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ABSTRACT

We propose an automatic approach to tree detection from
aerial imagery. First a pixel-level classifier is trained to as-
sign a {tree, non-tree} label to each pixel in an aerial image.
The pixel-level classification is then refined by a partition-
ing algorithm to a clean image segmentation of tree and
non-tree regions. Based on the refined segmentation results,
we adopt template matching followed by greedy selection to
locate individual tree crowns.

As training a pixel-level classifier requires manual gener-
ation of ground-truth tree masks, we propose methods for
automatic model and training data selection to minimize the
manual work and scale the algorithm to the entire globe. We
test the algorithm on thousands of production aerial images
across different countries. We demonstrate high-quality tree
detection results as well as good scalability of the proposed
approach.

Categories and Subject Descriptors

1.4 [Image Processing And Computer Vision]: En-
hancement

General Terms
Algorithms

1. INTRODUCTION

Aerial imagery captures a wide variety of natural and
man-made objects on Earth. Detecting such objects is a
classic topic of GIS [15].

We focus on tree detection from aerial imagery. Given
an aerial image, the proposed approach can automatically
segment the region of trees, locate each individual tree and
provide an estimate of its crown size. The detection results
can assist in various applications such as urban planning and
3D city modeling (see Figure 1).
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(b) Augmented 3D city modeling

Figure 1: Two sample applications for tree detection
from aerial imagery. (a) (left) shows the tree cover
for the north-west region of San Francisco, which is
based on the results of tree segmentation discussed
in Section 2. (a) (right) shows a zoom-in view of the
detected tree crowns. The study of tree cover has
a potential impact on urban planning [2]. (b) shows
the 3D city modeling for San Francisco. The view is
augmented by tree models at detected tree locations
from aerial images to enhance the user experience.



1.1 Related work

The current state of the art can be roughly divided into
three classes depending on their input data: LIDAR-based [5,
6], NIR-based [10, 17], and image-based [1, 15] methods.

Light Detection and Ranging (LIDAR) and Near Infrared
(NIR) are remote sensing technologies which provide geo-
metric and radiometric measures on the Earth surface. Given
that most trees fall into a small range on both measures,
LiDAR and NIR data provide a strong heuristic on tree de-
tection. However, the availability of remote sensing imagery
is very limited compared to aerial imagery. On the other
hand, significant progress has been made on image-based
object recognition in the computer vision community. It is
necessary to explore tree detection methods that operate on
pure images, which is the focus of our work.

There is a wide literature on object detection from aerial
imagery. [18, 7, 16, 1] propose image-based features for
extracting roads, intersections, buildings and compound ob-
jects such as harbors from aerial imagery. However, such
man-made objects have a strong prior in shapes and recur-
rent patterns, so the features cannot be directly applied to
tree detection.

Porway et al. [15] propose a method for parsing aerial im-
agery into an object hierarchy. An aerial image is learned at
both scene and object levels with color histogram and bag of
SIFT features [12]. Contextual constraints are then applied
to resolve the ambiguities of learned results (e.g., cars on
top of trees). However, since the object inference is learned
in the context of multiple objects, the discriminating power
is lowered. Their final results contain many false positives
(about 20% for trees), even after contextual constraints are
applied.

1.2 Overview

Our approach to tree detection proceeds in two stages.
During the first stage, a pixel-level classifier is trained to as-
sign a {tree, non-tree} label to each pixel in the aerial image
based on a set of visual features. The pixel-level classifica-
tion is then refined by considering the local smoothness of
pixel labeling to generate a clean segmentation of tree and
non-tree regions. During the second stage, a set of tree tem-
plates are used to correlate with the classification results
and locate candidate tree crowns. The tree crowns are then
selected in a greedy manner to maximize correlation scores
while minimizing the overlap.

Compared to previous work, our method only requires
the RGB channels of aerial imagery for tree detection, and
achieves > 90% accuracy in pixel-level tree classification.
On the other hand, the training procedure for the pixel-level
classifier is open for any pixel-level features (such as LIDAR
and NIR data). Therefore our method can be conveniently
incorporated into existing methods to boost the performance
for tree detection.

We also address the scalability of the proposed approach.
Since training a pixel-level classifier requires manual creation
of ground-truth tree masks, we introduce methods for auto-
matic model and training data selection, so that the amount
of training data can be minimized. We demonstrate the
methods on a large urban area using only 1% of the aerial
images as training data. By applying model and training
data selection, we achieve > 90% accuracy in pixel-level tree
classification, which advances the baseline training method
by 5%.

2. TREE/NON-TREE SEGMENTATION

In this section, we discuss the first stage of our approach:
segmenting the aerial image to tree and non-tree regions.
Our method is inspired by the computer vision literature.
Tree and non-tree regions are segmented by applying a pixel
level classification based on a set of visual features followed
by a partitioning algorithm for refinement. While many pre-
vious works exist on object-oriented image segmentation,
few are dedicated to large-scale GIS data. We empirically
tune the selection of visual features and classifiers for an
optimal balance of speed and accuracy.

2.1 Feature selection

Since we apply pixel-level classification, all the visual fea-
tures are selected at the pixel level. Higher order geometric
features (edges, shapes, etc.) or bag of words models (quan-
tized SIFT, textons, etc.) are not considered in our current
work. However, we shall show that the pixel-level features
can already capture the most distinctive properties of trees,
and the adoption of pixel-level features allows convenient in-
corporation of LIDAR and NIR data into our method with-
out changing the pipeline.

Color. Color is undoubtedly the most revealing feature
for trees. We convert the RGB channels of each aerial im-
age to CIE L*a*b* color space for a better perceptual uni-
formity, and to the illumination-invariant color space [8] for
some robustness against the change of lighting condition.
We concatenate the two color representations to form a 6
dimensional feature vector at each pixel.

Texture. The texture pattern formed by tree leaves of-
ten distinguishes trees from similarly colored objects such
as grass and tennis courts. We convolve the L channel of
each aerial image with a filter-bank to generate a set of fil-
ter responses at each pixel as its texture feature. We em-
pirically choose the Gaussian derivative filters to form the
filter-bank [13], although other kernels such as Gabor filter
achieve a similar performance. Each Gaussian derivative fil-
ter is a Gaussian in the X direction and a second derivative
of Gaussian in the Y direction. The filter-bank consists of
filters on 3 scales (with o = 1,/2,2) and 6 orientations uni-
formly sampled in [0, 7), which generates an 18 dimensional
feature vector at each pixel.

Entropy. Entropy measures the uncertainty of a random
variable (in our case, the L channel of aerial images). Be-
cause of shadows, tree leaves tend to exhibit a substantially
higher entropy compared to man-made objects such as roads
and buildings. We compute the entropy of each pixel within
5x5,9%9, and 17 x 17 search windows on the L channel of
the image. The later two can be efficiently approximated by
iteratively downsampling the image and keeping the search
window at 5 x 5. We concatenate the entropy values to form
a 3 dimensional feature vector at each pixel.

Finally, by concatenating color, texture and entropy fea-
tures, a 27 dimensional feature vector is formed at each pixel.
If other informative features are available (e.g., LIDAR and
NIR), they can be conveniently concatenated here, without
any changes on the rest of the pipeline.

2.2 Pixel-level classification

Each of the 27 visual features alone can be used to con-
struct a weak classifier for tree detection. In order to form a
discriminative combination, we adopt Adaboost [9] to train
a strong classifier based on these weak classifiers:
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Figure 2: The weights of (a) individual features and (b) grouped features learned by Adaboost.

(@) =Y ahu(z), (1)

where x is the feature vector at a pixel to be predicted, and
H(zx) is the output of the strong classifier. sign(H(z)) €
{+,—} gives a prediction of {tree, non-tree} at the pixel,
and |H(z)| gives a confidence score of the prediction. In the
sequel, the confidence score is normalized to tree probability
in [0, 1] by the sigmoid function:

1

Firee() = T e-mer

2)
We adopt the basic decision stump on a single feature as
the weak classifier hy(z):

0 otherwise.

() = {1 sy > 504, 3)

In all our experiments, we use 7' = 200 weak classifiers.
The parameterization for each weak classifier s € {4, —},
i(t) € {1,...,27} and 6, along with their weights oy, are
automatically learned by the Adaboost procedure.

Once a strong classifier is trained, predicting each pixel
only takes a linear combination of stump decisions. In our
initial study, a 512 x 512 aerial image takes 15 seconds to
be classified by Adaboost, as opposed to 15 minutes by non-
linear SVM [4], while both achieving comparable accuracies.

2.3 Classification refinement

One disadvantage of pixel-level classification is that each
pixel is predicted independently. The consistency among
adjacent pixels is not considered. Therefore the results are
noisy (e.g., shadowed tree leaves are labeled as non-tree;
sparse points on a grass field are labeled as tree; etc.). In
this section, we refine the pixel-level classification results to

a clean segmentation of tree and non-tree regions by optimiz-
ing the consistency between all pairs of neighboring pixels.

The refinement is formalized as an energy minimization
problem and solved by the graph cuts algorithm presented
in [3]. The energy function is defined as follows:

E=> D(pLp)+ Y V(L

peP P,qEN

(p), L(q)), (4)

where P is the set of all pixels, L(p) € {tree, non-tree} gives
the label of pixel p, and A is the set of all neighboring pairs
of pixels (pixels are 8-connected). The data term D mea-
sures the agreement between the assigned label and the tree
probability given by Adaboost, and the smoothness term V'
measures the local smoothness of labeling:

log(1 — Piree(p)) L(p) = tree,

log(Pt'r'ee (p)) (5)

D(p, L(p)) = {

otherwise,

0 L(p) = L(q),
B otherwise,

V(L(p), L(q)) = { (6)
where ( is empirically set to 1 in all our experiments.

The bottom row of Figure 3 shows the clean segmentation
after graph cuts optimization. Small holes in tree crowns
are filled with tree labels. More importantly, the false tree
labels on the soccer field and the river are corrected, which
is fundamental for the subsequent tree localization.

Notice that, while simpler techniques for image denois-
ing exist such as morphological close and open operations
(a dilation followed by erosion), they are incapable of taking
into account the labeling probabilities. For example, a dila-
tion followed by erosion on the classification results shown
in Figure 3 is likely to generate small tree regions on the
soccer field and the river because of the locally dense tree
labels, even though the probabilities supporting those labels
are very low.



Figure 3: The top row shows the tree detection results for two sample aerial images, where the intermediate
results for classficiation (left) and classification refinement (right) are shown below each image.

3. TREE LOCALIZATION

Based on the refined tree segmentation, we discuss in this
section the second stage of our approach: locating each indi-
vidual tree and providing an estimate of its crown size. For
this task, we turn to the old technique of template matching,
which has been adopted in a previous work on NIR-based
tree detection [10].

Our template matching is applied to 4 channels: the R, G,
B channels of the original aerial image, and the channel P of
tree probabilities given by Adaboost classification. Values
of the R, G, B, P channels are scaled to [0, 1].

During the training stage, the R, G, B channels of a tree
template is formed by averaging multiple ground-truth tree
crowns with the same radius. The P channel of a tree tem-
plate is simply a binary disk (with 1 inside and 0 outside)
with the same radius as the template. Multiple templates
with various radiuses can be formed depending on the geo-
graphic region. In our experiment, we form 4 tree templates
for each data set with radiuses ranging from 2m to 8m.

Based on the refined tree segmentation given by graph
cuts, template matching is constrained within the tree re-
gions at discrete locations (sampled at half-radius step). At
each location, the tree templates are correlated with the
aerial image and the normalized correlation score is stored
along with the template itself to a candidate list. The tem-

plate matching strategy does not handle trees crossing image
boundaries. In practice, the boundary effect can be reduced
by stitching adjacent images together.

The candidate list contains a number of overlapping tem-
plate matches covering the tree regions of the aerial image.
In order to maximize the likelihood of all template matches
while minimizing their overlaps, the final set of template
matches are selected in a greedy manner. First the candi-
date list is thresholded by a minimum correlation score of
Ocorr. Template matches with scores lower than 6., are
removed. The rest of the candidate list is sorted in descend-
ing order of correlation score. Then in each round, the top
template match of the list is selected into the final set, and
the rest of the template matches in the list are removed if
their overlap with the selected one exceeds certain threshold
Ooveriap- The process iterates until all the template matches
in the candidate list are either selected or removed.

We empirically set 0.0 = 0.25 and use a simple metric
to define the overlap between two templates:

R; + R; — distance(C;, Cj
j J

Overlap(T;,T;) = min (R, ;) ) (7)
T J

where R; and C; are the radius and center of template match
T;, and the threshold ,yeriap is set to 0.25 (the outer quarter
of a crown can overlap with other crowns).



4. EXPERIMENTATION

We collected aerial images for San Francisco (about 1500
512 x 512 pixel tiles), Paris (about 4000 tiles), and New York
(about 4500 tiles) for experimentation. The resolution for
each aerial image is between 0.5m and 1m per pixel. 1% of
the tiles from each data set are manually masked for train-
ing the pixel-level classifier (see Section 5 for a discussion on
model and training data selection) and collecting tree tem-
plates. The tree detection procedure is applied to the rest
of the tiles. An end-to-end processing for each tile takes less
than 30 seconds in average. An illustration for an end-to-end
processing is shown in Figure 3.

Since we adopt a collection of visual features to capture
the properties of trees, one interesting question we consider
is which of the visual features are more discriminative for
the task of tree detection. Given that Adaboost associates
a weight to each weak classifier, and each weak classifier is
a decision stump based on a single visual feature, we ag-
gregate the weights of all the weak classifiers into the bins
for their associated feature to approximate the total weight
for each visual feature. In Figure 2, we show the weights
for individual features as well as grouped features (L, a, b
grouped together as L*a*b*, etc.). Since color takes a dom-
inant amount of weight, we keep L*a*b* and illumination-
invariant color features as separate groups. It is shown that
color features are the most discriminative feature for trees,
and the illumination-invariant representation is more power-
ful than CIE L*a*b*. Texture features on a single scale and
orientation is weak (which is reasonable because texture of
tree leaves has random orientations), but combined together
still have a significant impact on the final classification. En-
tropy as a group feature is the least discriminative among
all, but the entropies of each of the individual scales have
comparable weights to the individual L, a, b color features.

In large-scale tree detection, false detections are inevitable.
In our experiments, typical failure cases are caused by locally
indistinguishable objects such as grass, river, etc. or by an
unrepresentative training set (see Section 5 for details). Fig-
ure 4 shows a few examples. Notice that if LIDAR or NIR
data is available, the pixel-level classifier should be able to
eliminate most false detections on the river or man-made
objects (Figure 4 (b) and (c)). The incorporation of LiDAR
and NIR data is left for future work.

5. TREE DETECTION FOR THE GLOBE

One common bottleneck for GIS applications is the gi-
gantic amount of data that needs to be processed. The
bottleneck is especially significant if supervised training is
involved. In our approach, the training of a pixel-level clas-
sifier requires manual creation of ground-truth tree masks.
If it takes a large percentage of the data to train a discrimi-
native classifier, the manual work required by processing the
entire globe will be prohibitively expensive.

In this section, we address the scalability of pixel-level
classification and propose methods for model and training
data selection in order to minimize the percentage of data
used for training while achieving a resonable accuracy.

One principle for machine learning algorithms is that a
representative set of positive and negative samples must be
seen in the training data in order to train a robust clas-
sifier. Take tree classification for example, if a geographic
region contains a lake, but none of the lake views appears

in the training data, then the classifier is likely to perform
poorly on the lake because it looks more similar to positive
samples (trees) than negative ones (ground, buildings, etc.).
On the other hand, if we enlarge the geographic region to
a larger land coverage, the diversity of geographic features
(e.g., ground, grass, trees, buildings, lakes, etc.) will grow at
a lower rate, because the total number of geographic features
in the region is very limited compared to the area. Based
on this observation, we propose to cluster large-scale aerial
imagery with similar geographic features, and apply model
and training data selection from the clustering results.
Since the pixel-level classifier is trained on visual features,
aerial images are also clustered into visually coherent clus-
ters. We adopt the color-augmented Gist descriptor to en-
code the geographic features for aerial images. The Gist
descriptor [14] computes a low dimensional representation
for the scene structure of an image, and has been shown
to convey higher level semantics of images in the computer
vision community [11]. We form the Gist descriptor by con-
volving an aerial image with Gabor filters on 3 scales with
8, 8, and 4 orientations respectively, and aggregating the
filter responses into 4 x 4 spatial bins, which gives a 320
dimensional descriptor for each aerial image. We also com-
pute an 8 X 8 x 8 joint color histogram in the L*a*b* space
to form a 512 dimensional color descriptor. The Gist and
color descriptors are both normalized to unit L-1 norm and
concatenated together to form the descriptor for an aerial
image. After the descriptors are computed for all aerial im-
ages, Principal Component Analysis (PCA) is applied to re-
duce the dimensionality of descriptors to 12 while preserving
about 95% of the total variance of the original descriptors.
We experimented with three training methods on the New
York data set with about 4500 tiles. All three methods are
constrained to use 1% of the tiles (45 tiles) as training data.

e Baseline: 45 training tiles are uniformly sampled in
the geographic region.

e Cluster-I: k-means are applied to the image descriptors
to divide the data set into 45 clusters, and the training
tiles are selected as cluster centroids.

e Cluster-1I: Two-level clustering is applied to the image
descriptors. The first level k-means divide the data
set into 4 clusters. Within each cluster, the method
of Cluster-I is used to select 1% as training tiles. The
training tiles of each cluster are used to train a sepa-
rate classifier dedicated to the tiles in that cluster.

In order to compare the performance of the three meth-
ods, we randomly sampled 100 tiles from the data set (none
appeared in any of the three training sets) and manually
created the ground-truth masks for validation. The confu-
sion matrices and accuracies for all three methods are shown
in Table 1. It is shown that Cluster-1I exceeds Cluster-1 by
2% and Baseline by 5% in classification accuracy. For 4500
512 x 512 tiles of aerial images, a 5% improvement in accu-
racy means that about 60 million more pixels are correctly
labeled. More importantly, the improvement mainly comes
from reducing false positives (shown in the second row of
confusion matrices), to which most applications are more
sensitive (e.g., placing a false tree on the water is much
worse than missing a tree in 3D city modeling).



Table 1: confusion matrices and accuracies for the three training methods on the New York data set.

Baseline Cluster-1 Cluster-I1
Tree | NonT. Tree | NonT. | Tree | NonT.
Ground-Truth | Tree 5.6% 0.5% 5.4% 0.7% [ 5.1% | 0.9%
Labels NonT. | 12.0% | 81.0% | 10.3% | 83.7% | 8.4% | 86.6%
Accuracy 86.6% 89.1% 91.7%

6. CONCLUSIONS

In this paper we propose an automatic approach to tree
detection from aerial imagery. Given an aerial image, we
combine pixel-level classification followed by global optimiza-
tion to generate an image segmentation of tree and non-tree
regions. Based on the image segmentation, we adopt tem-
plate matching to locate each individual tree crown and pro-
vide an estimate of its crown size.

The proposed approach operates on pure images only, and
is efficient for tree detection in large volumes. The pipeline
for pixel-level tree classification is also open for convenient
incorporation of traditional LIDAR and NIR data to further
boost the accuracy.

To address the scalability of the proposed approach, we
exploit the limited geographic features on Earth and intro-
duce methods for model and training data selection based
on two-level clustering. On large data sets, we are able to
train the classifier on only 1% of the data while achieving
> 90% accuracy for pixel-level tree classification.

Our current focus is on the general topic of tree detection.
One interesting direction for future research would be distin-
guishing trees of different species. Our adoption of template
matching can implicitly infer certain parameters on the tree
crowns. However, substantially more information is still re-
quired for robust tree species recognition.
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Figure 4: Typical failure cases.



