer Engineering and Networks Laboratory (TIK)
ETH-Zentrum, ETZ
CH-8092 Ziirich, Switzerland

Abstract

An X multiplexor allows a single X Window System client to be displayed and interacted with on several X servers
simultaneously. Such a service is necessary for the construction of a computer-supported cooperative work (CSCW)
environment such as JVTOS (Joint Viewing and Tele-Operation Service) which is being implemented within RACE

11 project CIO!. This paper describes several existing X multiplexors and evaluates their usefulness for JVTOS.

Keywords

Application Sharing, Computer Conferencing, Computer-Supported Cooperative Work (CSCW), Distributed Sys-
tems, Joint Viewing and Tele-Operation Service (JVTOS), X Protocol Multiptexer, X Window System.

1 Introduction

A computer-supported cooperative work (CSCW) environment requires joint viewing. This allows multiple users, each
on his own computer workstation, to view and interact with a single application. One solution to this problem is to
build a new set of cooperation-aware applications which explicitly support this requirement. Such an approach has sev-
eral problems. Perhaps the most critical of these is that users would be limited to the use of only special cooperation-
aware applications. Given the diversity of computer applications available, this requirement appears very limiting.

AnX protocol multiplexor (MUX) is another solution to the joint viewing problem. A MUX is a special program which
exploits properties of the X Window System to allow joint viewing with unmodified X applications (clients). Such an
approach is called application sharing and has several advantages. First, users are not required to use new applications,
they can share their existing applications. Also, the joint viewing system does not need to be modified to incorporate
new applications or changes to existing applications. And finally, the task of developing a CSCW environment will be
greatly reduced. Instead of reimplementing many existing programs, the developers need only implement the MUX
program.

The X Window System uses a client/server model. Each workstation is an X server which presents information to the
user and receives his responses. Each application program which receives user input or generates output is an X client.
Clients and servers communicate using the X protocol through a network connection. This allows a client to execute
on a different machine than its user interface, which is presented by its server. The X protocol describes a list of re-
quests, events, responses, and errors that can be sent over a client/server connection. A client sends a series of requests
10 its server. The server then performs the requested actions, such as reporting its status, or drawing windows and their
contents. An X server sends a series of responses and events to each of its clients. Responses contain answers to client
requests, and events allow the server to report user activity such as key presses and mouse movement. Because all user
interface activity of an X client must pass through the client/server connection, it is possible to manipulate this stream
with a MUX to provide joint viewing functionality.

A MUX must provide three services: connection, multiplexing, and filtering. Connection consists of intercepting the
X client/server connection, A MUX appears to be a normal server to X clients. When a client connects to such a MUX,,
the MUX then connects to several servers. To each server the MUX appears to be a client. After the connection has
been established, the MUX sends a copy of every client request to each connected server. This action is called multi-
plexing. Responses, events, and errors from all of the servers are then collected by the MUX and reported to the client
as if they come from a single server. This collection must involve filtering of unwanted responses and events. For ex-

1 Participation in CIO was financed by the Swiss Confederation under grant no. BBW-R2122.

ACM SIGCOMM -16~ Computer Communication Review

http://crossmark.crossref.org/dialog/?doi=10.1145%2F165299.165304&domain=pdf&date_stamp=1993-04-01

ample, when an application requests information from its server it only expects one answer, not one for each server to
which the MUX is connected. The result of this combination of connection, multiplexing, and filtering is a solution to
the joint viewing problem. An unmodified X client is displayed and interacts with several users on separate worksta-
tions simultaneously.

Unfortunately, design and implementation of a MUX is not simple [Abdel-Wahab 92a]. Several of the design problems
arc inherent in the concept of the MUXes, such as the floor control problem described below. Other problems, such as
the late connection problem (also detailed below), are caused by details of the current X protocol. Following is a list
of major MUX design issues which we have observed during our survey.

A MUXs floor control policy is the technique it uses to determine which user actions will be passed to the client and
which will be filtered out. There are both protocol and user interface issues to be considered when designing a MUX’s
floor control policy. The default answer of passing all user actions generated by any user to the client is potentially
confusing to the users and also to the client. If three people type simultancously to a word processing program, the
resulting text is unlikely to be useful. If two users push their mouse button simultaneously, the result may violate the
X protocol. As a result of this action, two button down events without a button up event would be reported. A normal
X server would not generate such a sequence of events. One approach is a lecture-style policy in which one master
user is allowed to interact with the application and the other users may only watch. This is clearly limiting. A more
complicated policy is a token-based model, in which the floor is passed from one user to another. The current floor
holder can then interact with the application and others are excluded. This approach requires a user interface to allow
users to request and pass the floor to each other.

Another design issue is the late connection problem, caused by adding a new server to the list of servers displaying an
already executing client. In principle this should not be difficult to implement, but the current X protocol lacks support
for this operation. The problem is that a client must create and then reference X resources, such as windows, on its
servers in order to generate its user interface. The X protocol provides no way for the MUX to later request enough
information from either the client or the server to create the resources on the new server. Without these resources, the
new server cannot correctly interpret client requests.

Heterogeneous servers are also a great source of problems. A simple example of this is byte ordering. If a client is
MUZXed to servers on two different machine architectures then the MUX must provide byte order translation. A more
complicated problem is heterogeneous displays. How should a MUX react if its servers have different bitmap depths
or formats?

This paper reports the results of our evaluation of currently available MUXes, We plan to incorporate X application
sharing functionality into a so-called Joint Viewing and Tele-Operation Service (JVTOS) [Dermler 92], [Gutekunst
93]. JVTOS is issue of work package 4.2 within RACE II project CIO (R2060) [Bauerfeld 92]. For this reason, we are
concerned not only with the current functionality of the products, but also with the ease with which these products can
be incorporated into a larger development project. We have acquired and tested the following MUX products: X Ter-
minal View (XTV) [Abdel-Wahab 911, SharedX (ShX) [Altenhofen 90], Xmux {(McFarlane 91} and XMX. Our evalua-
tion consisted of first conducting a set of black box functionality tests of the various products and then considering
issues such as source code availability and product architecture. Section 2 of this paper introduces the tested MUXes.
Section 3 describes the test suites we used for evaluation. Section 4 discusses our more detailed review of the products.
Section 5 summarizes our results and concludes this paper.

2 The Multiplexors

At their core, each of the MUXes has a pseudo server, a program which presents an X server interface to clients shared
over the MUX. Clients connect to this application in exactly the same fashion as they connect to a normal X server,
by specifying a target machine and a display number. By choosing pseudo server display numbers which do not con-
flict with a machine’s normal server, a MUX may be run on any host computer. This pseudo server is then responsible
for transmitting multiplexed protocol streams to the actual X servers among which an application is to be shared, To
have an application shared, a user must simply specify the MUX as the server. For example: After starting a MUX on
the computer ‘myhost’ with display number two, a jointly viewed xterm could be started with the following command
line:

xterm -display myhost:2

Comparing the currently available MUZXes is complicated by their dissimilarity. The varied target environments of the
MUZXes have effected their designs and have resulted in different strengths and weaknesses. Before presenting our test
results we will introduce the MUXes and describe their origin and major features,

ACM SIGCOMM -17- Computer Communication Review

2.1 XMX

XMX was developed by John Bazik at Brown University to support presentation of computer programs to students in
a class room where each student has a computer on his desk. Several simplifying assumptions were made in XMX's
design. The floor control policy is lecture mode, all servers are assumed to be identical to the lecturer’s server, and
only black and white displays are handled. The source code of this product is provided. It is small and comprehensible.
Brown University holds the source code copyright, but allows free non-profit use.

XMX is very simple to use. The XMX pseudo server is launched with a command line which specifies a list of X serv-
ers to be used as displays. The first server specified is the master server. Once the pseudo server is running, applica-
tions connecting to it are automatically multiplexed to all of the servers on the list. The master server is the lecturer
and will always hold the floor of all MUXed clients.

2.2 Xmux

Xmux [McFarlane 91] was developed by the Australian company OTC Ltd. It has proven to be both relatively robust
and full featured. Unfortunately it is a commercial product, source code is not available, and our copy was lent to us
on a short-term trial basis. All of the other MUXes we have reviewed have been freeware, with source code and the
right to copy and modify granted. This seriously limits Xmux’s value in a research environment.

Xmux can be launched in the same manner as XMX. However the floor control policy can be either lecture or anarchy
in which all users can act at once. In anarchy mode, mouse event filtering is provided to avoid protocol errors. Floor
control commands can also be provided through a command socket interface to the pseudo server. We did not test this
interface, all testing was done with a lecture or anarchy policy.

Like XMX, Xmux does not address the late connection problem. All servers are specified at pseudo server start-up
time. Xmux is the only MUX tested which handled the shape extensions to the X protocol correctly.

2.3 X Terminal View (XTYV)

XTV [Abdel-Wahab 91] was developed by rescarchers located in Old Dominion University and the University of
North Carolina at Chapel Hill. The software is copyrighted by the universities, which grant permission to use the
source code, A version is also distributed in the contrib section of the X11RS5 release of the X Window System. Un-
fortunately all versions we have tested have proven to be unstable and crash prone. We have tested both the first version
of the XTV, and the recently distributed second version (denoted as XTV/2).

XTV was developed specifically as a CSCW tool and as such contains user interface features not present in the other
MUZXes. These include a graphical user interface to control client launching and floor control as well as chat and sketch
windows to facilitate communication. XTV/2 also provides a virtual screen feature [Lin 92].

Unlike the other MUXes tested, XTV is started as a client on each machine. The users can join an XTV session by
specifying a host and a session number at XTV start-up time. A solution to the late connection problem is provided to
facilitate this joining process [Chung 91]. XTV/2 also provides a graphical user interface to session selection which is
based on a conferencing information service for the internet [Abdel-Wahab 92b]. However, we did not test this.

The floor control policy supported is a chaired token passing model, in which users request the token and are queued.
When the floor holder chooses to release the floor, the first user in the queue receives it. The creator of the session is
the chairman and may forcefully take the floor at any time. This is the only MUX we reviewed which provided a user
interface to such functionality.

2.4 SharedX (ShX)

SharedX [Altenhofen 90] was developed by Michael Altenhofen at the University of Karlsruhe with support from the
Digital Equipment Corporation (DEC) to be used in a tutorial/classroom environment. The original version (ShX-1)
was developed as a master thesis project and is no longer under development.

We have tested this original version and two more recent versions: ShX-UCL and ShX-DFKI. Both of these versions
are the result of further work by other research groups. Both groups have improved SharedX’s color support. ShX-
UCL comes from the University College London (UCL) and is used in the CAR multimedia conferencing project at
UCL.. ShX-DFKI was developed by Siemens/DFKI Saarbriicken for integration into a JVTOS demonstration proto-
type.

SharedX is implemented as a set of modifications to the standard X library, xlib, yielding the new library shXlib. Ap-
plications linked with shXlib, instead of the standard xlib, can then be used for joint viewing. One application built

ACM SIGCOMM ~18- Computer Communication Review

with this library is a more typical MUX pscudo server named shXbridge. We have tested shXbridge. The source code
to both shXlib and shXbridge is copyrighted by DEC, which allows its free use.

ShXbridge is started in the same fashion as the other pseudo servers, but only one X server is specified. When clients
connect to the shXbridge they are displayed on this X server. The user may at any point connect application windows
to other servers, using the program helper (a solution to the late connection problem is used to allow this). Floor control
policy is then token based, the helper program can again be used to pass the floor or to remove the client from selected
applications. The user interface to this functionality is primitive, but the documentation explains how a more sophis-
ticated interface can be built.

3 Test Suites

We used three test suites to evaluate the MUXes: a functionality, a robustness and a heterogeneity test suite, This sec-
tion provides an overview of the three test suites and explains the motivation behind the various tests.

3.1 Functionality Test Suite

Our first test suite was designed simply to test functionality of the MUXes in a homogeneous environment. A pair of
Sun3 servers were used as display servers and MUXes were executed on a single Sun Sparc?2.

The following tests were used:

» Clients:
Can a list of standard X clients run? The clients used for this test were: xterm, emacs, xtetris, xeyes, xfig and
FrameMaker. All can be found in the MIT X11RS distribution, with the exception of FrameMaker, FrameMaker
is a commercial word processing/desktop publishing program.

» Window expose:
Are MUXed windows correctly redrawn when they gencrate expose events? This tests a MUX’s event filtering.
XMX only does redraws for the master server!

o Shapes:
Are the X shape extensions supported? Xeyes run as a test. If the shape extensions are not supported, then the
eyes will be placed in a rectangular window. Xeyes is part of the MIT X11RS distribution.

+ Resources:
Test handling of pixmaps and other resources. Xfig run as a test. It creates and uses a larger number of server
resources. Xfig can be found in the contrib section of the MIT X11R5 distribution.

» Cutépaste:

Can all users cut and paste to and from the MUZXed windows? If not, can the floor holder do so?

Child window:

Are dialogue box style windows handled correctly? FrameMaker produces many small windows which are dis-
played at fixed locations without title bars when the application is not MUXed. How are they placed when it is
MUZXed?

Floor control:

How well does the floor control interface work?

s Late connection:
Does the MUX allow a new server to connect to an already running client?

3.2 Robustness Test Suite

The robustness suite tests exceptional cases which do not require handling heterogeneous servers.
The following tests were used:

o Client kill:
Does the MUX handle a client terminating gracefully? This was tested by starting an xterm and then giving it the
exit command. Correct behaviour is to simply remove the xterm from all servers,

e Connection kill:
Does the MUX handle a server discarding a window gracefully? This was tested by using the twm (a standard X
window manager) destroy window command. One can imagine many possible responses to this. The simplest

ACM SIGCOMM -19- Computer Communication Review

response is just to continue the application on the remaining servers. Crashing or freezing the application are not
good responses!

3.3 Heterogeneity Test Suite

Unfortunately, due to our limited number of machines, we could not perform too many tests of heterogeneous envi-
ronments. The only standard UNIX development environment we had available was on a Sun Sparc2. So all code was
compiled and executed on one of our Spatcstations. However, this did not limit our choice of servers. We tested each
MUX with a mix of Sparcs, Sun3s and Apple MaclIs (running MacX 1.2) ag servers. This allowed us to test heteroge-
neous server and display mixes, but did not let us test code portability or byte order issues.

The following tests were used:

o Server types:
Can the application MUX a client to a Sun3, a Sparc2 and a MacII?

» Color:
Are color applications well supported? Xcolors was used along with color xfig and FrameMaker documents. Due
to our limited selection of workstations this could only be tested between an 8bit-color Sparc2 and an 8bit-color
MaclIl.

« Color depths:
Can the MUX display a color application on an 8bit-color display and a monochrome display simultaneously?

3.4 Items Removed from the Test Suite Reports

The following test items were removed from the test suite reports because of uniform results or testing problems:

« Menu location:
Ideally an application’s pop-up menus should be drawn over window on every server, even if the window is not
in the same location on every server. This was tested by bringing up xterm’s and FrameMaker’s menus. None of
the tested MUXes did this correctly. In all cases the pop-up appeared in the same screen location on all screens,
regardless of the application window’s position,

» Window resize:
What happens when a user resizes a multiplexed window? None of the MUXes handled this well. The solution
commonly used was simply to allow the different instances of the window to become different sizes. Drawing
commands are then cropped or fail to fill the full window on some server. A preferable solution would maintain
a single common window size.

» Key remap:
How does the MUX respond to miscellaneous server control commands such as those used to reconfigure the

keyboard mappings? None of the MUZXes handled this well. A common response was to report errors and apply
the changes to one of the MUXes’ servers.

» Many clients:
Can the MUX support many clients simultaneously? Every MUX passed this test! In all cases the limit seemed
to be the OS imposed limit of open connects a process may possess. The XTV floor passing interface requires
the user to select the client one wishes to use from a scrolling list. This list does not scroll correctly, so that if
more than six clients are created, not all can be used.

* Many servers:
This robusmess test involved multiplexing a client to several (five and more) servers simultaneously. All of the
MUZXes passed this test.

4 Test Results

This section presents our test results for each of the tested MUXes. They are shown in table 1, a dash indicating a fail-
ure, ‘+/-> a conditional pass, and ‘X’ a strong pass. The results are discussed on a MUX by MUX basis.

41 XMX

XMX is clearly the most limited of the MUZXes tested. It was designed to be a lecture support tool, not a full function
MUX. It was the only MUX tested that could not redraw windows that did not belong to the floor holder and it also
lacks any support for heterogeneous servers.

ACM SIGCOMM —20- Computer Communication Review

One particularly strange aspect of its behaviour is that it appears to make only a single connection to each slave server,
not a connection per client as the other MUXes do. This caused it to fail the connection kill test. Whenever a single
window belonging to XMX is destroyed on a slave server, that server is disconnected from XMX, destroying all
MUXed windows on that server. A related oddity is that all windows on the slaves appear as top-level untitled win-
dows. This is particularly annoying when an application tries to create a dialogue box. Each slave running a twm-like
window manager then freezes and waits for its user to position the dialogue box. The application’s dialogues do not
behave like this on the Master. The only MUX which did worse on the child window test was the UCL version of
SharedX, which simply failed to display the window on all but the original server.

Despite its obvious failings XMX is an interesting reference application. Atabout 7.000 lines of source code, itis much
smaller than any of the other MUXes. The code is simply and clearly structured, and the MUX itself is fairly stable.
When we tested unsupported features XMX reported errors where other MUXes simply crashed. So in conclusion, al-
though XMX is not suitable for direct use in the JVTOS project, it may provide a useful example or base for future
MUX development work.

XMX Xmux XTV XTV/2 ShX-1 ShX-UCL | ShX-DFKI

clients X X +/- +/- +/- X X
window expose - X X X X X X
shapes - X - - - - -

resources 7 - - - X +/- X X
cut&paste - X - +/- +/- +/- +f
child window - X X X X - X
floor control - X X X X X X
late connection - - X X X X X
client kill X X - X X X X
connection kill - - X X +- +/- +/-
server types - X +/- +/- X X X
color - X - - - +/- +/-
color depths - X - - - +/- +/-

Table 1: Test Results

4.2 Xmux

Interesting results for Xmux included having the only working solution to cut&paste and the shape extensions. [t also
had the best support for color. This was the only MUX that appeared to account for the available resources of all of its
target servers when making color allocation decisions. The late connection problem is not addressed. The connection
kill test left the effected client frozen on all but the connection-killing server. Other clients were not effected, so this
was not fatal, but this is not an optimal solution.

Xmux tested very well. It proved to be stable and robust in comparison to the other MUXes. One major lacking is its
failure to address the late connection problem. However, its largest disadvantage is the fact that it is a commercial prod-
uct. Greg McFarlane and OTC Ltd. have been very helpful, but we have not been able to access source code to the
system and have not been lead to believe that the research community will have free access (o their product. For this
reason we do not recommend its use in the JVTOS project.

4.3 XTV

In its first version, XTV performed very badly during testing. It crashed very frequently. It was the only MUX to fail
the client kill test. It responded by crashing. It crashed when we fried to run it on MacX, It crashed while loading the
xfig and FrameMaker program and during cut&paste testing. It crashed within every heterogeneity test suite test as
well. In short, it crashed a lot.

ACM SIGCOMM 21— Computer Communication Review

Most of these bugs are fixed in XTV/2. However, FrameMaker still causes XTV/2 to crash! Another oddity of XTV/
2 is that it is not independent of the window manager. We tried to use the same X display for the chairman as well as
for a second participant intending to join the session. This failed when using the window manager which comes with
OpenWindows 2.0 and caused the X server (!) to crash, whereas everything went fine when using the twm window
managet.

In both versions, a problem with XTV’s floor control interface emerged during the many clients test. The scrolling
region used to select clients for floor passing and other actions does not scroll. This prevented floor passing and other
actions for all but the first six clients on the list.

On the other hand, XTV outperformed all of the other MUXes in some areas. It was the only MUX to behave well in
the connection kill test. It has the most advanced floor passing system, and it provides a solution to the late connection
problem.

XTV’s source code proved to be a mixed bag as well. At about 25.000 or 30.000 lines respectively, it is not very large.
The architecture of the system is distributed and thus similar to the proposed architecture for JVTOS’ application shar-
ing service [Gutekunst 92]. As such it offers a lot of potential leverage and time savings. Unfortunately the code itself
is not well documented. It seems to be fairly well organised, but lacks the summary documentation that should help
explain its user interface code and multiple processes.

Our final evaluation of XTV is very mixed. It is the only MUX tested that was designed specifically for CSCW appli-
cations such as those we intend to develop. As such it offered many interesting features, such as late joining, good floor
passing control, and a general session control user interface, that were not provided by the other MUXes. On the other
hand XTV proved not to be a stable enough to pass the testing suites. For the present we cannot recommend incorpo-
rating XTV into the JVTOS project, although its approach warrants study, and some of its modules may prove directly
usable.

4.4 SharedX (ShX)

All three versions of SharedX tested are covered within this section.

ShX-DFKI was the best performing of the freeware MUXes in the test suites. Both ShX-UCL and ShX-DFKI have
better color support than their predecessor ShX-1. Neither handled the case of multiplexing to a second server with
less color map entries available than the number already in use on the original server. This may not be easily solvable
in the context of the late joining problem. ShX-UCL has introduced at least one new problem: Dialogue boxes and
menus created by MUZXed clients appeared only on the original server’s screen. ShX-1 handled dialogue boxes well
(child window test). The UCL version failed this test.

All SharedX versions had some problems with cut&paste. Although the floor holder could usually successfully cut&-
paste we experienced one crash during testing, the display was often not correctly updated and the shXbridge often
reported errors. Paste behaviour of non floor-holding users was also erratic. Xfig (resource test) reported many color
related errors and all versions had pixmap related complaints. Connection kill was also erratic, but never fatally so.

The SharedX design approach is unique. The shXbridge incorporates a modified version of the complete xlib library,
For this reason, the source code is much larger than for the other MUXes (about 53.000 lines). This size is slightly
deceptive, because most of the files in the modified xlib have only a few lines changed from their original forms. How-
ever, xlib itself has changed with every release of the X Window System and SharedX is now two releases behind
(X11R3 versus X11R5). The fact that no one has updated the shXlib system to the X11RS leads us to believe that this
update will be difficult. We believe that SharedX’s dependency on the internals of the xlib implementation is a serious
design weakness. All of the other MUXes reviewed are only dependent on the X protocol specification, which is well
documented and stable. This dependency problem alone would be enough to cause us to reject SharedX if any of the
other freeware MUXes had proven to be both stable and full featured.

4.5 Other Comparative Results

Table 2 contains a mix of non-test data that influenced our final recommendation:
» MUX freeware.
Is the MUX a freeware product, i.e. is the source code available, and can it be legally copied, modified, and re-
distributed for non-profit uses?
= Source lines:
Number of lines of MUX source code. This is a somewhat useful measure of how difficult the source code will
be to understand, modify and maintain.

ACM SIGCOMM —22- Computer Communication Review

« Least crashes:
The number of times this MUXes crashed during its best run through the test suites.

e Current product:
Is this MUX currently under development? Can the product’s developer be contacted? Note that with the excep-
tion of Xmux, these products are all freeware. The developers have made no commitment to product support,
they have simply made it available to the research community.

« New version soon:
Have the developers of this product promised a new release of the MUX in the near future?

XMX Xmux XTV XTV/2 ShX-1 ShX-UCL | ShX-DFKI
MUX freeware yes no yes yes yes yes yes
source lines 7.107 ? 25.798 30.465 52.811 53.168 53.189
least crashes 0 0 6 P 2 1 1
current product yes yes no yes no yes yes
update expected yes ? no ? no ? ?

Table 2: Other Comparative Results

S Summary and Conclusions

We find XMX to be an interesting teaching example. Its code is small and simple. However it is not nearly full featured
enough to consider use as is. Its most serious lacking is that the servers supported are not equal, One server is the master
and the others are simply slaves, displaying the actions of the master. A new version with a much larger feature set
entered alpha test in January 1993, We plan to review it as soon as it has become stable.

Xmux seems to be a well designed and implemented product. It is stable and full featured, although it does not provide
a solution to the late connection problem. However, unlike all of the other X wedges reviewed, it is a commercial prod-
uct. Hence, no source code is available. For this reason we are not considering using it for JVTOS.

XTV has the most promising architecturc and feature set of all of the MUXes reviewed. It provides solutions to the late
connection problem and full floor control features. Its first version has proven to be very unstable. XTV/2 crashed less
but is not stable enough yet. We do not believe that the code can be used as is for JVTOS. However some modules
may prove directly usable.

We reviewed three versions of SharedX: ShX-1, ShX-UCL and ShX-DFKI. Both ShX-DFKI and ShX-UCL improved
color support, but ShX-UCL has introduced a serious child window handling bug. For these reasons ShX-DFKI ap-
pears to be the best choice of the three. SharedX is full featured and well documented. Two related flaws are its large
source code size and its grounding in the outdated release 3 of the X Window System. The fact that it has not been
updated from this release in over two years of development cause us to believe that such a renovation has proven dif-
ficult.

Our survey has not yielded an obvious best choice MUX for inclusion in the JVTOS project. By process of elimination
ShX-DFKI appears to be the best choice for as is inclusion into a development project. The factors influencing this
recommendation are; First, ShX-DFKI is freeware. Secondly it is full featured, providing support for heterogeneous
servers, color, the late connection problem, and has a token-based floor control policy. And finally, it has proven to be
fairly reliable and crash resistant. However, ShX-DFKI has enough detrimental features that we shall be forced to con-
sider either waiting for improvements in the existing MUXes or building a new MUX, perhaps incorporating technol-
ogy from XMX and/or XTV.

The process of elimination that yields ShX-DFKI results from the following ranked requirements:
(1) freeware; (2) full featured; (3) reliable; (4) simple, clean and maintainable code.

Requirement one is based on the fact that we anticipate needing to modify any system we use over time. This requires
source code. We also expect to be able to freely distribute the result of our work. Hence our insistence on freeware.,
This eliminates Xmux from consideration.

Requirement two eliminates XMX and ShX-1. ShX-DFKI is a super-set of ShX-1’s functionality. It also is currently
under development, whereas ShX-1 is a finished thesis project.

ACM SIGCOMM -23- Computer Communication Review

This leaves only XTV and ShX-DEKI under consideration. The test suite has convincingly eliminated XTV. It has
proven very unreliable. XTV crashed more often than all of the other MUXes combined.

So we are left with ShX-DFKI. Unfortunately the fourth requirement also brings ShX-DFKI under question. It is based
on an outdated version of X and includes a very large amount of modified X11R3 library code. This is not very clean
or reliable. Despite this, we see ShX-DFKI as the best as is MUX option.

Instead of a strong recommendation, we are forced to present two options for consideration. If it is decided that JVTOS
development must not focus on MUX development, then, in our opinion, ShX-DFKI currently presents the best base.
The second option is to develop a new MUX. Given that the reviewed MUXes provide plenty of source code examples
and that code from them can be borrowed under the normal freeware conditions (i.e. credit the original authors), this
option should also be considered.

6 Acknowledgements

The authors would like to thank the partners of CIO work package 4.2 for their discussions, advice and comments. Jiirg
Ehrbar, Michael Frass, Thomas Schmidt, Giinter Schulze, and Wladimir Minenko have been of particular assistance.

7 References

[Abdel-Wahab 91] Hussein M. Abdel-Wahab, Mark A. Feit: “XTV: A Framework for Sharing X Window Clients
in Remote Synchronous Collaboration”. Proceedings, IEEE Tricomm ‘91 Communications for
Disiributed Applications & Systems. Chapel Hill, 1991.

[Abdel-Wahab 92a] Hussein Abdel-Wahab, Kevin Jeffay: “Issues, Problems and Solutions in Sharing X Clients on
Multiple Displays”. Technical Report TR92-042, University of North Carolina. Chapel Hill,
1991,

[Abdel-Wahab 92b] Hussein Abdel-Wahab: “Reliable Information Service for Internet Computer Conferencing”.
Technical Report TR92-043, University of North Carolina. Chapel Hill, 1991,

[Altenhofen 90} Michael Altenhofen: “Erweiterung eines Fenstersystems fiir Tutoring-Funktionen”. Diploma
Thesis at Universitdt Karlsruhe. Karlsruhe, 1990.
[Bauerfeld 92] Waulfdieter Bauerfeld: “RACE-Project CIO (R2060): Coordination, Implementation and Ope-

ration of Multimedia Tele-Services on Top of a Common Communication Platform”. IWACA
‘92 - International Workshop on Advanced Communications and Applications for High Speed
Networks. Miinchen, 1992.

[Chung 91] Goopeel Chung: “Accommodating Latecomers in a System for Synchronous Collaboration”.
Master Thesis at University of North Carolina. Chapel Hill, 1991,

[Dermler 92] Gabriel Dermler, Konrad Froitzheim: “JVTOS - A Reference Model for a New Multimedia Ser-
vice”. 4th IFIP Conference on High Performance Networking (hpn ‘92). Litge, 1992.

[Gutekunst 92] Thomas Gutekunst: “Proposed Implementation Architecture for the Application Sharing Ser-
vice”. Internal Report of RACEICIO WP 4.2, Ziirich, 1992,

[Gutekunst 93] Thomas Gutekunst, Thomas Schmidt, Giinter Schulze, Jean Schweitzer, Michael Weber: “A

Distributed Multimedia Joint Viewing and Tele-Operation Service for Heterogeneous Worksta-
tion Environments”. GI/ITG Workshop on Distributed Multimedia Systems. Stuttgart, 1993.

[McFarlane 91] Greg McFarlane: “Xmux - A system for computer supported collaborative work™. Proceedings,
1st Australian Multi-Media Communications, Applications & Technology Workshop. Sydney,
1991.

[Lin 92] Jin-Kun Lin; “Virtual Screen: A Framework for Task Management”. The X Resource 1, Winter

1992, pp. 191 - 198. 1992.

ACM SIGCOMM —24— Computer Communication Review

