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ABSTRACT

Event traces are required to correctly diagnoseumber of
performance problems that arise on today’s highéyaltel

systems. Unfortunately, the collection of eventcésa can
produce a large volume of data that is difficult, even
impossible, to store and analyze. One approachdompressing
a trace is to identify repeating trace patterns raztain only one
representative of each pattern. However, determinihe

similarity of sections of traces, i.e., identifyipgtterns, is not
straightforward. In this paper, we investigate emattbased
methods for reducing traces that will be used ferfgrmance
analysis. We evaluate the different methods agasesteral
criteria, including size reduction, introduced errand retention
of performance trends, using both benchmarks witrefally

chosen performance behaviors, and a real applicatio

1. INTRODUCTION

Today’s high-end architectures contain tens to heosl of
thousands of processors, pushing application stiglab
challenges to new heights. Performance analysisriscessary
step to adapt codes to utilize a target high enchina. Correct
diagnosis of certain complex performance probldms arise on
high end systems requires detailed event tracesegent” is a
runtime occurrence of a program activity, such asmachine
instruction or basic block execution, memory refiees function
call, or a message send or receive. Generatingt eévaces
involves writing a time stamped record for eachngévinto a
buffer or file for later analysis. Unfortunatelfet collection of
event traces presents scalability challenges: tloe @f
measurement perturbs the target application; ared lénge
volume of collected data increases the perturbatiod results
in data files that are difficult, or even impossibto store and
analyze [24]. Several documented cases descriferpemce
problems that appear only when the applicatiouisat a large
scale [18, 27], driving the need to be able toemlevent traces
for large runs. We have a conundrum: we need trdoes
correctly diagnose important performance probleims, the
sheer volume of data collected makes collectinigtfates at the
very least prohibitive, and in the worst case ingiue. For this
reason, solving the scaling challenges of evertirigais an
important problem for high end computing.

Given the challenges of tracing at the high ends onght be
tempted to avoid it entirely. Profiling, for exalapprovides
summary information and therefore exhibits bettealing

behavior. However, the types of information preddby

profiling are, in many cases, too limited for catrdiagnosis of
certain performance problems [7, 36]. An examplesoth a
performance problem is “Late Sender” in a messagsipg
program. This is the situation where the receipngcess waits
at a blocking receive call waiting because the sgngrocess
hasn’t yet reached the matching send call. Whipecéile could

indeed show that excessive time was being spentdrive
operations, the data is not sufficient to distisgubetween a late
sender or some other root cause, such as netwnot&ntmn that
caused the message to be received late. In conénastvent
trace captures the relative timing of events, andld/show that
the send operations started late and caused theiveec
operations to block. Tracing is also useful foowimg the
causality of events [31, 12]; the interactions hesw program
elements, that can be difficult or impossible taerstand from
static analysis [22, 20]; and event patterns teagal properties
of programs, such as performance problems andidosabf
possible optimization [21].

One promising approach to highly scalable tracmpifilter or
reduce the trace in some manner, either duringfi@r she
collection of trace records. Users who need toecoblfrace data
currently resort to ad-hoc measures to reducertfriat of data
collected; for example, tracing a reduced numbéteoétions of
a loop. These measures have the potential to nliss t
performance problem altogether, e.g. if the probléogesn’t
occur during the measured iterations. One methodeucing
the size of traces is to identify similar sectiafsa trace and
retain only one representative of each pattern. élay
determining the similarity between traces or sedtiof traces is
not straightforward. The probability that any twade sections
will have exactly the same measurements is venjl semany
similarity method will allow some amount of differees
between similar traces. Despite this, it is critithat any
differences allowed do not mask information neefieccorrect
performance diagnosis.

Requirements for the accuracy and types of infdonain a
trace vary based on the intended use: correctressmg and
debugging, simulation, or performance analySimrrectness
testing and debuggingenerally only require that the trace retain
the relative ordering of events that have the patkto affect
each other: events within a single process orathrand
synchronization events across processes or thre&ds.
example, inspecting a trace of a parallel programctindicate
the reason for a deadlock situation by showingdtdering of
synchronization operations; a parallel program iglang
because a process is waiting for a message thaheves sent.
Simulationrequires traces that retain the order of events an
possibly some timing information. Traces for sintiola can be
used to predict application performance on newheotetical
hardware. The events in the trace can be replaged) either
averaged or predicted timing information for thevrteardware.
Generally, a single time value is used for all evaturrences
instead of individual timing measurements for eamfent
occurrence. For example, the average time to eseausend
operation could be used as the time for all seredaijons in the
trace. This tradeoff allows acceptable accuracy faster time
to simulated results and smaller trace fileRerformance



analysisrequires not only the relative ordering of evebts, the
timing information for individual events. Perforn@mproblems
do not necessarily occur with a high degree of lexgy, e.g. in
every iteration of a loop, so individual event tilg$ are needed
to show the root causes of problems. For exampaleetdata can
show a time-varying load imbalance in a paralldd, javhich
causes some ranks to be late to a synchronizaperation at
varying times during the program execution. Theivilial
event timings can show what events are taking rtiore in the
slower ranks and in what iterations the slownessigc

In this work, our goal is to determine a similarityetric that
yields adequate trace reduction and also retamsnfliormation
needed for correct performance analysis. Achieving goal
required that we answer several key questions:

¢« What metrics can we use to evaluate and comparee tra

difference methods?n addition to file size reduction, we
developed and used metrics for error, greatestiigesile
size reduction (i.e. potential for repeated patfgrrand
consistency of performance diagnosis.

e How much error should be allowed/alues that will likely
never be exactly equal need to be compared. Wetdad

decide how much each measurement can vary, anchweig
the consequences of the amount of error. If we are

matching traces for the purpose of trace compressien
a larger allowed error between traces would meageta
number of matches, and thus a smaller trace ficavédver,
the larger error might prevent the correct perfaroa
diagnosis from being made.

¢ How can we measure the “goodness” of each approach?

Most trace compression studies report the redudfdile

size achieved; but no matter how much compression i

achieved, if the reduced trace no longer contdiesdata
needed for accurate performance diagnosis, theathéth
not useful for our purpose. We evaluate each ambroot
just on amount of compression, but also on amofiatror
and consistency of diagnosis, and discuss the dfesdi
weighting the different metrics.
In this study, we perform a comparative evaluatbsimilarity
metrics in current or proposed use for trace rednct To
evaluate the effectiveness of the similarity mstrige apply the
same trace reduction technique to full executieces, varying
the similarity method used to determine repeatiragtepns
within the trace. Then we compare the results gishree
metrics: file size reduction, trace error, andeméibn of
performance trends.

2. RELATED WORK

Previously proposed methods for reducing the sifésaces for
the purpose of performance analysis include delebfosimilar
trace sections; trace sampling; statistical cliusgerand signal
processing.

Knupfer and Spooner define two sections of tracesimilar if

the call graph context and measurements of theteeea equal.
Knipfer defines equality using both relative andsaibte
differences [19]; Spooner et al. use the relatifféerénce in
instruction counts [30]. Another approach defisgsilarity by

event names. Chung et al. use a filter that detespeated
communication patterns [6]; they keep performaneta dor
only one instance of each pattern. Freitag etsd.aiperiodicity
detector to notice repeating sequences of everdskaep a
reduced number of iterations of each sequenceJ®hilarly,

Yan and Schmidt detect repeating sequences of £aeult store
the average measurements of those events [36].hNawed
Mueller also detect repeated sequences of messagpg
events and store one copy of each sequence; thignalty

store summary information about the events, suclavasage
measurements [26]. In later work, they include #idlity to

store more detailed timing information: statistitctelta” times,

histograms, or histograms by call sequence [28].

Other efforts use trace sampling to reduce traoe Siarrington
et al. use trace sampling to reduce the amountnef it takes to
gather memory reference traces for the purposedbpnance
modeling [3]. They collect data for a reduced numioé
executions of the basic blocks in a program. Veitesents a
method for statistically sampling MPI events [3Hach time an
MPI event is encountered, it is either sampled @r Ror each
sampled event, the tool can record statistics thegevent to a
trace file, or ignore the datadGamblin et al. use statistical
sampling with a user-specified confidence interaatl metric.
[10].

Aguilera et al. [2], Nickolayev et al.[25], and Let al. [23]
apply statistical clustering to traces and selectm@esentative
trace for each cluster of processes. Nickolayevla® use the
Euclidean distance for clustering, while Aguilerses a metric
based on the amount of communication between teogsses.

Several groups apply methods from signal processirtcaces.
Casas et al. and Huffmire et al. use the Haar weatensform
to automatically determine the phases of a progi4ml6].

Gamblin et al. use the CDF 9/7 wavelet transfornedmpress
traces collected for the purposes of detecting lodzhlance [9].
Hauswirth et al. use dynamic time warping to deciden two
traces are similar for aligning multiple traces][14

Researchers have evaluated several methods fodingdhe
goodness of a particular trace similarity metrico Dur
knowledge, ours is the only comparative study efritethods to
see what is most appropriate for the purposes dbimeance
analysis. Ratn et al. use aggregate statisticasares, such as
total time spent in a function, to evaluate theietinod [28].
Gamblin et al. compute a trace confidence measueyvaluate
their trace sampling results, which is tells thecpatage of time
the mean trace of sampled processes is within ecifsg error
bound of the mean trace of the full trace [10]tHeir wavelet
transform method, Gamblin et al. use a root meanarsy
measure to estimate the error in reduced tracesT[8ly also
present qualitative results, showing a visualizatimsed on a
reduced trace compared with one from a completetrdan et
al. compare the measurements in their reduced &gaist the
real trace time stamp by time stamp and produde aaotlative
and absolute measure of the overall differencep [B&ddition,
they also present whole program statistical measemnés and
visualizations for qualitative comparison.

3. TRACE REDUCTION

In this section we describe our approach for tresghuction.
Section 3.1 details our trace segmentation teclenicand
Section 3.2 describes the different similarity nostiwe use to
compare segments. This paper focuses exclusivelyniva-
process reduction, that is, reducing the size ohéadividual
per-task trace. In practice these individual tsaeege first
collected separately, then merged into a singleetréile
representing the entire application run. Therefm@@ucing each



int main(){
start_segment(“init”);
MPl _Init();
end_segment(“init”) ;
for(i=0; i < 100; ++i){
start_segment(“main.1”);
do_work();

MPI _Al | gat her ();
end_segment(“main.1");

}
for (j=0; j < 10; ++){
start_segment(“main.2”);
do_ot her _work();
end_segment(“main.2”);
whi | e(k < ot her Ranks) {
start_segment(“main.2.1");
MPI _Sendrecv();
end_segment(“main.2.1");

start_segment(“final”);
MPI _Finalize();
end_segment(“final”);
}

Figure 1. Segment Context Marking. We show a single
function, main() with the instructions added to kntire segment
contexts. We mark initialization, finalization, drall loops.
The segment context names are hierarchical: tensgdoop is
marked "main.2" and its subloop is marked "main.2.1
Segment marking is automated using a dynamic im&ntation
library.

per-task trace prior to merging will reduce the lagagion trace
accordingly.

3.1 Trace Collection and Segments

We collected full traces of time stamped functiortries and
exits for the benchmarks and application as follofisst we
insert segment markers into the source code tleatepreated in
the trace during execution. We defisegmentss follows: the
initial segment starts at entry tmi n; for each program loop
containing at least one measured event, we stopctinent
segment before the loop starts, start a new segatehe top of
each loop iteration, stop the segment at the botibthe loop
iteration, and start a new segment after the tasation of the
loop completes; and end the final segment at progra
termination. Thesegment contexis the section of code, for
example, the main.1 loop in Figure 1. We used tlynamic
instrumentation library Dyninst [15] to instrumetiie full
application for both function entry and exit tragins well as
inserting segment begin and end markers. The simpl
benchmarks were marked manually.

We compare the segments for each context pair wose
determine if they are similar. If they are, we sdmat the
segmentsnatchand retain a single representative segment. Each
segment contains an ordered list of evelds= {ey, &, ..., §}.
We maintain a lisstoredSegmentsyhich contains the segments
that represent the performance behaviors in theutiom, and a
list segmentExecthat holds the starting times and identifier of
each representative segment so that we can latezate a full
trace. Given an equivalence operatorfor some similarity
metric, and a segmerste, that has eventg,, the algorithm
comparing segments is as follows:

Fori = 0 to lenE,ey):
Enedi]-start = By [i].start— syey Start
Enedi]-end = B [i].end — g Start
Shew€Nd = $ewend — S Start
match= False
Fori = 0 to len§toredSegments
Sstored= StoredSegmeti$
match = compareSegme(8sw Sstored
If match= True:
segmentExecs = segmentExXBCc; oreqid,Shew Start)
break
If not match
Shewld = getNewld)
segmentExecs = segmentEXECEs, ewid, SiewStar)
ShewStart=0
storedSegments = storedSegméntge,,

Boolean compareSegmef#sy, Sored:
If ShewCONtEXEZ SegCONtEXt return False
If len(Enew # len(Eswored: return False
Fori = 0 to lenEey):
If Eneui].id Z Egioredi].1d: return False
If Shew= Sstoreg return True
Else: return False

Note that a segments match requires that segmewis the
same context and the same number of events ocgurrithe
same order. We give examples of segment matchifggumre 2.

3.2 Similarity Metrics

We used several methods to decide the similaritgegiments.
Each of these is described below. Our choices wsmred by
methods used by other researchers to reduce tf&eesSection
2.). They fell into two categories: distance methodnd
iteration-based methods.

3.2.1 Distance Methods

The distance methods produce a difference measimeh is
then compared against a user-supplied thresholdetermine
the presence or absence of a match. Several doiitfeeence
methods are standard methods for computing distanegveen
values and sets of values. We use the relativeerdifte
(relDiff), absolute differenceabsDiff), and three variations on
the Minkowski distance Manhattan Euclidean Chebyshey
and wavelet transformaygWavehaarWavé.

relDiff. We compare the relative differences between eaehte
measurement against a user-defined threshold; eiéter, the
events are not equal:

relDif f(xy, x,) = —a=xel_

To see howelDiff matches segments, we consider our example
in Figure 2. We compute the relative differencesveen each
of the paired measurements in the segments. Ifaaeyabove
our chosen threshold, say 0.5, then the match. fadsnparing
s2 with s1, we first compare the start times of dioe wor k
event: x=1 and %=1, with relative difference 0. Since the
relative difference is less than 0.5, we continmecomputing
relative differences. Next we check the end times the
do_wor k event. Here we compute a relative differengelx
and %=40, giving a relative difference of 0.58. Thisalsove our
threshold, so the segments do not match. When weae s2

max (x1,%5)
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Figure 2: Trace and Segments Example. Here we show a portion of an example trace and gggments to illustrate segment match
The top bar represents a portion of a trace forptlogram in Figure 1. Time increases from leftight, and time valuesre indicated
above the bar. Segmentsrkers are shown as light gray rectangles withicadrtext that indicates the context of the segmErents ar
shown in white boxes. Below the trace, we showréiselt of segmentation. In each of the three satgnéhe time stampsr the events
andending time of segments are adjusted relativedastart time of the segment. We name the segm@nsd sand s2. In theottom row,

we show two examples of segment matcl(See Section 3.2.).

with s0, we find that no fferences are greater than 0.1,=17,
x,=20), so the segments match. The new segment darded
since its behavior is reflected in the measuremarg®

The relative difference function compares each omessent
with its paired counterpart in isolati. The computed differen:
is proportional to the magnitude of the paired rmeaments
meaning that larger differences between larger oreasent:
don't overshadow differences in smaller measuresn@&wgcaus:
the difference between each measurementwill be judged in
isolation, the relative difference should be onetrad strictes
difference criteria in our set. The choice of thied used will
have a large bearing on the degree of matching,hende or
the reduction in file size.

One problem withrelDiff appears when comparing time star
in a series. For example, assume the thresholatdmparing
time stamps is 0.25. When we compare events thetatttimes

1 and 2, the relative differencegigs1 = 0.5. This would result ir

a failure to match the events even though thesediference o
only one time unit between the events. In contristwe
compare events that start at 100 and 125, theveldifference
is 0.2, which is a match evenotigh there is a difference of

time units. We expeatelDiff to produce reduced traces witt
low amount of error, but with less file size redaot

absDiff As with therelDiff, each measurement is compa
with its counterpart. A fixed size differer, determined by a
threshold, is allowed for each measurement paiindJ®ur
example segments in Figureghd a threshold of 20, we see t
s2 will not match s1, because the end timedo_wor k are 23
time units apart. Howevethere are no differences larger tha

between s2 and s0, so those two segments matchhidsholo
choice has an impact on file size and accuracy.eWect this
method to produce fairly accurate results, espgaiath respec
to the timing of eventacross processes, because urrelDiff it
will not have an unfair bias towards events thaodater in the
trace.

Manhattan Euclidean and Chebyshev We compute the
Minkowski distance between segments using the ftanmEq.

1. If the distance is greater than a rspecified threshold
multiplied by the maximum value in the event measents

then the events are not equal. The Manhattan, desai, an
Chebyshev distances are special cases of the Mbki
distance, withm equal to 1, 2, anlim,,_,. respectively [13].
The Chebyshev distance is defined to be the lamdjéfstence
between two measurements.

Eqg.1

m

n 1
Ly = {Zm - Yilm}
=1

Using our example ifrigure2, to compare s2 and s1, we create

a vector of the measurements for s2, (49, 1, 17488 and on«
for s1, (51, 1, 40, 41, 50). The Manhattan, Euelideanc
Chebyshev distances between these vectors ar@ 50 ,ad 23
regpectively. The largest measurement in the pairesftars is
51. If we choose a threshold of 0.2, then the tdghbe
computed distance can be for a match is 10.2, smdZ1 will
not match using any of the Minkowski distances. Wivee
compare s0, (5, 20, 21, 49), with s2, w get distances of 8,
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Figure 3: Wavelet Transform Example. Here we show two example average wavelet transfoWres iteratively compute averag
(shown in boxes) and differences (shown betweeres) for pairs of humbers, starting with the originactor. To compare the tv
transforms of sO and s2, we compute the Euclidestartte between them and compare it against aiblce.2) multiplied y the largest

element in the vectors (17.625).

45, and 3. The maximum value in the two vectorsOss® the
highest the distances can be for a match is 1G figians the
s2 would match sO for each of these distance nse

There are several issues to consider for the Misko
distances:

* Asmincreaes in the Minkowski distance (SEq. 1.), the
influence of the larger differences increases, dhd
influence of the smaller differences decreases.tha
extreme case of the Chebyshev distance, only
maximum difference haany bearing on the distance va
As the number of measurements being compared Bes(
the values of the Manhattan and Euclidean dista
increase. Given vectors of constant differenceatgr thar
1, the Manhattan distance increases quite rapinearly,
and the Euclidean distance increases in the masfr/x.
If the differences are all between 0 and 1, the puated
distances increase more slowly.

e When time stamp values are being compared, en tiste
and end time for events, the values are alwaysasing
within a segment. This means that longer sents are
judged less critically than shorter segments, beeahe
maximum values that are compared with the dist
measurement are larger.

Based on these trends, we expect that the Manhdissance
would give the most accurate results, becauseves larger
weight to the smaller differences. The Euclideastatdice woult
give slightly less accurate results, given the ibiagards large
differences. The Chebyshev distance would be laestrate
because it only accounts for the largest differeneasure.

Wavelet transformThe discrete wavelet transform iterativ:
decomposes a signal of size L into two subsignblsize L/2.
The first L/2 values give the trends in the origisignal, and the
second L/2 values give the fluctuations. Intuityyeét computes
the averages and differences between pairs of mai[17]. We
give examples of transformations in Fig@re

We use two wavelet transforms in our experimelihts:averag:
transform described in Figure 3avgWav), and the Haar
transform faarWavé. The Haar transform is very similar to t
average transform, with the only difference beitgttthe
averages and differences are multiplied V2 [33]. For

example, the trends computed in step Figure 3 would be
(9V2, 24.25/2). For our implementation, we construct a ve
for each of the segments to be compared. Thedieshent of
each vedr is the relative start time of the segment, whgc in
all cases. This is followed by the event entry axd time
stamps for all events in the segment. The lastehens the exi
time of the segment. Both transforms require arutingector
with alength that is a power of two. We allocate spacetiie
vector so that its length is the next power of tefter the
number of time stamps in the vector. We -pad the vector
after the last time stamp element to the end. Tmpaoe
transformed vectorswe compute the Euclidean distar
between them [5and compare it against a threshold multip
by the largest value in the pair of transformedt@ex InFigure
3, we show an example compan of the segments sO and s2
from Figure 2 Because the computed Euclidean distance, 1
less than the maximum allowed, 3.5, sO and s2 n

For both transforms, the values in the transformectors will
be smaller than thealues in the original vectors. The H:
transform has several properties that the averagsform doe:
not, including preservation of the Euclidean dis&ar[5].

However, its values will be larger than those of tiverge
transform since all values are multiplied v2. For the Haar
transform, we expect more accurate results tham fthe
Euclidean distance because the maximum value in
transformed vector will be smaller than the maximuatue in
the original vectar so the threshold test will be stricter. 1
values in the vector from the average transfornh bél smallel
still; however, the Euclidean distance is not pres#, so the
potential exists for a less strict test than thelilean distance

3.2.2 lteration-based Methoc
We chose two iteratiobased methoditer_k anditer_avg

iter_k Only keep a fixed number of each traced segmei
code. We expect this method to produce small diagts for oul
example in Figure 2if we chose k3, we would keep all three
copies of the main.1 segment in the list of stosedgments
However, if k=2, then we would keep sO and s1 aadadd sz

iter_avg Keep the average measurements for each t
section of code. We expect this method to procthe smallest
data sizes, since segments with the same contektsame



events will always match. To illustrate this methee use the
segments in Figure 2 and the stored segments swesrarthe
left. For this method, we never have more than apy of the
main.1 segment, and end up with a single copy efrtfain.1
segment that contains averages of the values sfls@nd s2.

We expect that these methods will produce fairlguaate data
for applications that have little behavior varidlil but poorly
for applications that do have performance variaedi

4. EVALUATION METHODOLOGY

In this section we detail our framework for the leration of

similarity metrics. We investigate traces collecfer a set of
benchmarks with known behaviors, and for a full lmagion,

running on a Linux cluster. Our evaluation focusesthree
metrics: file size reduction, amount of error ire ttrace, and
retention of performance trends. For file sizeumn we
simply compare the sizes of the reduced tracehddill-sized
traces from which they were derived. We calcutiie trace
error by recreating an approximated full-sized érdom the
reduced version, then comparing it to the actukiltface. We
evaluate retention of performance trends by feediregactual
and approximated full traces into a performanceyais tool

and examining any differences in the results.

4.1 Benchmarks

We crafted our benchmarks to represent classesrédrmance
behaviors that occur in parallel programs on hig systems.
These performance behaviors can appear with adeghee of
regularity, sporadically, or progressively changeero the

iterations in the execution. To reflect this, weated a set of
regularly behaving benchmarks, a set of irreguldghaving

benchmarks, and a benchmark that simulates dyniwaid

balancing. Because we know the behavior patterngaich

benchmark, we can evaluate how well each of thehoakst
retains the performance behaviors.

We used the APART Test Suite (ATS) to create our
benchmarks. The ATS a collection of utilities desid to create
programs with known behavior for testing paralleffprmance
tools [11]. We chose behavior patterns from the Afh&t
represent performance problems that require tram@ dor
correct diagnosis. For parallel programs, thesdopaance
behaviors fall into four categories based on therooanication
pattern being used. We describe these communicattterns
here using MPI functions as examples.

¢ N >1. N processes send data to 1 proceffsany of the
sending processes are late, then the receivingegsoc
blocks, waiting for them to execute the send opamat
Example MPI functions for this pattern av®l _Reduce
and MPI _Gat her, with corresponding performance
behavior problemsarly_reduceandearly_gather

e 1->N. 1 process sends data to N procesdéshe sending
process is late, then all N receiving processeb hidick
until the send is executed. Example functions are
MPI _Bcast and MPI _Scatter. The corresponding
performance problems alae_broadcasandlate_scatter

¢ 1->1. 1 process sends to 1 procesEBhere are two cases.
In the case of a non-blocking send and a blockaugive,
if the sending process is late, the receiving mscwill
block. In the case of a synchronous send, the sgndi
process will block if the receiving process is ld&gample
communication routines aitPl _Ssend andMPl _Recv,

with corresponding performance problerae_receiver
andlate_sender

¢« N >N. N processes send to N processddere, all N
processes depend on all other processes involvetiein
communication to proceed. If any of the N are ldien the
rest of the processes block until all have reacties
communication routine. An example Pl _Barrier
with corresponding performance problem
imbalance_at_barrier

Benchmarks with Regular Behavior. We chose five example
benchmarks provided with ATS with regular behavior:
early_gather, imbalance_at_mpi_barrier, late_reweiv
late_sender, and late_broadcast. Each of the bewkbm
simulates a program with the given behavior probleith the
same severity in each iteration. In other wordsijtatations of
each program will exhibit the performance problend aall
iterations should be very similar. All runs hadr8gesses.

We expect the similarity methods to do relativelglivon this
set of benchmarks since the iterations have redutdiavior.
They should be able to find a large number of segsnmatches
and still retain the correct performance behaviors.

Benchmarks with Irregular Behavior. For this category, we
used ATS to create new benchmarks with irreguldrabier.
The benchmarks simulate the system interferenacstifabe by
Petrini et al. when they ran an application on ARCR7]. The
system interference prevented the application femaling as
predicted. The benchmarks contain iterations witkwperiods
that last approximately thsfollowed by a communication step,
using the communication patterns described prelyioushe
load for each process is constant in each iteradioth across
processes: the only performance problem comes ftben
interference. We simulated the system noise usimgrs to
interrupt the processes as described by Petradi e used two
simulation scenarios. The first was a 32-process with each
of the 32 processes simulating the interrupts §ipew the 32
nodes in an ASCI Q cluster. The second was als?-pr@&ess
run, but with the simulated amount of system intetions that
would occur if there were 1024 processes in the Wihen we
refer to the benchmarks in the first category, wse uhe
communication pattern and either 82 or a_1024 to indicate
whether 32 or 1024 processes were simulated, rixsplgc

For these benchmarks, we expect the methods todimigh
number of matches, since most iterations are vémilas.
However, it will be important that they don't falgematch
undisturbed and disturbed iterations, as this hagbtential to
mask or amplify the periodic behavior changes doethe
simulated interruptions.

Dynamic Load Balancing. Here, we used ATS to create a
program that simulates an application that doesadya load
balancing. For this benchmark, the performancéefiterations
starts at about insand gets progressively worse, with one-half
of the processes doing more work each iteration taedother
half doing less work in each iteration, until thedd balancer" is
triggered. The "load balancer" readjusts the amofintork on
each processor to be equal. The performance probidibited
by this program ismbalance at mpi all to allwhich falls in the
N-to-N communication category. This benchmark femed to
asdyn_load_balancand was run with 8 processes.

For this benchmark, we expect less overall matctsirge
behavior changes with each iteration and very gi@strmance



behaviors reoccur only after each simulated loddrza. Here it
will be important that the similarity methods dotnmatch
segments with larger differences because the logmhlance
may no longer be apparent in the reduced trace.

4.2 Application

We chose Sweep3D 2.2b, a structured mesh applicaliat
computes a 1-group time-independent discrete aesntree-
dimensional Cartesian geometry neutron transpatlpm [1].
Structured mesh applications have a regular partitg of the
data, where all interior data blocks have equal en: of
neighbors. It is likely that the performance wi# ery regular
over the course of the program, which means thateduction
methods should be able to find a large number gimsat
matches without introducing a large amount of errdfe
collected traces for two runs of this applicatian:8-process run
with input file input.50 sweep3d_8pand a 32-process run with
input input.150sweep3d_32p.

4.3 Evaluation Criteria

We chose four criteria to evaluate the metricscgmtage of full
trace file size, degree of matching, approximatistance, and
retention of correct performance trends.

4.3.1 Percentage of Full Trace File Size

We present the savings in file size as a percertagle
full, non-reduced trace file, as a relative measofesize
reduction.

4.3.2 Degree of Matching

The degree of matching metric is a measure of hamym
segment matches occurred. We define it to be ttie oh the
number of matches to the number of possible matchke
number of possible matches is limited by the stmgtof the
program. For example, some portions of the code oy
execute one time, e.g. an initialization step, afltinot match
any other event sequence in the trace. A possibtelmbetween
segments exists if: the segments represent the szode
location; they contain the same events in the sanaher; and all
message passing calls and parameters are the same.

4.3.3 Approximation Distance

We estimate the error in the trace by recreatifigllarace
from the reduced trace and comparing each timepstaith its
counterpart in the original full trace. The approation distance
metric tells what absolute difference 90% of tintengps had
compared to the originals.

4.3.4 Retains Correct Performance Trends
Arguably, the most important criterion for evalugtia trace
matching metric for the purposes of performancelyais is
deciding whether or not the reduced trace stilidatks the same
performance problems as the full trace. For examplean
analyst inspecting a full trace detects a late sepérformance
problem, the same problem should be detected irrdtieced
trace with approximately the same severity. The KOfool set

L When recreating full traces for the iter_k methad, used the
last segment that executed of each pattern toirfilithe
segment executions that were not collected. Alteres
include using the average measurements from thallécted
segments, or using the centroid of those k segmasts
determined by a clustering algorithm.

was developed to aid parallel performance analystshe
challenging task of performance diagnosis [34]. KR3
EXPERT tool reads in a trace file and produces ta dite
containing performance diagnoses. Each diagnosisists of a
metric, a code location, and a severity for eachath in the run
[29]. KOJAK's CUBE tool reads in the analysis datad
presents a visualization to the user, indicating tmost
important performance trends in the trace in adnahical
manner.

We use the CUBE visualization tool to compare the
performance diagnoses for the recreated tracesnsig#ie
diagnoses for the full trace (See Figure 4.). Weenigne
whether a performance analyst would come to theesam
conclusions about the reduced trace as the fulétrii not, then
the reduced trace is not adequate for performanalysis. We
admit that this is a subjective test; however, alldived a set of
guidelines when deciding if the diagnoses were idefftly
similar, so all the methods were subjected to #mescriteria.

5. EVALUATION STUDIES

In this section, we present the results of two issi@valuating
the similarity methods using the criteria and pamgs described
in Section 4. We first present a threshold studytlie similarity
methods from the distance metric category. From shidy, we
choose a threshold for each of these methods epatgents the
best tradeoff in terms of file size reduction, measent error,
and retention of performance trends. In the secsindy, we
present the results of a comparative study of thalasity
methods, using the thresholds found to be bestdoh method
in the threshold study.

5.1 Threshold Study

We investigated the behavior of the methods in cedythe
traces of the benchmarks while varying the threthdhat
determine whether two given segments should matcimob
match. The thresholds foelDiff, Minkowski distances, and the
wavelet transforms were 0.1, 0.2, 0.4, 0.6, 0.8 &ar0. The
thresholds foiter_k were 1, 10, 50, 100, 500, and 1000, and for
absDiffwere powers of 10 from 1@o 1&. Since no thresholds
are used with théer_avg method, it was not included in this
study. The criteria we used to evaluate the methvele file
size, approximation distance, and retention of qrambnce
trends (For file size reduction and approximatiéstahce, see
Figures 10-16 in the Appendix for the benchmarkd Bigures
17-19 for sweep3d. For retention of performancedse see
Tables 1-18 in the Appendix.). For each method,chese a
representative threshold to be used when comp#rexgiethods
against each other.

relDiff. The file size for each benchmark and the sweep8d r
decreased relatively steadily with increasing thoéd The

approximation distance remained small until the ti@shold,

after which there was a large jump for many of ltleechmarks
and sweep3d_32p. Performance trends were corresttyned

for most programs up to a threshold of 0.8. Bagethe jump in

approximation distance and loss of performancedseafter

threshold 0.8, we chose 0.8 as the best thresholeDiff.

absDiff Here the file sizes for the benchmarks and sweep3
dropped off fairly quickly at a threshold of 100dacontinued to
decrease slightly with increasing threshold. Thpraximation
distance stayed relatively low up to a threshold16t, after
which there was a sharp increase for several obémehmarks
and sweep3d_32p. Performance trends were retaoneddst
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Figure 4: KOJAK Performance Analysis and Derivation of Our Performance Diagnosis Representation. Here we show a screenshot
of KOJAK’'s EXPERT tool displaying the performancieghosis for dyn_load_balance. The color bar onbititom shows the seity
levels, withblue being low and red high, and gray indicatingrClose to 0. The left panel shows the performanegrics; the middl
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programs at a threshold of less thari. Because the file siz
were relatively dw and performance trends were retained 3,
we chose 1Yas the representative thresholdabsDift

Manhattan, Euclidean, and Chebysh&Vvhen observing fil¢
sizes changes, the Manhattan and Euclidean methetusvec
quite similarly; the Chebyshev nheid showed somr
differences. For the Manhattan and Euclidean meathwth the
regular benchmarks, the 1-to-irregular benchmarks, al
sweep3d, file sizes decreased relatively steadily imcreasinc
threshold; with the other irregular benchmarks, fthe size
decreased only slightly with increasing threshdécause
matching that was close to optimal was reachedyeatl a
threshold of 0.1. For Chebyshev with theto-1 irregular
benchmarks and sweep3d, file size decreased wittedsing
threshold;with the regular benchmarks and remaining irreg
benchmarks, file size was relatively constant withreasing
threshold. For all three methods, we observed thewing
behavior in approximation distance: with the reg
benchmarks, approximation thece was relatively conste
with increasing threshold; with the 1-1oiregular benchmark
approximation distance increased with increasingestold;
with the remaining benchmarks, the approximatiostatice
remained low until after the threshold aBpafter which ther
was a large jump. For sweep3d and Manhattan antidean,
approximation distance increased with increasimgstfold; for
Chebyshev, the approximation distance was smallrelatively

constant until after the 0.8 threshold. For ntion of
performance trends, the Manhattan distance did welito a
threshold of 0.4, and the Euclidean and Chebysisarttes di
well up to 0.2. We based our selection of beststokls for
these methods on the retention of performance sreneitric,
because we consider this metric to be the most iitapb We
chose 0.4 as the best threshold for the Manhaittande anc
0.2 for the Euclidean and Chebyshev distai

Wavelet Transformd-or all evaluation criteriaavgWaveand
haarWave performed simérly. For all programs, file size
decreased with increasing threshold, up to thetpafirperfect
matching, after which no further decrease in szgossible. Th:
best threshold in this category appears to be 6r4bbth
methods, because file size cease levels off after this
threshold. The approximation distance for both mad
remained steady with increasing threshold for tlegular
benchmarks and the irregular-tol, N-to-N, and 1-to-N
benchmarks. The approximation distance increaseth
increasng thresholds for the irregular-to-1 benchmarks and
sweep3d. The threshold 0.2 is best for approximatiistance
because of the relatively higher values for the_diyad_balanc
benchmark and sweep3d after this threshold. Fomijerity of
programsperformance trends were retained for both metho
thresholds below 0.2. For these reasons, we ch@sasGhe bes
threshold for the wavelet transform meth:
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Figure5: Percentage File Sizes and Degree of Matching.

iter_k Generally speaking, there was an increase irsiile and
decrease in approximation distance with increasikg
Performance trends were retained for must programsto
threshold 10. The choice for the best k wasn't reléat we
chose k=10 as the best because the performancds tveere
retained for most programs at this threshold.

52 COMPARATIVE STUDY

In this section, we present comparative resultstter different
methods using size and degree of matching; appadiom
distance; and retention of performance trends estaluation
criteria. Based on the results of the threshaldiystin Section

5.1, we present results for the best performingsthold for each
method: 0.8 forelDiff, 1000 forabsDiff, 0.4 forManhattan 0.2

for Euclideanand Chebysheyv10 iterations foiiter_k, and 0.2
for avgWaveandhaarWave

5.2.1 Size and Degree of Matching

We present the data for reduction of traces foheaethod in
Figure 5. Theter_avgmethod gives the best case values for this
category, since exactly one segment is retainedquogr with
this method.
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Figure 6: Approximation Distance Resultsfor All Methodsat Default Thresholds.

The benchmark data shows that for the most patdégree of
matching for each of the methods is greater th@n heaning
that greater than 90% of the segments were matéhegptions
occur withrelDiff, which had degree of matching scores as low
as 0.74 RelDiff had the highest file sizes and lowest degree of
matching scores. The next largest file sizes arnemgged with
theiter_k method; however, they are not much higher thasetho
for the other methods. The Minkowski distancaesgWave and
haarWave all have nearly identical results, witBhebyshev
having a very slight advantage over the othabsDiff had only
slightly larger file sizes than the Minkowski distaes.

For sweep3d, the results are somewhat differentaise this
application has very regular behavior, we expettedesults to
be similar to those of the benchmarks. Howeverabse of the
program structure, there are more segments, as aell
differences within the segments, e.g. message mEASSI
parameters, that cause segments not to match. \bager_k
performed the worst, with the highest file sizesd dowest
degree of matching scores. This is becdigsek needed to keep
10 copies of each individual segment, regardledsoof similar

in performance they actually were, whereas the klighree of
matching often results in fewer than 10 copies. fbgt worst
performing were the Minkowski distances, again with
Chebyshewnaving the smallest file sizes. The wavelet meshod
performed best, followed bgbsDiff andrelDiff, each with very
close to perfect matching and lowest possiblesizes.

The obvious best method in this categorytés_avg since all
segments match by definition. A comparison of therage file
sizes for each of the other methods yields thefdtg ranking:
avgWave haarWave Chebyshey absDiff Manhattan
Euclideaniter_k relDiff.

5.2.2 Approximation Distance
Figure 6 shows the approximation distance reswitsefich of
the methods. High values for iter_k and iter_avgeam that

there is irregularity in the execution that is betng captured in
the iterations that are retained. High values tosDaff give a

rough indication of the absolute difference of tistamps from
the true values in the full trace. High values ttee Minkowski

and wavelet methods mean that there are high mawiralues
in the set of values being compared, relative ® distance
between those values.

The methods show similar trends across the bendsmaith
regular behavior. TheelDiff, absDiff iter_k, and iter_avg
methods have consistently low values. The Minkowski
distancesavgWave andhaarWavetransform behave similarly,
and have the highest values overall. The results the
dyn_load_balance benchmark show a different sdtebfvior,
with absDiff having the lowest value, followed tBvgWave
Euclidean Manhattan and haarWave The interference
benchmarks had lower overall approximation distanakies
than the other benchmarks, with similar resultsos€rthe
benchmarks. The worst performing methods in thseocaere
iter_avganditer_k However, the approximation distance values
are low in comparison to those for the other sdtesfchmarks.

The results for sweep3d shater_avgperforming the worst for
the 8-process run, arittr_k anditer_avgthe worst for the 32-
process run, indicating that there are performdrg®viors not
being captured by those two methods.

The methods that performed the best in this cayegarelDiff,
followed byabsDiff, and theriter_avg The rest of the methods
allowed significant error into at least one of teduced traces.

5.2.3 Retention of Performance Trends

We present summaries of the performance diagndses gy
KOJAK for selected benchmarks in Figures 7 and &. 3Now
how we derive the performance diagnoses charts and
abbreviations for metric names in Figure 4. Forbibachmarks
with regular behavior, nearly all the methods perfed quite
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Figure 7: KOJAK Performance Trendsfor dyn_load_balance For Each Method at Default Thresholds. Here we show the results for
each reduction method in the MPI_Alltoall and dorkviunctions. The first row shows the diagnosestifiar full trace. Each box in a row
shows a performance diagnosis for a single comibimatf metric and code location.

well. For late_receiver, all methods excépr_avg performed
equally well, with all performance trends retaind@the results
for iter_avg with late_receiver showed differences significant
enough that they may lead to an inaccurate perfocma
assessment. For early_gather, all but the Minkowltiances,
avgWave and haarWave retained the correct performance
trends. The results for imbalance_at barrier showed the
Minkowski distances, absDiff iter_avg avgWave and
haarWaveretained the performance trends, whi@Diff and
iter_k both showed a negative value for the major perémee
diagnosis. The amount of error introduced into teduced
traces caused time stamps to be skewed enough thkat
performance diagnoses resulted in negative values.

We show the major performance trends for dyn_loatartze in
MPI _All toall anddo_work as reported by the KOJAK
tools for the full trace and all methods in FigateThe results
for the no loss trace clearly indicate that the dowanks are
spending more time ivPl _Al | t oal | , because the upper
ranks are spending more time do_wor k. None of the
methods gave perfect results for the dyn_load_lbalan
benchmark; howevegbsDiff Manhattan Euclidean avgWave
and haarWavegave the closest performance diagnoses because
for the most part they maintained the performaniéferdnces
due to load imbalance between the upper and lowskst
Although Manhattan Euclidean avgWave and haarWavelost
the disparity indo_wor k, the diagnosis “Wait at NxN" is non-
negative and maintains the disparity in behaviAbsDiff
maintained the disparity in performance d@o_wor k, but
reported that “Wait at NxN” was negative. All otherethods
lose the expected disparitydio_wor k.

For the interference benchmarks, all methods dattyrvell on
the N-to-1 and 1-to-N benchmarks, with the exceptiof
iter_avg which failed on three benchmarks, aGthebyshev
which failed on Ntol 1024AbsDiff did less well on the 1-to-1
and N-to-N benchmarks. We show the data for 1td1241in
Figure 8.AbsDiff picked up on the variations in the iterations
due interference, which caused some performangndses to
be skewed in a positive or negative direction. Tinest
performers for these benchmarks wéfanhattan Euclidean
and avgWave followed byrelDiff, andhaarWave AbsDiff and

iter_avgboth only showed correct diagnoses for one bendhma
1tolr_32 and 1tols_32, respectively.

For sweep3d_8p and sweep3d_32p, all methodsitbutavg
anditer_k produced correct dat#ter_k showed a non-existent
disparity in rank performance ipnpi _r ecv in sweep3d_8p
and a greatly inflated severity prrpi _r ecv in sweep3d_32p.
Iter_avgshowed a much lower severitysmeep_ than did the
no-loss trace for both sweep3d_8p and sweep3d_32p.

The best methods in this category wtanhattan Euclidean
and avgWavewhich correctly diagnosed 17 out of the 18
execution traces. HarrWave did second best, cdyrect
diagnosing 16. The rest of the methods in ordereweiDiff
(14); absDiffand Chebyshev (13iter_k (12); anditer_avg (6).
The relatively poor performance itér_k in this category could
be due to our choices in implementing this methdd is
possible that the first iterations are more subjectariabilities

in execution, before the processes synchronizetirdio regular
behavior patterns, and that the last segment ithedbest choice
as a fill in for missing segmentabsDiff seemed to amplify
differences in the traces with interference, whiter_avg
seemed to smooth out behavior patterns.

5.2.4 Discussion

For relDiff, we expected low error and relatively large files,
which is exactly what we found to be true. FadysDiff we
expected low error. We did find thabsDiff had lower error
when compared to most methods. We expected thedMisiki
distances would favor long segments and error wbeltbwest
for Manhattan followed by Euclidean and highest for
Chebyshewhile we did definitely see more error in thecesa
produced by theChebyshevmethod, the differences in the
results for theManhattanand Euclideanmethods were largely
undistinguishable. We expectédr_k anditer_avgto produce
low error traces for programs with regular behaword for
iter_avgto have the lowest overall file sizes. We indeednfi
that iter_k did well for regularly behaving programs and less
well for programs with varying behavior patterrser_avg
produced better results for the regular benchmanks the
irregular ones; the averaging of measurements tetmeause
loss of information needed for diagnosis. FargWaveand
haarWave we expected stricter comparisons thanclidean
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Figure 8: KOJAK Performance Trendsfor 1tolr_1024 for Each Method at Default Thresholds.

Indeed, the wavelet transforms produced sliglatgér files for
the benchmark traces; however, the reduced traceweep3d
were smaller than those producedihclidean

To determine best method for comparing traces, ake the
highest ranking methods from each category and hwélge
importance of each of the categories. The bestadstfrom the
size category werger_avg followed byavgWave haarWave
and Chebyshev. Those from the approximation distanc
category wereelDiff andabsDiff followed byiter_avg Finally,
the methods that best retained performance trendse w
avgWave Manhattan Euclidean and haarwave One could
argue that the absolute most important criterigddging these
methods is whether or not they retain the correcfopmance
trends, because that is the point of collectingtthees in the
first place. However, almost equally important hig @ability to
collect, store, and analyze the trace dataall. Given that
avgWaveperformed well in both the size and retention of
performance trends categories, we chamgg\Waveas the best
method of the ones studied for comparing traces.

6. CONCLUSIONS

We have developed a new methodology for evaluating
definitions for similarity between event traces floe purpose of
performance analysis. We identified criteria fomparing the
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similarity methods: file size reduction, degree rohtching,
approximation distance, and retention of correafgpmance
trends. We applied these criteria, using benchmaitts known
performance behaviors, as well as with the apptinagweep3d.
Overall, the avgWave method had the best retention of
performance behaviors and good trace file sizeatagtu The
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methods against a richer set of full applicati@teés.
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Figure 13: File Size and Approximation Distancefor Varying Threshold and Chebyshev Distance
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Figure 14: File Sizeand Approximation Distancefor Varying Threshold and Keep k Iterations
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Figure 15: File Sizeand Approximation Distance for Varying Threshold and Average Wavelet Transform
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Figure 16: File Size and Approximation Distance for Varying Threshold and Haar Wavelet Transform
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Figure 17: File Size and Approximation Distancefor Varying Thresholdsfor Sweep3d and re Diff, absDiff, Manhattan
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Figure 18: File Size and Approximation Distancefor Varying Thresholdsfor Sweep3d and Euclidean, Chebyshev, iter_k
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Figure 19: File Size and Approximation Distance for Varying Thresholdsfor Sweep3d and Wavelet Transforms
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Table 1: Retention of Performance Trendswith Varying Thresholdsfor dyn_load_balance
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Table 2: Retention of Performance Trendswith Varying Thresholdsfor early_gather
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Table 3: Retention of Performance Trendswith Varying Threshold for imbalance_at_mpi_barrier
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Table4: Retention of Performance Trendswith Varying Threshold for late_broadcast
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Table5: Retention and Performance Trendswith Varying Thresholdsfor late_receiver
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Table 6: Retention of Performance Trendswith Varying Thresholdsfor late_sender
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Table 7: Retention of Performance Trendswith Varying Thresholdsfor Ntol_32
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Table 10: Retention of Performance Trendswith Varying Thresholdsfor 1tolr_32
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Table 11: Retention of Performance Trendswith Varying Thresholdsfor 1tols 32
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Table 12: Retention of Performance Trendswith Varying Thresholdsfor Ntol_1024
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Table 15: Retention of Performance Trendswith Varying Thresholdsfor 1tolr_1024
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Table 17: Retention of Performance Trendswith Varying Thresholdsfor sweep3d_8p
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Table 18: Retention of Performance Trendswith Varying Thresholdsfor sweep3d_32p
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