
Multi-Type Nearest Neighbor Queries Road Networks With Time Window Constraints

Technical Report

Department of Computer Science

and Engineering

University of Minnesota

4-192 EECS Building

200 Union Street SE

Minneapolis, MN 55455-0159 USA

TR 09-024

Multi-Type Nearest Neighbor Queries Road Networks With Time

Window Constraints

Xiaobin Ma, Shashi Shekhar, and Hui Xiong

September 14, 2009

Multi-Type Nearest Neighbor Queries Road Networks With
Time Window Constraints

Xiaobin Ma
Teradata Corporation

xiaobin@cs.umn.edu

Shashi Shekhar
University of Minnesota

shekhar@cs.umn.edu

Hui Xiong
Rutgers University

hui@rbs.rutgers.edu

ABSTRACT
A multi-type nearest neighbor(MTNN) query finds the short-
est tour for a given query point and different types of spatial
features such that only one instance of each feature is visited
during the tour. In a real life MTNN query a user normally
needs an answer with specific start time and turn-by-turn
route for specific period of time on road networks, which re-
quires considerations of spatial and temporal features of the
road network when designing algorithms. In this paper, we
propose a label correcting algorithm that is based on a time
aggregated multi-type graph, a special case of a time ag-
gregated encoded path view. This algorithm gives the best
start time, a turn-by-turn route and shortest path in terms
of least travel time for a given query. Experimental results
are provided to show the strength of our proposed algorithm
and design decisions related to performance tuning.

1. INTRODUCTION
Widespread use of spatial search engines such as Google

Maps and MapQuest is leading to an increasing interest
in developing intelligent spatial-temporal query techniques.
For example, a traveler may be interested in finding a short-
est route in terms of least travel time with the best start
time between 9:00 am and 11:00 am from his house through
one grocery store (with a stay of 1 1/2 hours), one Best
Buy store (1 hour stay) and one post office (arriving before
4:00 pm; 1/2 hour stay) and returning home before 8:00 pm.
This query illustrates some important properties. First, the
traveler is trying to find a route with instances from different
feature types that are a grocery store, an electric appliances
store and a post office. This kind of query is called a multi-
type nearest neighbor (MTNN) query in [10]. Second, the
route to be found is a closed route from the query point
back to the query point. Third, the traveler is interested in
not only the route but also the best start time. Considering
the variability of traffic patterns on different times on road
networks, this best start time could differ for different time
windows. Therefore, the query asks for answers containing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without feeprovided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation onthe first page. To copy otherwise, to
republish, to post onserversor to redistribute to lists, requires prior specific
permission and/or a fee.
.

not only spatial features like the route but also temporal
features. Forth, the query itself contains spatial and tem-
poral features. For example, the query point and different
interested locations are spatial features. The best start time
between 9:00 am and 11:00 am and length of stay at each
location are temporal features.

In this paper, we study the spatial-temporal MTNN query
problem on spatial-temporal road networks.

Related Work Vehicle routing and scheduling problems
have been extensively studied in Operational Research. Ac-
cording to a taxonomy given by Bodin et al. [1], vehicle
routing involves the traversing of a sequence of points in
order. Vehicle scheduling involves traversing a sequence of
points with an associated set of departure and arrival times.
If a vehicle must traverse a sequence of points with time win-
dow and/or precedence relationships, the problem is a com-
bined vehicle routing and scheduling problem. Numerous
computational methods to solve such problems have been
developed. Laporte et al. presented a summary of exact
and approximate algorithms for vehicle routing and schedul-
ing problems [7]. He also summarized classical and modern
heuristics for solving such problems [8]. However, in all of
these works, the sequence of points to be visited in a query
was specified in advance. Thus no solution required that the
point space be searched for points that would be visited in
the query, a key difference between previous works and our
MTNN query problem.

In order to quickly find answers to spatial queries, re-
searchers normally model road networks as a graph. Huang
et al.[5] precomputed all-pair shortest paths and stored them
in a spatial database. This precomputed graph is called an
Encoded Path View (EPV). Later, Huang et al.[6] extended
EPV to large road networks and proposed a Hierarchical
Encoded Path View (HEPV). Referencing a HEPV makes
it possible to answer a nearest neighbor query on road net-
work very efficiently.

Recently, George et al. [4] proposed a Time-Aggregated
Graph (TAG) to model a spatial-temporal network. Based
on this model, spatial queries that have been studied for
decades are answered along both spatial and temporal di-
mensions. For example, George showed that the SP-TAG
algorithm computes the shortest path for a given start time
in a small time-dependent network. In a related study, Ding
[3] proposed a time-dependent graph and studied how to find
the best departure time in terms of least travel time from
one place to another over a large road network.

Meanwhile, the queries related to multiple feature types

attracted attentions from different database research groups.
X. Ma et al. [10] formalized a MTNN query problem and
proposed a Page Level Upper Bound (PLUB) based algo-
rithm to find an optimal route for the MTNN query. Shar-
ifzadeh et al. [11] recently proposed an Optimal Sequenced
Route (OSR) query problem and provided three optimal so-
lutions: Dijkstra-based, LORD and R-LORD. Essentially,
the OSR problem is a special case of the MTNN problem.
Since it fixes the visiting order of feature types, it can be
thought of as imposing a spatial constraint on the MTNN
problem. Sharifzadeh et al. [12] extended the OSR work to
road network by using Voronoi diagrams. Basically the al-
gorithm of this extension precomputes Voronoi diagrams for
every possible partial route and finds the optimal sequenced
route very efficiently. However, it does not consider the vari-
ation in traffic patterns that occurs at different times and
thus ignores the temporal dimension of road networks. It
also does not give a turn-by-turn route for the query on road
networks. Another issue is that with Euclidean distance (i.e.
L2 norm) as metric the cell edges in Voronoi diagram may
become hyperbolic curves, which makes the determination
of whether or not a point is inside a cell very difficult.

Another recently published work [9] proposed a number
of fast approximate algorithms to give sub-optimal solutions
in metric space for Trip Planning Queries (TPQ). This work
focused on efficient algorithms but could not guarantee find-
ing the shortest path.

In this paper, we extend MTNN query in the temporal
dimension. We formalize a common query in real life as
a spatial-temporal MTNN query with time window con-
straints and answer the query based on our extension of
the encoded path view, which we call the Time Aggregated
Multi-Type Graph (TAMTG), a special case of the time ag-
gregated encoded path view (TAEPV) of road networks.

Our Contributions. We formalize a BEst Start Time
Multi-Type Nearest Neighbor (BESTMTNN) query prob-
lem on spatial-temporal road networks by extending the en-
coded path view from spatial-only to spatial-temporal road
networks. By identifying the special properties of BESTMT-
NN query that lead to our spatial-temporal partial route
growth approach we propose a label-correcting based algo-
rithm to solve the BESTMTNN query problem. This al-
gorithm prioritizes the spatial-temporal partial routes with
current least travel time. It takes a user-specified query that
involves in spatial-temporal features such as query time win-
dow sizes for all features and planned stay time interval at
a location and gives a turn-by-turn route and the best start
time in terms of least travel time. Our experiments show
our algorithm can answer normal user BESTMTNN queries
in a reasonable time.

Overview. The remainder of this paper is organized as
follows. Section 2 formalizes the BESTMTNN problem.
In section 3 we identify the special properties related to
a BESTMTNN query and describes the Time-Aggregated
Multi-Type Graph (TAMTG); we then present our partial
route growth approach designed to accommodate the BEST-
MTNN query as well as a TAMTG-based label-correcting al-
gorithm that finds the optimal solution for the BESTMTNN
problem. Section 4 gives the experimental setup and ex-
perimental results. Finally, in Section 5, we conclude our
discussion and suggest further work.

2. BASIC CONCEPTS AND PROBLEM FOR-
MULATION

In this section, we introduce some basic concepts, explain
some symbols used in the remainder of the paper and give a
formal statement of the BEst Start Time Multi-Type Near-
est Neighbor (BESTMTNN) query problem.

Let < P1,1′ , P2,2′ , ..., Pk,k′ > be an ordered point sequence
and let P1,1′ , P2,2′ , ..., Pk,k′ be from k different (feature) types
of data sets. Pi,i′,ti

is a point P ′

i of feature type i at time ti.
A spatial-temporal Partial Route R(qt0 , P1,1′ ,t1 , P2,2′ ,t2 , ...,

Pl,l′,tl
) is a route from the query point q at time t0 through

points from different feature types but not back to the orig-
inal query point q. A complete closed route R(qt0 , P1,1′,t1 ,

P2,2′,t2 , . . . , Pk,k′,tk
, qtk+1

) is a route that goes from the
query point q at time t0 through point P1,1′ , goes from point
P1,1′ at time t1 through P2,2′ , . . . , and returns to query point
q at time tk+1 from Pk,k′ at time tk. t(R(qt0 , P1,1′,t1 , P2,2′,t2 ,

..., Pk,k′,tk
, qtk+1

)) represents the travel time through the
route R(qt0 , P1,1′,t1 , P2,2′,t2 , ..., Pk,k′,tk

, qtk+1
).

A BESTMTNN is defined to be an ordered point sequence
< qt0 , P1,1′ ,t1 , P2,2′ ,t2 , ..., Pk,k′,tk

, qt′
0

> such that t(R(qt0 ,

P1,1′,t1 , P2,2′,t2 , ..., Pk,k′,tk
, qt′

0
)) is minimum among all pos-

sible routes for all possible start time points and all qualified
time window. A BESTMTNN query is a query finding a
BESTMTNN that includes a best start time, a turn-by-turn
route, and a least travel time in given spatial and temporal
data sets. Thus, < qt0 , P1,1′,t1 , P2,2′,t2 , ..., Pk,k′,tk

, qt′
0

> is
a BESTMTNN query result.

An Encoded Path View (EPV) stores all pairs of shortest
distance paths in a spatial database. A Time Aggregate
EPV (TAEPV) records such spatial information but extends
the EPV to include temporal information. In other words,
a TAEPV stores all pairs of shortest distance for all time
points in terms of least travel time. With a TAEPV on road
networks, the results of a BESTMTNN query consolidate
the location information of interested points with different
traffic patterns that vary by times. A Time Aggregate Multi-
Type Graph (TAMTG) is a special case of a TAEPV. In a
TAMTG, only least travel times among all points of interest
(POI) are stored. In a BESTMTNN query, the POIs are the
given k data sets from k different feature types.

The following is a formal definition of the BEst Start Time
MTNN (BESTMTNN) query problem. In the BESTMTNN
query problem, we use road distance since we are searching
for BESTMTNN on spatial-temporal road networks. The
spatial-temporal road networks are represented by a TAEPV
and a TAMTG that store least travel times among points.
These least travel times are calculated in advance because
routing and scheduling are extremely time-consuming. Con-
sidering POIs could number from hundreds to thousands
and even more, it is infeasible to do an ad-hoc routing and
scheduling for every BESTMTNN query. In this problem,
we also consider time window constraints as user-specified
parameters indicating what time intervals qualify for this
query and how long the user is going to stay at a location
(planned stay period). Time window constraints are mean-
ingful parameters in daily life. For example, a post office
can be visited only certain hours in a day, and a movie-goer
will want to arrive at a cinema before a movie’s specific start
time and stay at the cinema as long as the movie is sched-
uled to last. Given all these input parameters, our objective
is to minimum the travel time on the road networks. In this

problem, the planned stay period at any location is not con-
sidered as part of total travel time. What interested us is
the travel time on the road.

Problem: The BESTMTNN Query

Given:

• A query point

• Distance metric - road distance

• k different types of points of interest

• Spatial-temporal road networks represented by Time
Aggregated Encoded Path View (TAEPV) and Time
Aggregated Multi-Type Graph (TAMTG)

• Time window constraints

Find:

• Least travel time, turn-by-turn route and BEst Start
Time
Multi-type Nearest Neighbor (BESTMTNN)

Objective:

• Minimize the travel time on the road networks from
the query point covering an instance of each feature
type and then back to the query point

3. BESTMTNN ALGORITHM
Here we examine in more detail that a typical BESTMTNN

query from daily life that was introduced earlier. “Find a
route with the best start time between 9:00 am and 11:00
am from my house through one Cub Food store (stay for
about 1 1/2 hours), one Best Buy store (stay for about
1 hour) and one post office (arrive before 4:00 pm, stay
about half an hour) and return to my house before 8:00
pm.” From this typical query, we can find some important
properties that could be used to guide the algorithm design
for a BESTMTNN query. First, normally a traveler queries
the best start time within a defined time window (e.g., “be-
tween 9:00 am and 11:00 am”). By contrast, he’s willing to
return home at any time as long as it’s before his latest time
(e.g., “Return to my house before 8:00 pm”). We can see
therefore that the window containing possible start times is
much smaller than the “start - return” time window. This
suggests that a forward search, beginning from the starting
query point, may be preferred for most cases. Second, the
query starts from a query point (e.g., “my house”) and ends
at the same query point (e.g., “return to my house”). This
basically says that the traveler asks for a closed travel route,
which is different from the queries studied in previous works
[9, 10, 11, 12]. In those studies, the requested travel routes
do not include routes returning to the query point. This
means that some properties identified for designing previ-
ous algorithms may not always hold. More specifically, the
property 2, which guarantees the correctness of the LORD
and RLORD algorithms in [11], is not always correct, and
thus new properties should be identified in the design of al-
gorithms for closed route queries. Third, the traveler asks
for a specific turn-by-turn route. Here we can differenti-
ate the two levels of routes. The first level is the route
through only the points of interest (POIs) without routing
and scheduling on points that are not in the set of POIs. The

second level of route is the route between two POIs. There
may be multiple routes between these two points on road
networks so there is a routing and scheduling issue. The
BESTMTNN algorithm and corresponding data structure
used in the algorithm should support both levels of routing
and scheduling. Finally, a BESTMTNN query is a temporal
query; embedded in the query’s search for the best start time
and route is the assumption that traffic patterns change over
time. There are three kinds of temporal patterns: long-term
trends used in long-term forecasts, short-term information
available when starting travel and used in short-term fore-
casts, and dynamic perturbation available only when arriv-
ing at a destination, and representing any unforeseen events
encountered during travel. It is known that traffic volumes
exhibit typical long-term temporal patterns. That is, traf-
fic volumes vary at different time points known in advance.
This kind of information can be used to do long-term fore-
casts. Due to the complexity of BESTMTNN queries, we do
not consider short-term forecasts or dynamic perturbation
in this paper.

As stated above, the BESTMTNN query differs from pre-
viously studied queries and thus new properties need to be
identified and existing data structures extended to support
solutions to this query.

3.1 BESTMTNN-Related Properties
The BESTMTNN algorithm enumerates all permutations

of all feature types. For each permutation, it starts with
partial route only containing the query point and grows a
partial route by adding points from next feature to a current
partial route. In this part, we discuss some BESTMTNN-
related properties that guarantee the corretness of partial
route growth procedure.

Property 1 If a route R(qt0, P1,1′,t1, P2,2′,t2, . . . , Pk,k′,tk,

qt0′) is the optimal route, then the travel time of route R(qt0,

P1,1′,t1, P2,2′,t2) = t(R(q0, P1,1′,t1)) +t(R(P1,1′,t1, P2,2′,t2)),
is shortest among all possible routes from the query point q

through any point from feature type 1 at any time and then
reaches point P2′ from feature type 2 at time t2.

In this property statement Pi,i′,ti represents point Pi′ of
feature type i starting at time ti if the point Pi′ is not an
end point on a route. If the point Pi′ is an end point on
the route, Pi,i′,ti represents point Pi′ of feature type i with
arrival time ti. Figure 1 (a) illustrates property 1. In this
figure, the route R(qt0, P1,1′,t1, P2,2′,t2) from the query point
qt0, through point P1,1′ ,t1 from feature type 1 and reaching
point P2,2′,t2 from feature type 2 has the least travel time.
However, when growing a partial route from the query point
q to feature type 1, we don’t know which specific partial
route R(qt0, P1,1i,t1i) will lead to a shortest path from qt0

and reaching P2,2′ ,t2. Therefore, in order to grow partial
routes from the query point q through a feature type 1 point
to a feature type 2 point, we need to store the least travel
time from the query point q through all feature type 1 points
for all qualified time points.

This property is important and necessary because the
BESTMTNN query route is a closed route that starts and
ends with the same query point. Based on this property, we
know that beginning a BESTMTNN query requires storing
all the partial routes from the query point to all the points
in the first feature type for all time points. This property
also makes it possible to use a forward search in order to
find a closed route.

...

qt0’qt0 /

.
.P

P

1,2,t2

1,1’,t1’

1,3,t3

2,2’,t2 ’

k,k’,tk ’

.

P
P

.
.

.

P
(a) Property 1

t0 /

.P1,1’,t1’
2,2’,t2 ’

k,k’,tk ’

.
Pi,i’,ti ’

 . . .Pi−1,i−1’,ti−1 ’

q P
. .

P
.

qt0’

(b) Property 2

Figure 1: Properties Related to BESTMTNN Query

Property 2 If a partial route R(qt0, P1,1′ ,t1, P2,2′ ,t2, . . . ,

Pi−1,(i−1)′ ,t(i−1), Pi,i′,ti) is part of an optimal route, then
the travel time of this partial route is least among all partial
routes starting with q and ending with Pi,i′,ti for specific
arrival time point ti.

In partial route calculations, it is possible to have multiple
partial routes ending with the same point at the same time
point. Property 2 guarantees that only the partial route
with the least travel time for a specific end point and time
point needs to be stored. It also indicates that a stored par-
tial route can be identified by its end point and arrival time
point. According to property 2, it is enough to store informa-
tion for the specific partial route R(qt0, P1,1′,t1, P2,2′ ,t2, . . . ,

Pi−1,(i−1)′ ,t(i−1), Pi,i′,ti). Figure 1 (b) illustrates Property
2. In the figure, the partial routes ending with points from
feature type i−1 are either from a different location or from
a different time point. Before growing the partial route to
feature type i, it is unknown which partial route ending
with a point from feature type i − 1 will be on the optimal
route. However, according to property 2, it is known that
the partial route must have a least cost (travel time) if it
is on the optimal route. Therefore, in order to grow partial
routes from feature type i − 1 to feature type i it is enough
to store those least cost partial routes ending with different
points from feature type i − 1 on different time points. Af-
ter growing from all these partial routes to a specific point
Pi,i′,ti′ of feature type i at specific time ti′ there are still
multiple partial routes. All these newly grown partial routes
could be represented as R(qt0, . . .,Pi−1,(i−1)′ ,t(i−1)′ ,Pi,i′,ti′),
R(qt0,. . .,Pi−1,(i−1)′′ ,t(i−1)′′ ,Pi,i′,ti′) etc. At this time, we
know if the partial route ending with Pi,i′,ti′ is on an opti-
mal route it must be shortest. So, we only need to store one
partial route ending with Pi,i′,ti′ that has least cost.

3.2 Time Aggregate Multi-Type Graph (TA-
MTG)

A TAEPV stores all pairs of least travel times among all
points, the start time of the route with the least travel time,
and the next hop on the route at all time points on a graph.
However, not all of this information is needed for partial
route growth in a BESTMTNN query. Of interest in partial
route growth are the least travel time among the points of
interest (POIs) from different feature types at all time points
and the start time of the route with the least travel time. In
other words, there is no need to store the least travel time
involved in a point of non-interest or if the least travel time
is among the POIs from the same feature type. We call the
graph that captures this more relevant set of least travel

times a Time Aggregate Multi-Type Graph (TAMTG).
As an illustration, the “initial” part of the Figure 2 shows

part of TAMTG. Indicated on the graph is the least travel
time from the query point q to points r1 and r2 from feature
type r for time points 2, 3 and 4 and the least travel time
from points r1 and r2 to point b1 from feature type b for time
points 4 to 14. It is worth noting that there may not be a
direct link between points. Instead in the TAMTG graph,
the least travel time between two points has been calculated
in advance. In addition, for simplicity the graph does not
show all the calculated least travel times among points. For
example, the least travel time from b1 to r1 and r2 is not
given.

3.3 Partial Route Growth
A point on a partial route contains not only the point

itself but also a specific time point. For example, Pi,j,tj

represents the point Pj on the partial route from feature
type i at time point tj. Both spatial and temporal data are
required because traffic volume varies over time, that is, the
time dimension plays an important role in the modeling of
spatial-temporal road networks. The current partial route
may come from different previous partial routes for different
time points. In other words, to answer a BESTMTNN query
it is not enough to store location (point) information. What
is needed is point information for all qualified time points.
Due to the time window constraints, not all time points may
qualify when searching for a best route. As discussed in
the BESTMTNN properties section, a partial route can be
identified exclusively by its end point and the arrival time at
the end point because only partial routes with specific end
points and specific time points are needed to grow the partial
route to the next feature type. In summary, identifying a
partial route requires storing a location and a time point
along with a least travel time.

In daily life, when traffic volume is very high, drivers often
choose to stay at their location instead of trying to drive at
that moment. Common sense tells them that driving during
high volume traffic will not expedite their travel or will do
so just a little. If staying extra time at a location leads to
shorter or equal travel time later, it is reasonable to choose
staying extra time units at a location. In partial route calcu-
lation of the BESTMTNN query algorithm, it is possible to
add extra time units to a location, but this extra time needs
to be counted as part of travel time since it is not a planned
stay. Therefore, there are two categories of cost at a partial
route. One is directly generated from the growth of previous
partial routes to the current partial route. In Figure 2, for

q q q q q q q q q q q

Last Point
t

Total Cost
(q, r2)

5 6 7 8 9 10 11 12 13 14 ...
q q q q q q q q q q

9 10 11 12 13 14 15 16 17...

 r2
r1 r1 r1 r1 r1 r1 r1 r1 r1

Total Cost
(Step 1...)

(q, r1)

(inital)

b1

(Step 2)
t

Last Point

t
Last Point

Total Cost

4 5 6 7 8 9 10 11 12 13 14 ...
 (Arriving at feature r) Planned Stay 2

... 4 5 6 7 8 9 10 11 12 13 14 ...

... 4 5 6 7 8 9 10 11 12 13 14 ...t

t

... 1 2 2 3 1 1 2 2 4 2 1 ...c(r2,b1)

... 4 5 3 3 7 2 1 3 4 2 1 ...

 5 5 5 8 9
5 5 5 9

6 6 6

3 3 3 4
 4 4 4 6 7 9

 9
 9

c(r1,b1)

Last Time

Last Time

(Step 1) Planned Stay 2

2 2 2 3
 1 1 1 2 3 4 5 6 7 8

5 5 5

 2 2 2 2 3 4 5 6 7 8
3 3 3 3 3 3 3 3 3 3

2 4 2 4 4 4 4 4 4 4 4

(Arriving at feature b) Planned Stay 2

5 5 5 6
 4 4 4 5 6 7 8 9

Last Time 8 7 8 7 7 7 7 7 7
 r2

5 5 5 6

t
c(q,r2)

2 3 4
3 2 42 5 1

q
r1 (stay 2)

r2 (stay 2)
c(q,r1)

t 2 3 4

Figure 2: Partial Route Growth

example, the cost 4 of partial route R(q4, r1,7, b1,10) is cal-
culated from the growth of partial route R(q4, r1,7). Since
there is a planned stay of 2 units at feature type b, the partial
routes R(q4, r1,7, b1,10) and R(q4, r1,7, b1,11) cannot be grown
at times 10 and 11. The number 4 inside a circle in “Step
1” and “’Step 2” indicates that this cost cannot be used for
next partial route growth. For the same 2-unit planned stay,
the cost of partial route R(q4, r1,7, b1,12) is kept as 4. The
other cost arises from any extra stay on the partial route
that ended with the same point. For example, the cost 5 of
partial route R(q4, r1,7, b1,13) results from 1 extra time unit
stay at point b1 at time 12.

When updating an existing partial route or generating a
new partial route, it is necessary to update or generate the
route for all qualified time points from all previous partial
routes. The implication is again that a partial route in a
BESTMTNN query is identified by both the end point on
the route and a qualified time point. Here a qualified time
point means a time point within the query time window for
a currently visited feature.

Figure 2 illustrates the partial route calculation proce-
dure. In the figure, t represents a time point. Last Point

stores the last point on the partial route before reaching the
current feature type. Last T ime stores the start travel time
from Last Point to the current point. Total Cost stores the
least travel time for this partial route so far. The Total Cost

number inside the circle means the time point with this cost
is still within the planned stay period. So, this cost cannot
be used to grow the partial route to next feature. For ex-
ample, if a traveler arrived at a Best Buy store at 3:00 pm
with a cost 9 and planned to stay 1 hour, the traveler will
not depart within the period from 3:00 pm to 4:00 pm. In
our algorithm, no time point within this window can be used
to grow the partial route. If all costs at a time point cal-
culated from different previous partial routes are within the
stay period, the traveler cannot depart from this time point.
In other words, it is impossible to grow a partial route from
this time point. A number with a crossed out line means
this cost is larger than or equal to the previously calculated
cost from a different previous partial route. Due to space
limitations, we don’t display all the crossed out Last Point

and Last T ime. In real computation, if updating a cost for a

partial route, the corresponding Last Point and Last T ime

also need to be updated.
As shown in the example of Figure 2, we are searching the

BESTMTNN for the feature type sequence < r, b >. Point
q is the query point. There are two points r1 and r2 from
feature type r and one point b1 from feature type b. The
planned stay at a point of feature type r is time unit 2 and
will not be counted as travel cost. The query is asking for
the best start time between 2 and 4. The TAMTG shown in
the initial step stores the least travel time of point pairs for
all time points for the sequence < q, r > from query point
q to feature type r and feature type sequence < r, b > from
feature type r to feature type b. Step 1 shows growing the
partial route from the route containing only the query point
q to feature type r. Step 2 illustrates growing the partial
route from the route of < q, r > to feature type b. The
rule for growing the partial route in both steps is the same.
The following example shows how partial route R(q4, r1,7) is
grown to become partial route R(q4, r1,7, b1,10). More specif-
ically, we explain how the total cost 4 is calculated on the
partial route R(q4, r1,7, b1,10) that is for the route R(q, r1, b1)
at time point 10 in step 2. In step 1, after staying for 2 time
units at time point 5 at point r1 on partial route R(q2, r1,5),
time point 5 becomes 7. Please note that time unit 2 is a
stay planned in advance so it is not counted as part of travel
cost. Then we find the cost (least travel time) from r1 at
time point 7 to b1 in the initial setup, which is 3. The arrival
time point at b1 is 7+3 = 10 and the total cost is 1+3 = 4.
So the total cost of arriving b1 at time point 10 is 4. The
partial route for this calculation is R(q4, b1,7, r1,10). The
cost 5 in the same row at time 13 is the cost after staying
at b1 for one extra time unit. This calculation continues for
all possible partial routes. For a specific point at a specific
time point, the least travel time is stored as the Total Cost

(least travel time) for this partial route.

3.4 BESTMTNN Algorithm
Figure 3 illustrates the BESTMTNN algorithm. Briefly,

the algorithm proceeds by gradually growing partial routes
until finally a complete closed route is found. According
to our analysis of this query’s properties, a forward search
strategy is preferred. In the following description of the

Input : Query point q, Time Window Constraints (TW),
k: number of feature types, Distance metrics
TAMTG : σvu(t) - cost from v to u at time t

Output : BESTMTNN route
BESTMTNN

1. Initialize : Add two fake new features of q as
2. first (feature 0) and last feature (feature k+1)
3. Find greedy route and get Current Search Bound

4. While there is permutation left
5. Clear Q and enqueue q into Q with cost 0
6. While priority Queue Q not empty
7. v = Dequeue(Q)
8. if (v is q and q is back-home query point
9. OR
10. Minimum Total Cost >= Current

11. Search Bound)
12. search in next permutation
13. i = NextFeature(v)
14. for (each node u in feature i)
15. for (every entry ti−1 within
16. time window of feature i − 1)
17. if (WithinTW(ti−1 + σvu[ti−1], TW)
18. AND
19. ((Cu[ti−1 + σvu[ti−1]] > σvu[ti−1]+
20. Cv[ti−1] OR i == 1))
21. Cu[ti−1 + σvu[ti−1] =
22. σvu[ti−1] + Cv [ti−1]
23. Update related information
24. if (i has not been visited
25. AND
26. Cu[ti−1 + σvu[ti−1]]+
27. σuq[ti−1 + σvu[ti−1]) >
28. Current Search Bound

29. Enqueue(u, Q)
30. Maintain priority queue Q by moving
31. u forward in Q according to Minimum

32. Total Cost comparisons
33. Report current route as BESTMTNN route and the
34. starting time of BESTMTNN route as best starting
35. time

Figure 3: BESTMTNN algorithm

BESTMTNN algorithm, assume a search order defined by
< F1, F2, F3, . . . , Fk >. Fi represents feature type i.

In the priority Q, every node is attributed with a time se-
ries among which the ith entry represents the partial route
ending with the node at time point i and containing infor-
mation about Last Point, Last T ime, and Total Cost for
this partial route as discussed in section 3.3. Thus a node
in Q represents partial routes that end with the node for
all qualified time points. For example, node u in the queue
Q represents all the partial routes from query point q to
u. When visiting a new feature type, a node from the new
feature is added to the currently examined partial route to
form a new partial route that is then enqueued into prior-
ity queue Q at the end for all time points within the time
window of u. When visiting a feature type that has already
been visited, the algorithm uses a label correcting approach
[2] to modify the entries in a node according to the following
conditions:

Cu[ti−1 + σvu[ti−1]] = minimum(σvu[ti−1] +Cv[ti−1],
Cu[ti−1 + σvu[ti−1]]) where
Cu[t]:Least travel time of partial route from query point

to u arriving at time t

σvu[t]:Least travel time from v to u starting at time t

The algorithm maintains a list of partial routes in the
priority queue Q. The priority query is ordered by the
Minimum Total Cost of all partial routes that end with the
same node at all time points. The Total Cost of the partial
route at a time point is the least travel time spent on the
partial route at a time point. Then a Minimum Total Cost

is the minimum of Total Cost at all time points. After a new
partial route is formed or an existing partial route is updated
the partial route can be moved forward if its Minimum

Total Cost is smaller than that of the prior partial route
in the queue. This condition guarantees that the follow-
ing partial routes in the queue cannot have smaller least
travel times even if these partial routes could be updated
from prior partial routes in the queue. For example, assume
the queue contains partial routes < R(q, r2), R(q, r1, b1),
R(q, r1, b2) > ordered by Minimum Total Cost. (For sim-
plicity, time tag has been ignored.) A new partial route
R(q, r2, b1) is grown from the partial route R(q, r2). The
partial route R(q, r1, b1) could be updated to R(q, r2, b1) if
R(q, r2, b1) has smaller Minimum Total Cost. However,
the Minimum Total Cost of the newly updated partial
route R(q, r2, b1) would still be bigger than that of R(q, r2).
So, if the Minimum Total Cost of R(q, r2) is bigger than
Current Search Bound or the length of time series it is safe
to stop the search in the current permutation.

More specifically, the first step of the algorithm after ini-
tialization is to find a greedy route quickly and use its cost
as first Current Search Bound. In a greedy route search,
first a random point of feature type F1 is picked, then the
cost of travelling from query point q at the first qualified
time point to this point is used as the current Total Cost.
Then, a random point from feature type F2 is picked to grow
the partial route. This procedure continues until the search
returns to the query point. It is possible that this approach
cannot find a qualified greedy route. In this case, the length
of the time series is used as the Current Search Bound.

The next step keeps all qualified partial routes R(qtj ,

P1,i,ti) as the first partial route set and enqueue all the
partial routes into a priority queue Q that is ordered by
minimum Total Cost of C(qtj , P1,i,ti). Here the point
P1,i,ti is any point Pi of feature type F1 at specific time
ti and C(qtj , P1,i,ti) is the cost (least travel time) from q at
time tj to point Pi of feature type 1 arriving at time ti.

In the following step the partial route at the head of prior-
ity queue Q is removed from the queue to become the current
partial route. Assume this partial route is R(qtj , . . . , Pi−1,g)
starting at time tj from q. On this partial route Pi−1,g ac-
tually represents all partial routes ending with point Pi−1,g

for all qualified time points. If the next feature type Fi

has not been visited, for every point Pi,l in the feature type
Fi, add the point Pi,l to the current partial route, form a
new partial routes R(qtj , . . . , Pi−1,g , Pi,l) and then calcu-
late the new partial route costs C(qtj , . . . , Pi−1,g,tg Pi,l,tl)
for all qualified time points among which Pi,l,tl is the point
Pl from the feature type Fi at time point tl. Finally the algo-
rithm finds the Minimum Total Cost as minimum(C(qtj ,

. . . , Pi−1,g,tg Pi,l,tl)) for all qualified time points and en-
queues the new partial route if the Minimum Total Cost is
less than Current Search Bound. If the next feature type
Fi has already been visited, there must be another partial
route ending with Pi,l in the queue Q. Look for this partial
route in Q and compare the new least travel time on the
new partial route to the previously calculated least travel

.q g3

2

g

g

g

1

4

x
x

x

xr3

r2

r4r1

b3

b4

b1b2

Figure 4: An Example of BESTMTNN

time of the partial route ending with the same point Pi,l for
every qualified time point. If the new least travel time is less
than the previous one at a time point, replace the previous
partial route with the new partial route for this time point.
Similar replacements should be done for all qualified time
points.

In the last step in the iteration, the algorithm moves the
partial route ending with the point Pi,l forward in Q to keep
the priority queue Q sorted by Minimum Total Cost.

This procedure will continue until a complete closed route
is found for this permutation or the Minimum Total Cost

from the current examined partial route is greater than the
Current Search Bound or the length of the time series.
At this time, it is possible that some partial routes remain
in the priority queue. However, since the queue is sorted
by Minimum Total Cost, it is impossible to find another
complete closed route from the partial routes remaining in
the queue with less travel time than the Current Search

Bound or the length of the time series.
After searching all permutations, the BESTMTNN algo-

rithm generates a complete closed route consisting of POIs
with the best start time and a shortest travel time. The full
turn-by-turn route can be found by simply checking with
TAEPV that is used to generate TAMTG.

3.5 An Example of BESTMTNN Algorithm
Figure 4 illustrates how the BESTMTNN algorithm works

on a spatial-temporal road network. For simplicity, we only
show the algorithm for a specific permutation in the follow-
ing. The full BESTMTNN algorithm works without pre-
defined search order. In this example, q is the query point
and there are three feature types r, b and g. Assume the
current search sequence is < r, b, g >. First, the query point
q is enqueued and then dequeued to calculate partial routes
R(q, r1), R(q, r2), R(q, r3) and R(q, r4) for all qualified time
points as described in section 3.3. (For simplicity, the time
dimension of partial routes is not shown in this example.)
R(q, r1) or R(r1) represents all partial routes ending with
point r1 for all time points. These partial routes are en-
queued and sorted by Minimum Total Cost from all partial
routes. Assume now the sorted partial routes in the prior-
ity queue are < R(r1), R(r2), R(r3), R(r4) >. Next, par-
tial route R(r1), that is R(q, r1), is dequeued and grown by
adding every point in feature type b to it. Four new partial
routes R(q, r1, b1), R(q, r1, b2), R(q, r1, b3) and R(q, r1, b4)
are generated and inserted into the queue such that the
queue remains sorted. Assume the queue is < R(r2), R(b1),
R(b2), R(r3), R(r4), R(b4), R(b3) > after sorting. At this
time R(r2), that is R(q, r2), is dequeued and four new partial

Analysis

BESTMTNN
Algorithm

User−Specified
Query

Time−Aggregated
Multi−Type Graph

Extended SP−TAG
Algorithm

Types
Feature

Number
Point Len of

Time
Series

Time−Aggregated
Road Networks

BESTMTNN Query
Processing

Measurements

Figure 5: Experiment Setup and Design

routes R(q, r2, b1), R(q, r2, b2), R(q, r2, b3) and R(q, r2, b4)
are generated by adding every point in feature type b to
it. Since feature type b was visited, every new partial route
identified by its end point and arrival time at the end point
is compared to the existing partial route if both of them
share the same end point and time point. The partial route
with shorter Total Cost is kept. After all the partial routes
are grown and sorted, the partial route ending with point b3

is moved forwarded to the head of the priority queue and the
priority queue becomes < R(b3), R(b1), R(b2), R(r3), R(r4),
R(b4) >. This procedure continues until a complete closed
route ending with the query point q becomes the head of
the priority queue. The BESTMTNN for this permutation
is the complete closed route with the smallest least travel
time value among all complete closed routes. In this exam-
ple, the route with Minimum Total Cost among all routes
represented by R(q, r2, b3, g3) is the BESTMTNN route.

4. EXPERIMENTAL EVALUATIONS
In this section, we present the results of various experi-

ments to evaluate whether our BESTMTNN algorithm is op-
timal in finding the shortest path in terms of least travel time
for the BESTMTNN query in real road network data sets.
Specifically, we demonstrate performance of the BESTMTNN
algorithm with respect to execution time using road network
data with different properties related to the number of fea-
ture types, number of points in each feature type, length of
query windows and length of time series.

4.1 The Experimental Setup
Experiment Platform Our experiments were performed

on a PC with two 2.83 GHz CPUs and 4 GByte memory run-
ning the GNU/Linux Ubuntu 8.04.2 operating system. All
algorithms were implemented in the C programming lan-
guage.

Experimental Data Sets We evaluated the performance
of the BESTMTNN algorithm for the BESTMTNN query
with real road network data. The data set represents the
static digital road map from the area of 3 miles in down-
town Minneapolis, Minnesota. In this data there are a total
of 786 nodes and 2106 edges. We synthetically generated dif-
ferent lengths of travel time series to create different Time-
aggregated Road Networks. For evaluation purposes, data
points were randomly picked from the nodes on the road
networks to represent the points of interest (POIs) from dif-
ferent feature types.

There were four different parameters in our experimental

setup.

• Feature Type (FT): Feature type numbers from 2 to
7 to show the scalability of the algorithm in terms of
number of feature types.

• Number of Points (NOP): Number of data points from
20 to 120 in each feature type.

• Length of Time Windows (TW): Length of query time
windows from 20 to 120 for each feature type.

• Length of Time Series (TS): The available number of
time points from 50 to 300 representing the long-term
traffic patterns.

Experiment Design Figure 5 describes the experimen-
tal setup to evaluate the impact of design decisions on the
relative performance of the BESTMTNN algorithm for the
BESTMTNN query. The SP-TAG algorithm described in
[4] calculated the shortest path in terms of least travel time
between a pair of spatial points for a given start time. An
extended version of SP-TAG algorithm randomly picks up
points from the Time-Aggregated road networks as POIs in
different feature types and generates TAMTG with different
parameters choices related to number of feature types, num-
ber of points in a data set belonging to a feature type and dif-
ferent lengths of time series, based on the Time-Aggregated
Road Networks. The BESTMTNN query processing engine
takes different TAMTGs and user-specified queries to gen-
erate the performance measurements that are analyzed to
evaluate the performance of the BESTMTNN algorithm.
The user-specified query gives the start time interval during
which the algorithm will find the best start time, the length
of query time windows defining the qualified visit time in-
terval at all feature types, stay time intervals at all feature
types and the returning home time interval.

Our goal was to answer the following questions: (1) How
do changes in number of feature types affect the scalability
of the BESTMTNN algorithm? (2) How do differences in
number of data points in each feature type affect the per-
formance of the algorithm? (3) How do the lengths of query
time windows at each feature type affect the performance of
the algorithm? (4) How do the lengths of time series (num-
ber of time points) affect the performance of the algorithm?

4.2 Scalability of BESTMTNN with Respect
to Feature Types

This section describes the scalability of BESTMTNN in
terms of the number of feature types. In this experiment,
the number of points in each feature type is 40, the length of
query time windows for all feature types is 60, and the length
of time series is 300 time units. The number of feature types
changes from 2 to 7. Figure 6 shows that the algorithm runs
less than 0.1 seconds when feature type number is 2,3 and
4 and runs for less than .5 seconds at feature type number
5. Run time increases to 3 seconds with 6 feature types
and to a little less than 20 seconds for 7 feature types. The
execution time increases dramatically when the number of
feature types increases from 5 to 7 because the number of
permutations increases dramatically, that is, the number of
iterations required for searching BESTMTNN becomes sig-
nificantly large. These results show that BESTMTNN is
scalable with up to 7 feature types and for most daily life
queries, BESTMTNN can give the query results quickly.

2 3 4 5 6 7
0

2

4

6

8

10

12

14

16

18

20

22

Feature Type(NOP=40,TS=300,TW=60)

E
xc

ut
io

n
T

im
e(

se
c)

MTNNRD

Figure 6: Scalability In Terms of Feature Type

4.3 The Effect of Number of Points in Feature
Types on The Performance

In this section, we show how the POI density of the data
sets affects the performance of the BESTMTNN algorithm.
We tested BESTMTNN with feature type number 7, length
of query time windows 60, time series units 300 and a chang-
ing number of points in each feature type from 20 to 120.
The results shown in Figure 7 indicates the data density
in the area covered by the experiment data set affects the
BESTMTNN performance in a near linear fashion. When
the data point number is 20, the running time is about 6 sec-
onds. However, when the data point number reaches 120,
that is, the total number of POI is 120 × 7 = 840, the run-
ning time is about 80 seconds. In our road network data set,
the total node (point) number is 786, which indicates that
there must be some POIs from different feature types that
share the same location. This is a reasonable situation in
daily life. For example, multiple business units may share
the same building or mall. Meanwhile, a POI total of 840
means the data is extremely dense. It is probably necessary
to partition this dense area into smaller areas in order to
answer a BESTMTNN query faster.

20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

Number of Data Points (FT=7,TW=60,TS=300)

E
xc

ut
io

n
T

im
e(

se
c)

MTNNRD

Figure 7: Effect of Number of Points

4.4 The Effect of Different Lengths of Query
Time Windows on Performance

In this section, we illustrate the BESTMTNN performance
under different lengths of query time windows at each fea-
ture type. We set the feature type number at 7, the number

of points in each feature type at 40 and the length of time
series at 300. We took the same query windows size for all
feature types and changed the lengths of query time windows
from 20 to 120 units. Figure 8 shows that the BESTMTNN
query is sensitive to the length of query window. Run times
increase near linearly with increases of query time window.
When the length of the time window is 20, the running time
is less than 2 seconds. When the time window reaches at 120,
the running time is just shy of 40 seconds. These results tell
that it is beneficial for users to specify smaller query time
windows. However, it is worth remembering that the chance
of getting a BESTMTNN decreases as the size of the query
time window becomes smaller.

20 40 60 80 100 120
0

5

10

15

20

25

30

35

40

Time Window (FT=7,NOP=40,TS=300)

E
xc

ut
io

n
T

im
e(

se
c)

MTNNRD

Figure 8: Performance Under Different Time Win-

dow Sizes

4.5 Effect of Different Lengths of Time Series
on Performance

This experiment evaluates the effect of the total number
of time series units in the spatial-temporal road network on
the performance of BESTMTNN. Here we used number of
feature types 7, number of points in each feature type 40
and the length of query time windows 50 or 60. The length
of the time series was changed from 50 to 300. Please note
the maximum meaningful length of query time window is
50 when the total available time series unit is 50. From the
Figure 9, we can see that the total running times are be-
tween 16 and 21 seconds. The lengths of time series affect
the BESTMTNN performance only a little and the chang-
ing pattern is not significant when the length of time series
changes.

5. CONCLUSIONS AND FUTURE WORK
We identified the properties of a BESTMTNN query and

formalized a BESTMTNN query problem on spatial-temporal
road networks. We extended the EPV from spatial only to
spatial-temporal road networks and utilized a special case
of the extended EPV (TAEPV), TAMTG, in designing our
BESTMTNN algorithm based on the label-correcting ap-
proach. In our experiment we evaluated the performance of
the BESTMTNN algorithm in terms of number of feature
types, number of points in each feature type, the length of
query time windows and the length of time series of road
networks.

In the future work, we plan to conduct the comparative
experiments to characterize dominance zones of alternative

50 100 150 200 250 300
5

10

15

20

25

Time Series (FT=7,NOP=40,TW=60)

E
xc

ut
io

n
T

im
e(

se
c)

MTNNRD

Figure 9: Effect of Time Series Length

choices for critical algorithm design decisions and extend the
BESTMTNN algorithm to huge road networks by using a hi-
erarchical TAMTG since it is extremely time-consuming to
answer BESTMTNN query with current technologies with-
out partitioning huge road networks.

6. REFERENCES
[1] L. Bodin and B. Golden. Classification in vehicle

routing and scheduling. Networks, 1981.

[2] B. Cherkassky, A. Goldberg, and T. Tadzik. Shortest
paths algorithm: theory and experimental evaluation.
Mathematical Proggramming, 1996.

[3] B. Ding, J. Yu, and L. Qin. Finding time-dependent
shortest paths over large graphs. In EDBT, 2008.

[4] B. George, S. Kim, and S. Shekhar. Spatio-temporal
network databases and routing algotihms: a summary
of results. In SSTD, 2007.

[5] Y.-W. Huang, N. Jing, and E. Rundensteiner. A
semi-materialized view approach for route
maintenance in Intelligent Vehicle Highway systems.
In ACM GIS, 1994.

[6] Y.-W. Huang, N. Jing, and E. Rundensteiner.
Hierarchical encoded path view for path query
processing: an optimal model and its performance
evaluation. IEEE TKDE, pages 409–432, May/June
1998.

[7] G. Laporte. The vehicle routing problem: An overview
of exact and approximate algorithms. European
Journal of Operational Research, 1992.

[8] G. Laporte, M. Gendreau, J. Potvin, and F. Semet.
Classical and modern heuristics for the vehicle routing
problem. Intl. Transactions in Operational Research,
2000.

[9] F. Li, D. Chen, and M. Hadjieleftherious. On trip
planning queries in spatial databases. In SSTD, 2005.

[10] X. Ma, S. Shekhar, H. Xiong, and P. Zhang.
Exploiting page level upper bound for multi-type
nearest queries. In ACM GIS, 2006.

[11] M. Sharifzadeh, M. Kolahdouzan, and C. Shahabi.
The optimal sequenced route query. In VLDB Journal
DOI 10.1007/s0078-006-0038-6, 2007.

[12] M. Sharifzadeh and C. Shahabi. Processing optimal
sequenced route queries using voronoi diagrams. In
Geoinformatica DOI 10.1007/s10707-007-0034-z,
2008.

