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ABSTRACT

Data communication within the memory system of a single pro-
cessor node and between multiple nodes in a system is the bot-
tleneck in many iterative sparse matrix solvers like CG and GM-
RES. Here k iterations of a conventional implementation perform
k sparse-matrix-vector-multiplications and (k) vector operations
like dot products, resulting in communication that grows by a fac-
tor of (k) in both the memory and network. By reorganizing the
sparse-matrix kernel to compute a set of matrix-vector products at
once and reorganizing the rest of the algorithm accordingly, we
can perform k iterations by sending O(log P) messages instead
of O(k - log P) messages on a parallel machine, and reading the
matrix A from DRAM to cache just once, instead of k times on a
sequential machine. This reduces communication to the minimum
possible. We combine these techniques to form a new variant of
GMRES. Our shared-memory implementation on an 8-core Intel
Clovertown gets speedups of up to 4.3x over standard GMRES,
without sacrificing convergence rate or numerical stability.

1. INTRODUCTION

The costs of arithmetic and communication continue to decrease,
where “communication” means moving data, either between fast
and slow memory (e.g., cache and DRAM) in the sequential case,
or between processors over a network in the parallel case. How-
ever, arithmetic is getting faster much more quickly than commu-
nication, so that the primary challenge is developing algorithms to
avoid communication. This is especially true in sparse matrix com-
putations, where conventional algorithms do only a few arithmetic
operations per datum, so that communication costs frequently dom-
inate already.

In this paper we show how to eliminate most of the communi-
cation from GMRES [20], a widely used iterative solver for sparse
systems of equations Az = b. Like other so-called Krylov Sub-
space Methods (KSMs), GMRES takes a starting vector (say vo =
b), creates a sequence of vectors v1, ..., vx Where each v; is got-
ten by multiplying some linear combination of v, ..., vi—1 by
A, and then chooses the “best” (in some sense) approximate solu-
tion to Ax = b from the subspace of all linear combinations of v,
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..., vg (the Krylov subspace). This means that the cost in arith-
metic and communication of GMRES (or any KSM) grows by a
factor of (k). (In fact, for conventional GMRES without restart-
ing, the number of BLAS1 or BLAS2 flops grows proportionally
with Q(k?) for k iterations, and k sparse matrix-vector products
are required besides.)

In this paper we show how to reduce the communication cost
of k iterations of GMRES by a factor of O(k), which is optimal,
without sacrificing numerical stability or the convergence rate. In
the parallel case with P processors, we decrease the latency cost
(total number of messages) to ©(log P) from Q(klog P), and in
the sequential case, we decrease the bandwidth cost (total numbers
of words moved) by a factor of Q(k).

This requires several algorithmic innovations. Section 2 dis-
cusses our new matrix powers kernel W = [po(A) - b, p1(A) -
b,...,pk(A) - b, where p;(A) = H;zl(A — ;- I) is a degree-
i polynomial in A, and the \; are constants chosen as described
in Section 4 to improve numerical stability of the entire iterative
method. This is a modification to the kernel defined in [8,9], namely
[Az, A%z, ..., A*z]. Using ideas previously introduced in [8,9],
we describe how to compute W for the same bandwidth cost as
1 4 o(1) sparse matrix-vector multiplies, and for about the same
latency costs as a single matrix-vector multiply. Performance data
on an 8-core 2.33 GHz Intel Clovertown shows speedups for com-
puting W of up to 2.7x over k calls to the best optimized algo-
rithm just for a single sparse matrix-vector multiplication (SpMYV,
or A-x).

The columns of W span the same Krylov subspace as the vec-
tors originally computed by GMRES, but GMRES must be refor-
mulated to compute the best linear combination of these new ba-
sis vectors. Part of this reformulation is described in Section 3,
where a communication-avoiding QR factorization of W is dis-
cussed; this was introduced in [5]. Performance data shows signifi-
cant speedups over both Modified Gram-Schmidt orthogonalization
and LAPACK’s Householder-based QR, both as a standalone fac-
torization and as a way to orthogonalize the Arnoldi basis vectors
in our version of GMRES.

Section 4 discusses the overall reformulation of GMRES, which
we call Communication-Avoiding GMRES (CA-GMRES). CA-
GMRES is equivalent to standard GMRES in exact arithmetic.
Convergence analysis for a variety of practical matrices shows that
the new algorithm converges at the same rate as standard GMRES.
Overall measured performance results are in Section 4.5, which
show speedups of up to 4.3 x over conventional GMRES using the
best available parallel SpMV. Finally, Section 5 discusses conclu-
sions and future work.

To summarize, our contributions in this paper include, first, auto-
tuned and cotuned multicore implementations of two kernels (ma-



trix powers and TSQR) already introduced in earlier publications.
Second, it describes a full implementation of the GMRES solver
based on the aforementioned kernels. Finally, this solver has the
ability to choose the matrix powers basis length k (for numerical
stability and kernel performance) and the restart length m = k - ¢
(for convergence rate) independently. Previous work was restricted
to m = k. Thus, in order to avoid catastrophic failure due to nu-
merical instability, earlier methods had to choose a short restart
length m. However, this made them converge more slowly than
our methods, or not at all.

2. THE MATRIX POWERS KERNEL

As mentioned above, the matrix powers kernel takes a sparse
matrix A, a dense vector x, and scalars A1, ..., A\x (chosen as de-
scribed in Section 4), and computes the vectors (A — A1)z, (A —
)\2])(14 - All)ib, ey (A — )\kf)(A - Akfll) tee (A - /\1[)x
Note that this is a slight modification to the kernel defined in [9],
namely [Az, A%z,..., A*z]. From an implementation perspec-
tive, the kernels differ only slightly from each other, and we refer
to both by the same name.

A naive algorithm for our new kernel would proceed as fol-
lows: compute ' = (A — A1)z, then use 2’ to compute ="/ =
(A — X2I)2’, and so on. This is the same as k calls to sparse-
matrix vector multiplication (SpMV), which is a memory bound
kernel and fails to exploit potential reuse of the matrix A. The al-
gorithms we described in [8] for the matrix powers kernel reduce
the slow memory traffic to the minimum possible — that is, they
read the matrix A only once (with some overhead). While work
in [9] focused on a sequential out-of-core implementation, where
the gap between bandwidth and computational capability is espe-
cially large, this paper demonstrates that significant improvements
are possible even for a multicore out-of-cache implementation.

We note that our parallel, distributed-memory implementation
in [9] had no performance improvements, because it lacked single-
node optimizations. In contrast, a multiple-node implementation
built using our multicore out-of-cache implementation presented in
this paper is expected to achieve significant performance improve-
ments. We will, however, leave this multinode implementation as
future work.

To motivate our algorithms, we consider the simple case when
the matrix A is tridiagonal (the dependency graph of the vectors

is shown in Figure 1). Let mgi) be the j-th component of z® =

(A=) (A=A 1D)z®. Although not shown throughout the
figure, each entry depends on the one below it and its two neigh-
bors, e.g., mél) depends on xi()), xéo) and m((f) as shown by purple
arrows in Figure 1. The vectors and the rows of the matrix are par-
titioned into p = 4 blocks. In the parallel algorithm, each block
resides on a different processor and in case of a sequential algo-
rithm, the blocks are computed one at a time. Consider the green
colored block in Figure 1(a). For the parallel algorithm, if one pro-
cessor has the entries of z(*) numbered from 18 to 33 (the base of
the third trapezoid), then we can compute all the green entries —
the non-green entries will need to be explicitly fetched from other
blocks. Thus, instead of fetching non-green entries for every z®,
we fetch them only once, which improves performance by reduc-
ing the number of inter-processor messages. However, we will be
computing extra entries, which do not reside on the green partition,
e.g., entries 19, 20, 31, 32 of 2 _ this constitutes redundant com-
putation. The explicit sequential algorithm emulates the parallel
algorithm by iterating over blocks (each block fits in fast memory)
and computing on a block in the same manner as the parallel al-
gorithm. In the explicit sequential algorithm, the benefits are even

more significant, because we are reading the matrix A from slow
memory just a little more than once. However, because we perform
redundant flops, some of the entries of A are fetched more than
once from slow memory. If the number of redundant flops is small,
we are effectively reading the matrix only once, whereas the naive
strategy would have read the matrix k times, which translates to a
potential speedup of £ if the naive algorithm is memory bound.

Next we consider the implicit sequential algorithm (illustrated
in Figure 1(b)), which has no redundant flops. We improve upon
the explicit sequential algorithm by only computing entries which
have yet not been computed. In contrast to the explicit sequential
algorithm, which used explicit copies of the entries on other blocks,
the implicit algorithm maintains no such copies, which is why we
do not see overlapping trapezoids in Figure 1(b).

2.1 Algorithms for the Matrix Powers Kernel

Before we describe the algorithms for general matrices, it is use-
ful to introduce some notation. Given a square sparse matrix A,
and k + 1 vectors 2P = A2 for 0 < i < k, we define a de-
pendency graph G as follows: associate a vertex with each xy) for
i=0,1,...,kand j = 1,2,...,n (and use the same notation to
name the vertex), and an edge from my“) to a;£,’? when A;,, # 0,

ie., CIZ’§Z+1) depends on {7 (when \; 11 # 0 and A;; = 0, we still
add that edge because of the dependency). Note that G' will not
be constructed in practice, but serves to simplify the description of
our algorithms. We say ¢ is the level of vertex m;”. Each vertex

also has an affinity g, corresponding to the block where it is stored:
(0)

PR ,xg.k) have the same affinity,

we assume all the vertices x
depending only on j.

Let S be any subset of the vertices of G. We let R(S) denote the
set of vertices reachable from the any vertex in S. We let R(.S, m)
denote the set of vertices reachable by paths of length at most m
from any vertex in S. We use R(S),, R(S)™ and R(S)ff) to
denote the subsets of R(.S) with affinity g, level 7 and both affinity
g and level i respectively. We use similar notation for R(.S, m).

We will describe our algorithms using a shared memory model
since our target machines in this work are multicore. Earlier work
in [8,9] discusses the parallel algorithms using distributed memory.

2.1.1 Parallel Algorithm

Our parallel algorithm (Figure 2) for shared-memory multicore
machines is a simplification of PA1 discussed in [9]. Due to the
shared memory model, processors do not need to use explicit sends;
the required data can be simply pulled from the shared memory.
Each block is assumed to reside on a different processor. We il-
lustrate the parallel algorithm on the symmetric matrix A whose
graph is described in Figure 3(a). Letting ¢ denote the central
block, the red and black vertices constitute R(V, 1)(0), whereas
the blue, green, red and black constitute R(Vj, 3)(®). These ver-
tices, which are not local to the block, constitute the ghost vertices
for the block.

Figure 3(b) shows that ordering the local and ghost entries in
increasing order of distance from the local vertices enables the use
of highly optimized SpMV routines. Local vertices (colored black)
go first, followed by the ghost entries within distance 1 (colored
red), followed by ghost entries within distance 2 (colored green),
and so on. Given this ordering, one can use SpMV to compute the
entries at level ¢. Computation of a higher level ¢+1 requires SpMV
involving a smaller set of contiguous block of rows of a matrix and
a vector. This is aptly shown by the set of equations in Figure 3(b).
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(a) Parallel algorithm/explicit sequential algorithm for a tridiagonal matrix with n = 40, k = 3, p = 4. The purple arrows indicate the dependence
pattern for the tridiagonal matrix for some of the entries. The vertices are colored by their affinities. The overlapping regions (the three triangles)
indicate redundant computation. Note that each trapezoid can be computed independently of each other, which means they can be computed in any
order sequentially or in parallel.
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(b) Implicit sequential algorithm for a tridiagonal matrix with n = 40, k = 3, p = 4. The vertices are colored by their affinities. The blocks have to
be computed in a specific order—in this case, red first, followed by magenta, green and then blue.

Figure 1: Our algorithms illustrated on a tridiagonal matrix.

Parallel Algorithm (code for proc. q) [Explicit Sequential Algorithm Implicit Sequential Algorithm
forqg=T1topdo C = ( {C = set of computed entries}
. . (0) _ (0)
e b e 7 O™ | copy entries in R(V;, k) — V) from | fora =1topdo
fori— 1 to k}(’lo g slow memory to ghost zone fori=1tok d?i) @
L= ) ) fori=1tok do compute all z; € R(Vg, k)" —C
compute all z;" € R(Vq, k) (¥ (¥ ()
compute all ;" € R(Vy, k) C — CUR(Vy, k)

Figure 2: Algorithms for the matrix powers kernel.

2.1.2  Sequential Algorithms ity of accesses when looking at entries in other blocks as well as
Figure 2 shows both sequential algorithms: explicit and implic- improving reuse of already computed entries. Both these ordering

itly cache-blocked. One contrast to the explicit sequential algo- problems can be formulated as instances of the traveling salesman

rithm SA2 in [9] is that we do not need to explicitly fetch or store problem [8]. However, we leave the incorporation of solutions of

the entries in the current cache block. Since we are targeting cache- these traveling salesman problems as future work.

based architectures, this is done implicitly by the hardware. Fur-

thermore, this also implies that we only need to keep two vectors 2.2 Implementation Details

in cache (and the matrix rows) instead of all £ + 1 of them: once a
vector has been used to compute the entries at the next level, it is no
longer needed. Thus, when R(V, k)(i_l) has been used to com-
pute R(Vq, k)(i), it is no longer needed for computations in block
q for higher levels. Thus, not only can the cache block partitions be
larger, the amount of redundant computation is also reduced, since
fewer blocks means less redundant computation. The example in
Figure 1(a) illustrates the explicit sequential algorithm the same
way as the parallel algorithm.

As evident in Figure 2, the implicitly cache-blocked algorithm
performs no extra flops. This has the potential advantage when k is
large enough to result in significantly fewer flops than the explicit
sequential algorithm, and can provide speedups over the naive algo-
rithm even when the explicit sequential algorithm does not. How-
ever, this improvement comes at the cost of bookkeeping to keep
track of whichh entries need to be computed when looking at a
given level of block g, i.e., the computation schedule. The com-
putation schedule also includes the order in which the blocks are
traversed, thus making the implicit algorithm more sensitive to the
block ordering when compared to the explicit sequential algorithm.
Finally, we note that a good ordering of entries within each block
as well as an ordering of the blocks are useful in improving local-

Because of the hierarchical memory structure of multicores, our
matrix powers implementation is hierarchical: it uses the parallel
algorithm on the outer level, i.e., for multiple cores, and a sequen-
tial algorithm at the inner level, i.e., for off-chip data movement.
Thus, the matrix is thread-blocked first for the parallel algorithm
and then cache-blocked within each thread. To this end, it is useful
to introduce additional notation. We now define the affinity of a
vertex as a pair (g, b), in which g is the thread number and b is the
cache block number on thread g. Given this definition, V; means
the set of vertices on thread ¢ and V; would be the set of vertices
in cache block b on thread g. For thread g, we let b, denote the
number of cache blocks for that thread.

Figure 4 describes both cases of whether the inner sequential al-
gorithm is explicit or implicit. We distribute the cache blocks to
different threads in a balanced manner. For the implicit implemen-
tation, we note that it performs redundant flops when compared to
the implicit sequential algorithm in Figure 2—these extra flops are
due to parallelization at the outer level. Therefore, the computation
schedule for the implicit algorithm must also account for comput-
ing the ghost entries.

One reason we describe both the explicit and implicit algorithms
is because there is no clear winner between the two—the choice de-
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(b) Ordering the vertices for the parallel and explicit sequential algorithm when &k = 3. At any
level, the vertices are ordered in increasing order of distance from the local vertices (colored black).
Bi, B2 and B3 are sparse matrices derived from the original matrix A by restricting it to the
corresponding set of local and ghost rows, e.g., Bo says how to compute the red vertices of x(%)
given the black, red and green vertices of z(*~1), When the matrix A is symmetric, the columns
of B3 corresponding to the black nodes would be all zeros.

(a) Example general graph. For computin
the central block the red vertices from z(0
are needed when k£ = 1, red and green, when
k = 2 and red, green and blue when k£ = 3.

Figure 3: An example sparse matrix and an illustration of how its rows may be ordered for the parallel and the explicit sequential algorithms.

Explicit Cache-Blocked Parallel Algorithm
(Code for proc. q)

Implicit Cache-Blocked Parallel Algorithm
(Code for proc. q)

C =0 {C = set of computed entries}

fetch entries in R(Vq(o), k) — Vq(o) to ghost zone
for m = 1to b, do

for m = 1to b, do
fetch entries in R(Vy,m, k)® — q<3,>z to ghost zone

fori =1tokdo )
compute all xy) € R(Vg,m, k)@

for:=1tokdo )
compute all m;l) € R(Vgm, k) = C

C — CURWVyim, k)@

Figure 4: Implemented hybrid algorithms.

pends on the nonzero pattern of the matrix. The explicit algorithm
has a memory access pattern which does not go beyond the cur-
rent block after the data has been fetched in to the ghost zones and
also admits the use of the cache bypass optimization. Because of
the explicit copy of the entries on neighboring cache blocks, con-
tiguous blocks of data are computed at each level. However, the
number of redundant flops for the explicit algorithm can increase
dramatically for matrices A whose powers A* grow quickly in den-
sity, resulting in no performance gains. The implicit algorithm, on
the other hand, only has redundant flops due to parallelization at
the outer level. Since the number of threads is typically small, the
number of redundant flops is expected to grow slowly for the im-
plicit algorithm. However, the memory accesses for the implicit
algorithm can span multiple cache blocks, making it more sensi-
tive to the ordering in which the cache blocks are computed/stored.
Furthermore, the implicit algorithm has a higher overhead result-
ing in performance degradation if the kernel is memory bound. In
general, if the matrix density grows slowly with the power, then
the explicit algorithm is better, otherwise the implicit algorithm is
expected to win.

2.2.1 Optimizations

In addition to the algorithmic optimizations discussed earlier in
Section 2.1, we also implement additional low-level optimizations
to get good performance. Some of these optimizations are bor-
rowed from a highly optimized SpMV implementation [24], which
also serves as the baseline for our performance comparisons. We
implement the usual optimizations for sparse matrix computations
and storage [24]: branch elimination, SIMD intrinsics, register
tiling, and shorter integer types for the indices, as well as addi-

tional optimizations. Since hand-coding the computational kernels
can be tedious and time consuming, we use code generators in the
same manner as in [24]. Given the difficulty of deciding the right
optimizations and parameters, our implementation has an autotun-
ing phase where it benchmarks the input matrix to figure out the
right data structures and optimization paramaters. These are de-
scribed below:

Partitioning strategy: We use a recursive algorithm which first
creates partitions the vectors among the threads, and then recur-
sively creates cache blocks for each thread. The recursion stops
when the current cache block is small enough to fit in the thread
cache. For creating the partitions at each recursion level, we either
use METIS [15] or subpartition the current partition into contigu-
ous blocks, with equal work in each subpartition. When METIS
is used, the matrix and the vectors need to be permuted to make
each thread block and cache block contiguous. Using METIS can
result in lower interblock communication and lower flops/block.
However, this benefit due to METIS can be offset by a more irreg-
ular memory access pattern due to the permutation, particularly for
the implicit algorithm, where memory accesses can be spread over
multiple cache blocks. Thus, the decision of whether to use METIS
or not is made during the autotuning phase by actually timing both
partitioning strategies.

Inner sequential algorithm: Since the choice of whether to use
the explicit or the implicit implementation depends on the matrix
nonzero pattern, we make the decision by timing during the auto-
tuning phase.

Register tile size: Register tiling a sparse matrix can reduce the

required slow memory bandwidth [24] or improve instruction through-

put [22]. Since SpMYV is typically memory bound on modern multi-



Explicit Parallel Algorithm Using Cache Bypass (Code for proc. ¢)

for m = 1to b, do

(1)
fori =2tokdo

(2)

b .
{Vectors zo, z1 have size mgulc |R(Vy,m, k)| to store any R(Vy.m, k)@ (1 <i < k)}
m=

fetch entries in R(Vy,m, k)®) — Vq(,% to ghost zone
compute all rows in R(Vy,m, k) using R(Vy 1, k) and store in zo
copy from zo (in cache) to x4, (in slow memory) using cache bypass

compute all rows in R(Vy,m, k) using 2; moa 2 and store in 2(i 1) mod 2

COPY Z(i+1) mod 2 (in cache) to x4 s (in slow memory) using cache bypass

Figure 5: Explicit implementation with cache bypass optimization.

stiffness matrix

(153K, 9.1M, 59) (218K, 12M, 55)

1d 3-pt 1d 5-pt 2d 9-pt cant cfd
Tridiagonal matrix Pentadiagonal matrix |[9-pt operator on 2D meshl||  Stiffness matrix FEM cantilever || Pressure matrix
(1M, 3M, 3) (1M, 5M, 5) (1M, 9M, 9) (141K, 7.3M, 51) (62K, 4M, 65) |(123K, 3.1M, 25
T, -
|
gearbox pwtk shipsec marcat mc2depi xenon

|Aircraft flap actuator |[Pressurized wind tunnel| FEM ship section/detail || Impatient customers |[2D Markov model[|Complex zeolite,

(141K, 7.8M, 55)

on telphone exchange
(547K, 2.7M, 5)

of epidemic sodalite crystals
(525K, 2.1M, 4) [[(157K, 3.9M, 25

Table 1: Each matrix is described by its spyplot, name, description and the triple showing (#rows, #nonzeros, #nonzeros/#rows).

core platforms, heuristics which try to minimize memory footprint
of the matrix are sufficient [24]. However, the arithmetic intensity
(i.e., the flops to DRAM byte ratio) of the matrix powers kernel can
increase with k, making it computation bound. Since use of a larger
register tile can mean extra flops, performance can degrade when
the kernel is computation bound. Therefore, we autotune to decide
whether a larger register tile should be used or not. Note that for the
implicit implementation, the register tiles must be square because
we need to track the dependencies between same-sized groups of
vertices.

Cache bypass optimization: For the case of the explicit imple-
mentation, we note that although we compute extra entries in the
ghost zones, they do not need to be written back to slow memory.
Furthermore, we do not need to keep all the k£ + 1 vectors in a given
cache block in cache; only the vectors at the current level being
computed and the level below need to be in cache. Thus, we com-
pute by cycling over two buffers, which are always in cache: one
buffer is used to compute the current level, and the other holds the
previous level. Once the current level has been computed, we copy
the buffer to the vector in slow memory by bypassing the cache (us-
ing SIMD intrinsics). This optimization is particularly useful in re-
ducing memory traffic on write-allocate architectures, like the one
in this paper. Without cache bypass, due to write-allocate behav-
ior, each output vector will contribute twice the bandwidth: once
for allocating cache lines when being written, and again when it
is evicted from cache while computing the next cache block. Fur-
thermore, since all the rows in Vq(% for level ¢ on cache block m
of thread q are stored contiguously, this copy to slow memory is
cheap. Figure 5 shows the explicit cache-blocked parallel algo-
rithm with cache bypass optimization. Note that this optimization

cannot be applied to the implicit algorithm because the memory
access can span multiple blocks.

Stanza encoding: This is a memory optimization to minimize the
bookkeeping overhead for the implicit implementation. Note that
we need to iterate through the computation sequence for each level
on each block. We encode the computation sequence as a sequence
of contiguous blocks (stanzas)—each contiguous block is encoded
by its starting and ending entries. Since we stream through the
computation sequence, this optimization can improve performance
by reducing the memory bandwidth. We also try to use fewer bits
for encoding these stanzas when possible to further reduce the over-
head.

Software prefetching: Software prefetching can be particularly
useful for a memory-bound kernel like SpMV. However, the prefetch
distance and strategy depends both on the algorithm (implicit and
explicit algorithms have different data structures implying differ-
ent software prefetch strategies) and the matrix. Thus, the right
software prefetch distances are chosen during the autotuning phase.
Since software-prefetching is a streaming optimization, it was found
to be useful only for k& = 1, where there is no reuse of the matrix
entries.

2.3 Results

We now describe the performance results of our matrix powers
kernel on our target platform—an Intel Clovertown. We consider
two cases—one in which all the A;’s are zero and the other in which
all of them are non-zero. As baselines, we shall consider the per-
formance of the matrix powers kernel for £k = 1, which constitutes
the naive algorithm. We emphasize that the ‘naive ’ algorithm uses
a highly optimized SpMV implementation [24] for the A = 0 case



(and appropriately modified when A # 0). For speedup calcula-
tion, the time taken for the matrix powers kernel is normalized by
dividing by k and compared with the time taken for a single SpMV,
i.e., the naive algorithm. Thus, the speedup is defined as
time(matrix powers kernel for [p1 (A)z, ..., px(A)z])/k
time(SpMV) ’

2.3.1 Platform Summary

Our target machine for this work was an 8-core 2.33 GHz Intel
Clovertown. It has a total of 16 MB of on-chip L2 caches, with a 4
MB L2 cache shared by every 2 cores. Each core is capable of ex-
ecuting 4 double-precision flops every cycle, which implies a peak
performance of 75 double-precision GFlop/s. However, because of
the overheads associated with sparse matrix storage, performance
of an in-cache SpMV computation (for a dense matrix in CSR for-
mat) is small: 10 GFlop/s. Note that this in-cache performance
number incurs no DRAM (which is the slow memory) bandwidth
cost, since all the data fits in cache. Thus, 10 GFlop/s is an up-
per bound on the raw flop rate achievable (i.e., including redundant
computation) when the register tile size is 1x 1. However, this up-
per bound only applies to the A = 0 case. For A # 0, we must scale
the upper bound on a per-matrix basis in proportion to the increase
in arithmetic intensity, i.e., the upper bound for a matrix with m

rows and nnz nonzeros is 10 - (1 + i) GFlop/s.
nnz

2.3.2 Matrices

In addition to matrices whose graphs are meshes, which are ex-
pected to perform well [8], we selected sparse matrices from a va-
riety of real applications [13] (see Table 1). Since cache-blocking
is only going to benefit when the matrix or vectors do not fit in
cache, we deliberately chose matrices with enough nonzeros. Since
METIS only works on symmetric matrices, we use METIS to parti-
tion A+ AT when the matrix A has an asymmetric nonzero pattern
(matrices marcat, mc2depi and xenon).

2.3.3  Performance Results

Figure 6 shows the performance of the matrix powers kernel for
different matrices. As expected, the speedups for the mesh matrices
1d 3-pt,1d 5-ptand2d 9-pt are quite good due to the reg-
ularity of memory accesses, even though their naive performances
are among the lowest. We note that the performance of the A # 0
kernel was better than that for A = 0 kernel simply because it per-
formed additional flops at no extra bandwidth, i.e., it had a higher
arithmetic intensity. This difference is marginal when the average
number of nonzeros per row of the matrix is large, e.g., the pwtk
matrix, but is significant when it is small, e.g., the 1d 3-pt ma-
trix. Since the matrix powers kernel was bandwidth-limited even
for the best performance, both the A = 0 kernel and A # 0 kernel
had almost the same runtime because they had the same bandwidth.

Note that SpMV performance and the best matrix powers kernel
performance across the different matrices is quite different. There-
fore, even though 1d 5-pt had the second lowest SpMV perfor-
mance, it was able to achieve the best matrix powers kernel perfor-
mance. In fact, c£d, which had the best SpMV performance, gains
the least from our implementation. We also note that although we
get more than 2 x speedups for some of the matrices, we are still far
below the upper bound of 10 GFlop/s. As a special case, we note
that the optimal performance of 1d 5-pt required 2x2 register
tiling, which has an upper bound of 16 GFlops/s on raw perfor-
mance. Figure 6 also shows another per-matrix upper bound on
performance corresponding to the optimal k, which was calculated

as

arithmetic_intensity(matrix powers)
arithmetic_intensity(SpMV)

- performance(SpMV), (1)

i.e., by scaling the naive performance by the factor of increase in
arithmetic intensity. Note that the other upper bound of 10 GFlop/s
on raw flop rate did not kick in for any of the matrices, i.e., the
upper bound by scaling with arithmetic intensity was lower than
10 GFlop/s. We observe that the performance is within 75% of
this bound for nicely structured matrices like 1d 3-pt,1d 5-pt
and 2d 9-pt. However, for the rest of the matrices the gap be-
tween the upper bound and the measured performance can be quite
large—sometimes as much as 60%. For some of the matrices like
marcat and mc2depi part of this difference comes from the re-
duced instruction thoughput due to the explicit copy for the cache
bypass optimization. Since the ratio nonzeros/row for these matri-
ces is small, the cost of copying is significant. It is also interesting
to note that the implicit algorithm provided the best speedups for
most of the matrices. In fact, the explicit algorithm failed to obtain
any speedups at all for matrices like bmw and xenon because the
increase in redundant flops was significant.

As we stated earlier, our implementation has an autotuning phase
where it figures out the right inner algorithms and other parame-
ters. Figure 7 serves to illustrate why we need to autotune. We
show performance for three of the matrices — cant, mc2depi
and pwtk. We can see that the use of METIS to partition, which re-
sulted in the rows of the matrix and the vectors being reordered, did
not always improve performance. For example, for mc2depi re-
ordering improved performance for the explicit algorithm whereas
it decreased performance for the implicit algorithm. In fact, for
cant, reordering degrades performance significantly. We also note
that the implicit algorithm provided good speedups for cant and
pwtk, whereas the explicit algorithm was actually worse off for
k > 1. The fact that the density of cant and pwtk grew quickly
with k is also demonstrated by their relatively small optimal k& = 4.
In contrast, performance of mc2depi improved for a larger range
of k.

3. ORTHOGONALIZATION

GMRES often takes as long or longer to orthogonalize the ba-
sis vectors as it does to perform the sparse matrix-vector prod-
ucts. Common implementations of standard GMRES orthogonalize
using Modified Gram-Schmidt (MGS). However, MGS communi-
cates (reads and writes the vectors, and passes messages between
processors) a factor of k times more than the lower bound, over k
iterations of GMRES [5]. Furthermore, the data dependencies in
MGS GMRES force it to use the least optimal BLAS 1 version of
MGS. Walker’s version of GMRES orthogonalizes using House-
holder QR [23], but this communicates about as much as MGS
does. Optimization matters because for the matrices in our test
suite, the runtime of LAPACK’s QR factorization for matrices with
as many rows as the sparse matrix and ~ k columns was compa-
rable to the runtime of our matrix powers kernel. One expects this
for most sparse matrices being solved by GMRES.

Communication-Avoiding GMRES replaces traditional orthog-
onalization procedures with two kernels. The first is called Block
Gram-Schmidt (BGS), and it orthogonalizes the k + 1 basis vectors
generated by the matrix powers kernel, against all previous basis
vectors. The second kernel, called Tall Skinny QR (TSQR), makes
those k + 1 basis vectors orthogonal with respect to each other.
Combined, these two kernels do the work of updating a QR factor-
ization with new columns.

When using TSQR and BGS in CA-GMRES with a restart length
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Figure 6: Performance of the matrix powers kernel on Intel Clovertown. The yellow bars indicate the best performance over all possible k.
Each bar is annotated with some of the parameters for the best performance: whether implicit/explicit (indicated by ‘I’ or ‘E’ at the top), the
corresponding value of k (just below the ‘I’ or ‘E’) and the speedup with respect to the naive implementation (just below this), which is the
highly optimized SpMV code. The label ‘A = 0’ indicates the case when all \;s are 0, whereas the label ‘\ # 0’ indicates the case when all
Ais are nonzero. The label ‘upperbound’ indicates the performance predicted by scaling the naive performance by the change in arithmetic
intensity (Equation 1). Note that the runtimes for A = 0 and A # 0 cases are the same since they transfer the same number of bytes. We can

see a big variation in performance as well as speedups over different matrices.

of 60, TSQR and BGS treated together as an orthogonalization
kernel achieved a speedup of nearly 4x over the MGS orthog-
onalization used by standard GMRES. TSQR is also faster than
LAPACK’s QR factorization and better able to exploit parallelism.
Both TSQR and BGS move asymptotically less data between lev-
els of the memory hierarchy than MGS. Also, BGS consists almost
entirely of DGEMM operations, unlike MGS. A further advantage
is that TSQR and BGS can work with the cache-blocked format
of the basis vectors in CA-GMRES without needing to copy the
blocks into contiguous vectors, as would be required if using LA-
PACK or ScaLAPACK QR. In this regime, copying has a signficant
overhead.

3.1 Tall Skinny QR (TSQR) factorization

The TSQR factorization described in this paper is a hybrid of the
sequential and parallel TSQR algorithms described in Demmel et
al. [5]. It begins with an m X m matrix with m > n, divided into
blocks of rows. In our case, each block consists of those compo-
nents of a cache block from the matrix powers kernel that do not
overlap with another cache block. TSQR distributes the blocks so
the P processors get disjoint sets of blocks. (If running on a NUMA
system, this distribution can be arranged to respect memory local-
ity.) Then, each processor performs sequential TSQR on its set of
blocks in a sequence of steps, one per block. Each intermediate
step requires combining a small n X n R factor from the previous
step with the current block, by factoring the two matrices “stacked”
on top of each other. We improve the performance of this factor-
ization by a factor of about two by performing it in place, rather
than copying the R factor and the current cache block into a work-
ing block and running LAPACK’s standard QR factorization on it.
The sequential TSQR algorithms running on the P processors re-
quire no synchronization, because the cores operate on disjoint sets
of data. Once all P processors are done with their sets of blocks,
P small R factors are left. The processors first synchronize, and
then one processor stacks these into a single nP X n matrix and

invokes LAPACK’s QR factorization on it. As this matrix is small
for P and n of interest, parallelizing this step is not worth the syn-
chronization overhead. The result of this whole process is a single
n X n R factor, and a ) factor which is implicitly represented as
a collection of orthogonal operators. Assembling the @) factor in
explicit form uses almost the same algorithm, but in reverse order.

Our implementation of TSQR spends most of its time in a custom
Householder QR factorization that exploits the structure of matri-
ces in intermediate steps. However, it does call LAPACK’s QR
factorization at least once per processor. Our iterative methods re-
quire that the final R factor have a nonnegative real diagonal, which
only the most recent release (v. 3.2) of LAPACK satisfies (see [6]).
Intel’s MKL 10.1 has not yet incorporated this update, so we had
to use a source build of LAPACK 3.2, but we could use any BLAS
implementation. (We also benchmarked LAPACK’s QR factoriza-
tion DGEQRF with the version of LAPACK in MKL, but that did
not exploit parallelism any more effectively than when we used a
source build of LAPACK 3.2 with MKL, so we did not use it.)
For the in-place local factorization routine, we chose not to imple-
ment the BLAS 3 optimizations described in [5] and inspired by the
recursive QR factorizations of Elmroth and Gustavson [10], as ex-
pected number of columns will be too small to justify the additional
floating-point operations entailed by these optimizations.

We implemented TSQR using the POSIX Threads (Pthreads)
API with a SPMD-style algorithm. We used Pthreads rather than
OpenMP in order to avoid harmful interactions between our par-
allelism and the OpenMP parallelism found in many BLAS imple-
mentations (such as Intel’s MKL and Goto’s BLAS). The computa-
tional routines were written in Fortran 2003, and drivers were writ-
ten in C. The TSQR factorization and applying TSQR’s Q factor to
a matrix each only require two barriers, and for the problem sizes of
interest, the barrier overhead did not contribute significantly to the
runtime. Therefore, we used the Pthread barriers implementation,
although it is known to be slow [17].



cant: 62K rows, 4M nnz (65 nnz/row)

gnc2depi: 525K rows, 2.1M nnz (4 nnz/row)

3 pwtk: 218K rows, 12M nnz (55 nnz/row)

35 ~—
—~ 3 — —_
0 ) 2.5 Q 25
[oN o o
25 o K}
s & ° s 2
~ 2 = =
8 815 815
S15 g 5
£ E 4 E 1
o 1 S Nel
5} oo Explicit o o Explicit 5 oo Explicit
Qg5 HE;(sllllglltt Reordered o 05 '—'FXD:_IC_I:, Reordered o 05 HE_;(SLI!C?:: Reordered
AA mplici A
<«—q!mplicit, Reordered 2Imglicit, Reordered <«—q!mplicit, Reordered
01 2 2 4 5 01 2 3456 7 8 9101112131415 01 2 3 2 5 6 7
3 k. 3

(a) Performance vs. k for the matrix cant

(b) Performance vs. k for the matrix mc2depi

(c) Performance vs. k for the matrix pwtk
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large that no performance gains were possible, so those cases were not timed at all.

3.2 TSQR experiments

We compared the performance of TSQR against other QR fac-
torizations, as they would be used in practice in CA-GMRES on
the test matrices. We compared parallel TSQR against the follow-
ing QR factorization methods: LAPACK’s QR factorization DGE-
QREF as found in LAPACK 3.2, and MGS in both column-oriented
(BLAS 1) and row-oriented (BLAS 2) forms. For the parallel im-
plementations, we experimented to find the best number of proces-
sors. For TSQR, we also experimented to find the best total num-
ber of blocks. We not only benchmarked the factorization routines
(DGEQREF in the case of LAPACK), but also the routines for as-
sembling the explicit @) factor (DORMQR in the case of LAPACK),
as that is invoked in the CA-GMRES algorithm. We measured both
the relative forward error || QR — A||1/||Al|1 and the orthogonality
|QTQ — I||1/||A||1, and found both to be at most 100x machine
epsilon for all methods tested.

For our experiments, we built our benchmark with gfortran (ver-
sion 4.3) and Goto’s BLAS (version 1.26) [12]. Although this ver-
sion of the BLAS uses OpenMP internally, we disabled this when
calling the BLAS from TSQR, to avoid harmful interactions be-
tween the two levels of parallelism. BLAS-level parallelism did not
significantly affect performance of the other factorization methods,
so we only reported single-threaded results for those.

TSQR compares favorably to other methods as a standalone QR
factorization, but here we only show its performance as part of the
CA-GMRES solver. For the performance results, see Figure 10 and
Table 2.

3.3 Block Gram-Schmidt

Unlike usual Gram-Schmidt implementations, our Block Gram-
Schmidt (BGS) kernel orthogonalizes the current group of k£ + 1
basis vectors V ; against all the previously orthogonalized basis
vectors () at one time. It does so by computing

V= (- QQT)K;‘ =V, - Q(QTK])

Here, both V; and @ have the same cache block layout that TSQR
uses. The above operation requires two matrix-matrix multiplica-
tions: Cj := QTZJ- involves a parallel reduction over the cache
blocks, and V; — QC’; happens in parallel with no communica-
tion. The use of BLAS 3 operations (matrix-matrix multiply) and
the block structure means that BGS communicates asymptotically
less than either Householder QR or Modified Gram-Schmidt. Fur-

thermore, TSQR ensures that previous basis vectors are locally and
unconditionally orthogonal to machine precision [5] within con-
secutive groups of k 4 1 vectors (that overlap by one vector). Even
though BGS in general is numerically equivalent to the less sta-
ble Classical Gram-Schmidt orthogonalization method, using it in
combination with TSQR, and using it for only a small number of
outer iterations, ameliorate the potential loss of orthogonality in
finite-precision arithmetic.

In this paper, we only show the performance of BGS as part of
the CA-GMRES solver. For the performance results, see Figure 10
and Table 2.

4. CA-GMRES

In this section, we describe our Communication-Avoiding GM-
RES (CA-GMRES) algorithm for iterative solution of a nonsym-
metric system of linear equations Ax = b. It produces results that
are mathematically equivalent to the Generalized Minimal Resid-
ual method (GMRES) of Saad and Schultz [20], but computes them
differently. Nevertheless, it was designed with numerical stability
in mind and converges in the same number of iterations as standard
GMRES for a large suite of test problems.

CA-GMRES replaces the sparse matrix-vector products and
BLAS 1 - based Modified Gram-Schmidt orthogonalization of stan-
dard GMRES with the matrix powers kernel described in Section 2,
and a combination of a QR factorization (either TSQR (see Section
3.1) or LAPACK QR) and dense matrix products (see Section 3.3),
respectively. This means that CA-GMRES moves asymptotically
less data and synchronizes asymptotically fewer times than stan-
dard GMRES; in fact, it nearly minimizes the amount of data move-
ment. On the practical matrices we tested, CA-GMRES achieved
speedups of up to 4.3 x over standard GMRES.

CA-GMRES was inspired by previous GMRES implementations
(see [1,4,11,14,23]), and belongs to a category commonly known
as s-step methods (s is k in our case). It improves on them not
only in the use of communication-optimal, optimized computa-
tional kernels, but also by detaching the restart length m from the
number of vectors & computed by the matrix powers kernel. Pre-
vious s-step GMRES methods required that m = k; CA-GMRES
can use any m > k. (In this paper, we chose m a multiple of k for
simplicity, but this is not required in general.) This is an advantage
for convergence, as we will discuss below.



4.1 Background

The Generalized Minimal Residual method (GMRES) of Saad
and Schultz [20] is a Krylov subspace method for solving a non-
symmetric square system of linear equations Az = b. The stan-
dard implementation of GMRES alternates between using a sparse
matrix-vector product to generate a new Krylov basis vector, and
using BLAS 1 - based Modified Gram-Schmidt to orthogonalize
that vector against all the previously generated and orthogonalized
basis vectors. A number of authors proposed performing GMRES
in a different way [1,4,11,14,23]. Begin with a starting vector v,
and then generate k more vectors va, . . ., vx41 so that they form a
basis of the Krylov subspace

7Uk+1}=
span{vi, Avi, A%v1,..., A} forj=1,...,k (2)

span{vi,va, ...

Then, use a QR factorization to orthogonalize the basis vectors.
They become therefore identical to the basis vectors that standard
GMRES would generate (modulo a unitary column scaling). Fi-
nally, use the R factor to reconstruct the k 4+ 1 by k upper Hes-
senberg matrix from standard GMRES, compute a new approxi-
mate solution, and restart if the desired accuracy is not yet reached.
Other authors developed similar algorithms, generally called “s-
step Krylov methods,” for conjugate gradient iteration and other
Krylov iterations for symmetric matrices [2,21].

The above variants of GMRES all require restarting after each
group of k steps. As Section 2 shows, the sparse matrix structure
often limits the best choice of k. Some numerically challenging
problems also limit k for stability reasons. Restarting GMRES with
a small k can slow or even stagnate convergence. Our CA-GMRES
solves this problem by being able to continue the iteration without
restarting, for multiple groups of k steps. If we perform ¢ groups of
k steps each, the resulting “CA-GMRES(k,t)” algorithm is math-
ematically equivalent to standard GMRES with a restart length of
m = k-t. In general, the algorithm does not require that the restart
length m be a multiple of &, but we chose it this way for simplicity
of explanation and implementation.

4.2 Block iterative methods

The s-step methods mentioned above are not the only Krylov
subspace iterations that avoid communication. Block iterative meth-
ods (see e.g., [3]) are another such technique. Often they are ap-
plied for improving numerical accuracy of sparse eigenvalue solves
(to resolve clusters of nearby eigenvalues), rather than solely for
improving performance. However, they can also accelerate linear
solves, especially with multiple right-hand sides (see e.g., [18]). In
that case, they avoid bandwidth costs of reading the sparse matrix
by reusing its entries to multiply the matrix by several vectors at
once.

Block iterative methods offer the best payoff when multiple right-
hand sides are available. They also work for solving a linear sys-
tem with a single right-hand side, by recycling error terms from
previous restart cycles. However, there the performance benefit is
not as clear. A block iterative method, unlike our CA-GMRES,
requires a rank-revealing QR factorization, in order to detect the
deflation events that may occur naturally as the iterative method
makes progress. Furthermore, it is hard to estimate a priori how
the convergence rate will improve with the number of artificially-
added right-hand sides, so the extra computation (and the expensive
rank-revealing factorization) may not pay off. Wasted redundant
computation consumes energy. In contrast, CA-GMRES is math-
ematically equivalent to standard GMRES, and has similar con-
vergence behavior in practice. That makes it easier to predict the

performance benefit and energy cost of the redundant computation
which CA-GMRES performs. We believe that block Krylov iter-
ations could be applied in combination with our techniques, but
investigating this is future work.

4.3 The algorithm

Figure 8 shows the complete CA-GMRES algorithm. For de-
tails, many other algorithms, and a mathematical analysis, see [7].
In order to make the algorithm numerically stable for larger &, one
must choose the basis carefully. The obvious monomial basis v,
Avy, A%vq, ..., AP0 used by Walker [23] becomes numerically
rank deficient once k exceeds a certain threshold (see e.g., [2]). For
many problems, this threshold may be small enough that it prevents
us from choosing the optimal k£ for performance. This is because
the monomial basis corresponds to the so-called “power method”:
the basis vectors converge to the principal eigenvector, so they get
closer and closer together as k increases. Other authors suggested
using a different basis to reduce the rate of increase of the basis’
condition number as k increases [1,4,14]. When the matrix is sym-
metric positive definite, picking a good basis requires only some
information about the distribution of eigenvalues. That information
comes “for free,” as the Krylov method itself computes estimates
of the eigenvalues that improve with the number of iterations. For
nonsymmetric and particularly for nonnormal matrices, the eigen-
values may not give all the information needed to pick a good basis,
but in practice one can use adaptive methods that gradually increase
the basis length. Furthermore, we found that the best k for perfor-
mance is often much smaller than the threshold for poor numerical
behavior of the basis.

For our numerical experiments, we compute both the monomial
basis and the Newton basis suggested by Bai [1] and used by Erhel
[11]:

k

,H(A — )\jI)vl.

j=1

V1, (A — )\1])’01, (A — )\2])(14 — )\1])’01, .

The “shifts” A1, ..., A\x are chosen as the k eigenvalues of the up-
per Hessenberg matrix produced by k iterations of standard GM-
RES, arranged in a particular order. They are meant to make the
basis more linearly independent by approximately subtracting out
successive eigenvector components, much as subtracting out the
nodes in Newton polynomial interpolation improves the condition
number of the interpolation matrix. For our performance bench-
marks, we use only runtimes for the monomial basis, as the differ-
ence in runtime between the monomial basis and the Newton basis
is very small. (That means the cost of improving numerical stability
is very small.)

In Figure 8, we use a k + 1 by k basis conversion matrix B;.
Much as the matrix of Arnoldi vectors ); satisfies the recurrence
AQ; = Qj H ; for the k + 1 by k upper Hessenberg matrix H ;, the
matrix of basis vectors V; satisfies arecurrence AV; = VB, The
matrix B; comes from the coefficients of the basis: for example,

with the Newton basis with shifts A1, ..., Az,
M0 ... 0
1 X
Bi=lo 1 " o0
: R V2
0o ... 0 1

The basis conversion matrix always has full rank as long as the
basis itself does. The special case Ay = Ao = --- = A = 0



14:  if j = 1 then
15: R, :=R,,and H, = R, B, R;"
16:  else

17: o= (B B
J Ok(j—1),k+1 R,

current GMRES approximate solution.

1: Begin with an n X n linear system Az = b and n X 1 initial residual ro = b — Axg

2: B:=|roll2, v1 :=710/B, 1 :=v

3: forj =1totdo

4:  Use matrix powers kernel on A and Vg (j—1)+1 to compute k more basis vectors Vg (j_1)42, - - - Vjk+1

5: LetV; = [vk(j_1)+1,4..7vjk} andzj = [Vj,’l)ijrll

6: LetB ; be the k + 1 by k basis conversion matrix B ; such that AV, = Kj B ; (see Section 4.3)

7. if j =1 then

8: gj =B,

9: else

10: B = 5%711 0-cref {hj_1 is lower right entry of .., and $;_1 is upper jk by jk submatrix of $ ., }
- hj—1eie;_q) B; / =j-1 J EANISY

11: Compute Ri.j—1,; := [Q1, .-, Qj_l}*zj using a matrix-matrix multiplication

12: Compute V; :=V, — [Q1, ..., Q;-1]R1:j—1,; using a matrix-matrix multiplication

13:  Compute the QR factorization Qjﬁj = V. Let Q; be the first k columns of Qj, and let gjx+1 be the last column of Qj.

> {The new R factor of all the basis vectors}

18: 9, = ﬁjﬁjfﬁ;l {The jk+ 1 by jk upper Hessenberg matrix from jk iterations of standard GMRES. Here, we can exploit
structure to compute this for about the same amount of work as if all the matrices were upper triangular. }
19:  Solve the least squares problem y; = argmin, [,y — Be1||2. The residual error ||9,y; — Be1l|2 is the residual error of the

20:  Optionally, use y (of length jk) to compute the current approximate solution z; = zo + [Q1, ..., Q;ly;

Figure 8: CA-GMRES algorithm

produces the monomial basis.

4.4 Numerical experiments

CA-GMRES is mathematically equivalent to standard GMRES,
so we measure its “success’” by whether it converges at least as fast
as standard GMRES for a particular problem. (We have observed
it to converge faster than standard GMRES for some unusually dif-
ficult problems, but this is not common.) In practice, CA-GMRES
succeeds as long as the basis produced by the matrix powers kernel
is numerically full rank (has 2-norm condition number less than the
inverse of machine epsilon), and fails when it is not. Usually “fail-
ure” manifests as an obvious, jagged, nonmonotonic motion of the
2-norm residual error, which indicates numerical instability. The
ease of detection means that we do not need to test the numerical
rank of the basis with a rank-revealing QR decomposition. Figure
9 illustrates this behavior on the cant matrix with a restart length
of 60. For k = 15, for example, the choice of basis doesn’t mat-
ter and CA-GMRES converges exactly like standard GMRES, but
for k = 20, CA-GMRES requires the Newton basis in order to
converge.

Our experiments showed that for values of k that improve perfor-
mance, CA-GMRES converged at the same rate as standard GM-
RES. Often the Newton basis succeeded where the monomial basis
failed, but this was not always the case. In [7], we will perform
more extensive convergence studies and also discuss further basis
choices. In practice, without additional information about the spec-
trum or nonnormality of the matrix A, one might begin with the
Newton basis and small k, and adaptively increase k.

4.5 Performance results

Figure 10 shows performance results for both standard GMRES
and CA-GMRES on 8 cores of the Intel Clovertown test machine.
We see speedups of up to 4.3x on a 1-D, three-point mesh, and
of up to 2.2x on more general sparse matrices from real-life prob-

0Matrix cant (FEM cantilever): Relative 2-norm residual (log scale)
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Figure 9: Convergence of standard GMRES and CA-GMRES on
the cant (FEM cantilever model) matrix, using both the monomial
and Newton bases, for two different values of k and ¢ (with k& - ¢t =
60). All plots except monomial CA-GMRES with £k = 20 and
t = 3 (the red X’s) follow the same curve almost exactly.
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Figure 10: Runtime of standard GMRES and CA-GMRES on 8 cores of the Intel Clovertown test machine, on a large subset of the test
problems, using the monomial basis. Both CA-GMRES and standard GMRES here use restart length 60 (so CA-GMRES uses values of k
and ¢t with k-t = 60). Each pair of bars shows for a particular matrix, the runtime scaled by CA-GMRES runtime for that matrix: so the top of
the left, CA-GMRES, bar is always one, and the top of the right, standard GMRES, bar is equal to the speedup of CA-GMRES over standard
GMRES. The CA-GMRES runtime shown is for the best choice of k. The colors show runtime for the individual kernels: the “matrix
powers kernel”, “TSQR,” “Block Gram-Schmidt” (BGS), and “small dense operations” are the parts of CA-GMRES, and “sparse matrix-
vector product” (SpMV) and “Modified Gram-Schmidt” (MGS) are part of standard GMRES. TSQR runtime includes both factorization and
computing the explicit representation of the ) factor. The & = 5 or like notation atop each CA-GMRES bar gives the choice of & achieving
that runtime, and the 2.1 X notation below it gives the speedup of CA-GMRES over standard GMRES on that matrix.

Matrix powers
Matrix SpMV | Useful Actual | k MGS | TSQR | BGS
pwtk 0.66 1.35 1.58 5 1.48 | 6.96 6.61
bmw 0.57 1.02 1.20 5 144 | 7.74 6.52
xenon 1.15 1.59 1.87 5 2.10 7.63 6.84
cant 1.26 2.64 3.10 5 2.11 8.13 7.26
1d3pt 0.68 3.13 3.68 15 | 1.32 12.38 | 13.42
cfd 0.62 0.94 1.10 5 2.14 | 7.80 6.72
shipsec || 0.69 1.01 1.19 4 207 | 7.38 5.86

Table 2: Performance in Gflop/s per kernel, for all test matrices,
using 8 threads and restart length 60. Kernels SpMV and MGS be-
long to standard GMRES, and the matrix powers kernel as well as
the TSQR and BGS kernels belong to CA-GMRES. CA-GMRES
performance shown is for the best (k,t) allowed by the matrix
structure such that |restart length/k| = ¢. Also shown is the cor-
responding & value.

lems. Table 2 gives the performance of each kernel in Gflop/s. For
the matrix powers kernel, we show this Gflop/s rate both for the
actual floating-point operations done (including redundant compu-
tations) and for the useful operations (minus redundant computa-
tions). Thus, the ratio of “Actual” to “Useful” gives the ratio of
redundant floating-point arithmetic in the matrix powers kernel.

S.  CONCLUSIONS

The increasing gap between communication cost and the com-
putational capability of multiprocessors calls for algorithms which
have minimal communication — both between processors, and be-
tween levels of the memory hierarchy, especially between on-chip
and off-chip memories. This strategy should provide significant
performance improvements for sparse matrix kernels, which are

bandwidth constrained even on modern multiprocessors. In this
spirit, earlier work showed how a suitable modification to sparse
solvers admits algorithms which incur minimal communication cost.
This modification introduced two new kernels: the matrix powers
kernel, and Tall Skinny QR factorization (TSQR).

In this work, we introduce a new sparse solver, Communication-
Avoiding GMRES (CA-GMRES), which is built from the above
two kernels as well as parallel Block Gram-Schmidt (BGS). CA-
GMRES reduces the modeled communication costs of k steps of
this iterative algorithm by a factor of O(k) times over standard
GMRES. This is an optimal improvement. We implement all three
kernels on an 8-core Intel Clovertown machine, and integrate them
into a full CA-GMRES solver. Our solver shows speedups of up to
4.3x when compared to our best parallel implementation of stan-
dard GMRES, which is limited by communication. Furthermore,
CA-GMRES converges at the same rate as standard GMRES for
realistic problems. As communication costs continue to outstrip
floating point costs, these speedups will only improve. Also, in
contrast to previous work, our CA-GMRES variant for the first time
makes it possible independently to choose & in order to optimize
both the speed of the kernel, and the restart length m = k - ¢ in
order to optimize convergence.

Our implementations of the matrix powers kernel, TSQR, and
BGS build on earlier work, yet introduce new algorithms targeted
at modern multicore architectures. These kernels have many pa-
rameters, which result in a large tuning space. The CA-GMRES
algorithm also has its own parameters k and ¢, which influence the
kernels’ performance, the proportion of time spent in each kernel,
the convergence rate (k-t is the restart length), and numerical stabil-
ity. We found that selecting each kernel’s best parameters indepen-
dently often results in worse performance than tuning all kernels at
once. For example, in some cases, the best cache blocking scheme



selected by independently tuning the matrix powers kernel made
TSQR and BGS, as well as the whole solver, very slow. Further-
more, for our bandwidth-sensitive kernels, we observed that copy-
ing back and forth between different data layouts for different ker-
nels eliminated or significantly reduced the observed performance
gains. These factors demonstrate the need for cotuning.

6. FUTURE WORK

Our work [7] in progress will present CA-GMRES in detail,
along with other new iterative methods we have developed for solv-
ing symmetric and nonsymmetric sparse linear systems and eigen-
value problems. It will also discuss how to incorporate precondi-
tioning into the solvers, part of which was presented in [8].

Autotuning individual kernels is nothing new, but autotuning
compositions of kernels in an entire solver calls for new search
techniques (to restrict the combinatorial explosion of parameters).
We did not discuss the search costs in this paper, but they were
significant. Cotuning also will require careful software interface
design, to help users understand the runtime costs of composing
different kernels in ways that the kernel authors did not anticipate.

There are a number of techniques used to accelerate GMRES and
other Krylov subspace methods for solving linear systems. We be-
lieve that they are complementary to our communication-avoiding
methods, but testing this hypothesis is future work. Some of this
discussion will be expanded in [7]. Two such techniques are im-
plicit restarting (see e.g., [16]) and Krylov subspace recycling (see
e.g., [19]). These often use a number of iterations of the stan-
dard Arnoldi process as an inner loop. CA-GMRES produces the
same Arnoldi basis vectors and upper Hessenberg matrix in exact
arithmetic as standard GMRES, so there should be no problem re-
placing the standard Arnoldi inner loop with our “Communication-
Avoiding Arnoldi.” Block iterative methods are another such ac-
celeration technique, which we discussed in Section 4.2. We think
that block Krylov iterations could complement our optimizations,
but investigating this will require significant effort (e.g., new algo-
rithms and new kernels). Other, more realistic future work includes
adding the distributed-memory case to our full CA-GMRES imple-
mentation.
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