Check for
Updates

A Declarative Laboratory Approach for
Discrete Structures, Logic, and Computability

James L. Hein
Department of Computer Science
Portland State University
Portland, OR 97207-0751
jhein@cs.pdx.edu

Overview

Many students find it hard to grasp and retain
the ideas presented in courses covering discrete
structures, logic, and computability. These sub-
jects provide a foundation for required upper divi-
sion courses in computer science. Therefore a ma-
jor effort must be made to improve the learning
environment for students studying these ideas at
the lower division level.

Many of us succeeded academically in spite of
the way we were taught. But how many people have
not succeeded because of the way material was
presented to them? Since people learn in different
ways, it makes sense to present students with a va-
riety of learning experiences.

We have created a laboratory component for a
year long sophomore course in discrete structures,
logic, and computability for students majoring in
computer science or computer engineering. The
labs consist of experiments in declarative pro-
gramming environments. The experiments are
designed to reinforce the learning of material on
a daily basis, just like the regular homework as-
signments. In other words, the lab experiments
are short in duration and relevant to the material
covered by each lecture.

Short programming labs that correspond to
each lecture should be useful learning tools for
many traditional courses. The instant feedback
that students get from wrong assumptions can
give them incentive to try something new - to ex-
periment and see what happens. The lab compo-
nent can also encourage the use of laboratory
partners, interaction of students, team presenta-

SIGCSE

BULLETIN Vol. 25 No. 3

Sept. 1993

19

tions, and lively classes. Programming environ-
ments as lab tools can be as important to learning
as the traditional tools found in science and engi-
neering labs.

We are not talking about the well defined
ideas of Computer Aided Instruction and Intelli-
gent Tutoring Systems, where students interact
with a program for a specific domain of knowl-
edge. We are talking about using declarative pro-
gramming languages as laboratory tools, to be
used experimentally by students to learn new
ideas. The key is to give students traditional labo-
ratory work, where the experiments are well de-
fined and relevant to the lecture material.

The instant feedback obtained from an inter-
preter, in response to a declarative solution to a
problem, is a powerful incentive to try to get it
right. Ideally a student should be able to complete a
laboratory experiment during one lab period, just
like a traditional science laboratory.

Implementation

Laboratory courses need more credit. The
learning that takes place by writing down solu-
tions to problems is not in question [7]. Thus we
don’t wish to reduce the written homework in these
courses. We intend to supplement this learning
with a laboratory component. Therefore the credit
must be increased to reflect the extra work.

The Department of Computer Science at Port-
land State University has implemented, as part of
a curriculum change, a laboratory component for
a new year long sophomore course in discrete

http://crossmark.crossref.org/dialog/?doi=10.1145%2F165408.165414&domain=pdf&date_stamp=1993-09-01

structures, logic, and computability. The course is
actually a sequence of three 10 week courses,
where each course is four credits consisting of
three credits of lecture and one credit of lab. The
three courses cover the following material:

Discrete Structures

Introduction to notations and techniques to repre-
sent and analyze computational objects. Sets,
bags, and tuples. Properties of functions. Con-
struction of sets, languages, and recursively de-
fined functions. Equivalence and order relations.
Inductive proof techniques. Elementary combina-
torics. Programming problems introduce use of a
functional language.

Logical Structures

Introduction to logic from a computational view-
point. Propositional calculus, first order predicate
caleulus, formal reasoning. Resolution and natu-
ral deduction. Applications to program corrrect-
ness and automatic reasoning. Proof techniques.
Programming problems introduce use of a logical
language.

Computational Structures

Elementary algebraic structures, Boolean alge-
bra. Regular languages and finite automata.
Context-free languages and pushdown automata,
Automata as computation devices. Turing ma-
chines. Chomsky language hierarchy. Church’s
thesis, computation models and their equivalence.
Solvability and unsolvability. Use of a declara-
tive language.

Lab Environment

The programming language chosen for the
laboratory experiments is a very important con-
sideration. A language must be easy to learn so it
does not distract from the learning goals of the lab
experiments, The environment must be able to
provide instant feedback for testing assumptions
and correcting mistakes. This will allow students
to rapidly complete short experiments that rein-
force the daily class material. Declarative pro-
gramming languages satisfy these requirements.
For example, declarative programming lan-

SIGCSE .
BULLETIN Vol. 25 No. 3 Sept. 1993

20

guages have been shown to be good tools for learn-
ing recursion [4].

From the several declarative languages that
are available, we have been using the languages
FP, ML, and Prolog. All three have syntax and se-
mantics similar to the mathematical and logical
notations used to present the ideas of discrete
structures, logie, and computability. So the learn-
ing curve can be steep. For example, the I'P lan-
guage is a powerful tool to explore composition of
functions. Its non-variable nature can be used as
a tool for laboratories that encourage students to
think about combining simple funections to create
more complicated functions. The ML language
reflects the natural way we write definitions of
functions. The type inference mechanism in ML
can be used as an experimental tool for a labora-
tory to learn about domains and codomains of
functions.

Logic is becoming an important part of the
computer science curriculum [6]. Since we have a
full term course in logical structures, it makes
sense to use Prolog as a learning tool. Since the
language can be introduced from a relational
viewpoint, lab experiments concentrating on the
propositional calculus can be given before stu-
dents have been introduced to the predicate calcu-
lus. Thus when predicate calculus is discussed,
students can see Prolog as an automated predicate
calculus. Similarly, when resolution is dis-
cussed, students already have seen its use in the
Prolog computation rule. Information on using
these languages can be found in [1], [2], and [3].

Conclusion

Since people learn in different ways, it is es-
sential that we provide them with as many learn-
ing paths as we can. We must not restrict a stu-
dent’s learning by the methods we use to teach.
The subjects of discrete structures, logic, and com-
putability are normally taught with paper and
pencil type homework. The instant feedback pro-
vided by declarative programming labs can speed
the process of understanding, when compared to
the slow feedback caused by the time it takes to
grade and return homework papers. For those stu-
dents who can learn the ideas in the traditional

way, the laboratory will provide new ways to think
about those ideas. But for other students the labora-
tory approach might be the difference between suc-
cess and failure. Also, paper and pencil home-
work can take on a new dimension. For example,
students will obtain valuable writing experience
by writing summaries of the lab experiments (4],

It must be emphasized that the structure and
content of the laboratories is the key to success or
failure of this learning method. Students have
asked for laboratory projects to be easier, shorter,
and more relevant to the lecture material, just like
the daily homework. In other words, the lab should
not be a traditional programming language lab.
The languages chosen must be easy to learn and
reflect the notation used in the courses. As an
added benefit, students will be exposed in a natu-
ral way to new programming languages, and not
become addicted to one particular language.

We now have a crop of declarative languages
that are easy to learn and use because they emulate
the natural notations of logic and mathematics [4]
and [5]. With carefully constructed lab experi-
ments, these languages could be used in many
courses where mathematics and logic are used.
For example, a new kind of introductory course
may be possible, with the laboratory experiments
serving as a first introduction to programming.

Sample Laboratories

Our goal is to build a portfolio of sixty or more
labs - two per week for thirty weeks of class. We
have constructed 25 labs that satisfy our criteria.
But much work is yet to be done, testing and modi-
fying existing labs, and creating new labs. The
following samples are representative of the exist-
ing labs. Some functions and predicates are lo-
cally defined.

Power Set Lab: We can use the FP interpreter to
compute the power set. For example, the power set
of {a, b) is obtained by typing the command

power: <a, b>
The interpreter will respond with the answer
<<>, <a>, , <a, b>>
which represents the power set (&, {a}, {b), (¢, b)}.

SIGCSE .
BULLETIN Vol. 25 No. 3 Seplt. 1993

For each of the following sets compute the power set
by hand, and then use FP to check your answer.

a. (x, v 2. b, @. c. {a, {a, b}}.
d. (@) e. (a),@). f. {a,{a), (@)}

Bags (Multisets) Lab: The bag [a, a, b] is a subbag
of [a, @, a, b, b]. This can be verified by typing the
FP expression

subbag: <<a, a, b>, <a, ¢, a, b, b>>

The interpreter returns the value t. The union of
the two bags ¢, o, bland [a, a, b, b, c] is [q, a, b, b, ¢]
and it can be computed by typing the FP expression

bagUnion: <<a, a, b>, <a, a, b, b, c>>

The interpreter returns <a a b b ¢>, The intersec-
tion of the same two bags is [a, @, b] and it can be
computed by typing the FP expression

baglntersect: <<a, a, b>, <a, a, b, b, c>>

The interpreter returns <a a b>. For each pair of
bags find whether the first is a subbag of the sec-
ond, and also find the union and intersection of
the pair. First do each problem by hand, and then
use FP to check your answer.

[x, ¥] and [x, ¥, z].

x, y, x] and [y, x, v, x].

e, a, a, bland [a, a, b, b, cl.
[1,2,2,3,38,4,4land (2, 3, 3, 4, 5].

[x, x, [a, a], [a, al] and [a, a, %, x].

la, a, (), b, [a, [b]]] and [a, «, (5], [b]).

IRLIR U = PR S o B

Combining Functions Lab: We want to construct
the function f defined by
f(n) =<<0, 0>, <1, 1>, ..., <n, n>>.

We can use the existing functions seq and pairs to

define f(n) = pairs(seq(n), seq(n)). This defini-
tion can be translated into FP by typing the expres-
sion

[f pairs @ [seq, seq]]

The interpreter will respond with (f}, indicating
that it has received the definition.

1. Use I'P to test the function f.

2. Translate the following function into FP and

test a few values: g(n) = dist(n, seq(n)). Also
give an informal description of g.

Recursively Defined Functions Lab: Suppose we
have a function g defined in if-then-else fashion
as follows:

glx) = if a(x) then b(x) else c(x).

We can translate this definition into FP by typing
the expression

g (@a—b;0)

1. Translate each function into FP and test it on
a few values. Use the trace command for at
least one test.

a. fn)=ifn=0then 3elsen +fin-1).

b. back(n) = ifn =0 then <0>

else cons(n, back(n - 1)).

2. Construct a recursively defined function to
add up the numbers in a list. Translate your
function into FP and test it.

Type Inference Lab: Figure out the type of each
function. Then use ML to check your answer.

b. flx) ==x.

d. flx) = [x].

. X =x+ 4.0
gx) = x div 4,
g(x) = hd(tl(x)).
h(x,y) =if x = 0 then y else [x].

oo oo

Modus Ponens Lab. Try out the modus ponens in-
ference rule with the following Prolog experi-
ment. First, ask the question

-7 q.
Then enter the following fact into the Prolog

database:
q - p.
Now ask the question
[-? q.
Finally, add the following fact in the database:
D.
Then ask the question:
[-? q.

SIGCSE

BULLETIN vol. 25 No. 3

Sept. 1993

Question: Since the lab is about the modus ponens
inference rule, what is a reasonable interpretation
of a prolog statement like b :- a?

If..Then..Else Lab: We want to experiment with
the statement “If ¢ then x else y” where x and y are
Boolean values. First, enter the following two
facts in the database:

X - C.
y - not ¢,

Try out the following two questions:
-7 x.
[-? y.

Now enter the following fact in the database:
c.

Now ask the two questions again:

1-? x.
-2 .

Make some observations and conclusions.

Quantification Lab. When we enter a statement
containing a variable into the database, the state-
ment is implicitly quantified by Prolog. Try the
following experiment to discover the kind of
quantification. Insert the following facts in the
database:

r(X).
s(a).
HZ) - r(Z), s(2).

Try to discover how each line is quantified. What
about the scope of the quantifiers? To get an idea

about things, try some questions, like,

1?- t(book).
12- t(a).

[-? r(hello).
I-7 5(89).

Equality Axioms Lab: Suppose we have the follow-
ing two axioms for an equality theory: Vi (x = x)
and t=u Ap(l.t..)>pl.u ...). We can use
these axioms to prove the following symmetric
and transitive properties for terms:

t=u—-u=t
t=unAnlU=v = Lt=0

For example, we have the following proof of the
symmetric property:

1. t=u P

2. t=t EA Axiom

3. t=unt=t—u=t EE Axiom

4. tz=unt=t 1,2, Conj

5. u=t 3,4, MP

6, t=u->u=t 1,5 CP
QED.

To see if Prolog validates this argument, enter the
following facts in the database, where e(a, b)
means a = b.

elX, X).
e(t, u).
e(u, t) - et, u), e@t, t).

Now ask the following question:
[?- e(u, t).

1. Why does this prolog experiment verify the six
line proof of symmetry?

2. Consider the following proof of transitivity:

1. t=u P

2. u=v P

3. u=svat=u—t=v EE Axiom

4, u=vAat=u 1, 2, Conj

5. t=v 3,4, MP

6. t=uAu=U 2 t=v 1,2,5 CP
QED.

a. Construct a Prolog experiment to verify
this proof.

b. Explain how your prolog experiment veri-

fies the transitivity proof.

Finite Automata Lab: Calculate the transition
function ¢ for the following DFA:

SIGCSE
BULLETIN

vol.

25 No. 3 Sept. 1993

23

Enter ¢ in the Prolog database as a collection of
facts having the following form:

{(state, letter, nextstate).

To indicate that state 3 is a final state, enter the
fact

final(3).

To test whether the string aaba is accepted by the
DFA, we write the string as a list of letters and type
the following goal:

!?- accept((a, a, b, al).

This action starts the execution of the following
simple DFA interpreter:

accept(S) :- path(0, S).
path(X, []) :- final(X).
path(K, [H|T]) :- t(X, H, N), path(N, T,

1. Perform the following experiments for the
given DIFA:

a. Use the DFA interpreter to test five strings
accepted by the DFA.
b. Use the DFA interpreter to test five strings

rejected by the DFA.

¢. What is the regular expression for the
DFA?

Find a DFA for the regular expression

aa*b + bla + b).

Then use the DFA interpreter to test the DFA on
five strings that are accepted and five strings
that are rejected.

Nondeterministic Finite Automata Lab: Calculate
the transition function ¢ for the following NFA:

Start

Enter ¢ in the Prolog database as a collection of
facts of the form

t(state, symbol, nextstate).

Tor example, since #(2, @) = {2, 3}, there must be two
facts corresponding to the non-determinism:

t(2, a, 2).
12, a, 3).

When there is a A edge like (0, A) = {2}, write A as
the empty list:

£0, [], 2).
Indicate a final state by a fact of the form

final(state).

To test whether the string aaba is accepted by the
NFA, we write the string as a list of letters and
type the following goal:

I7-acceptlla, a, b, al).

This action starts the execution of the following
NFA interpreter:

accept(S) :- path(0, S).

path(X, [}) :- final(X).

path(K, [HIT]) :- (K, H, N), path(N, T),
path(K, X) :- ¢{K, [, N), path(N, X).

1. Perform the following experiments for the
given NFA:

a. Use the NFA interpreter to test five strings
accepted by the NFA.

b. Use the NFA interpreter to test five strings
rejected by the NFA,

c. What is the regular expression for the
NFA?

2. Find an NFA for the regular expression
ab* + be*.

Then use the NFA interpreter to test the NFA
on five strings that are accepted and five
strings that are rejected.

Pushdown Automata Lab: Suppose we write a
pushdown automaton as a set of Prolog facts of the
following form:

SIGCSE

BULLETIN Vol

25 No. 3 Sept. 1593

24

t(state, letter, top, operation, nextstate).
final(state).

In order to write a simple interpreter for PDAs,
we'll need to make a few assumptions. We will
require that every PDA start in state 0. The stack
is a list that is initialized with the value [e], which
means e is the top of the “empty” stack. We'll
reserve the letters p and n for the operations pop
and nop, and we'll agree to let the push instruction
be represented by the symbol that is to be pushed.
For example, in the instruction #(0, a, e, b, 1) the
letter b means pushb.

For example, a PDA to recognize the language
{@™ 8" | n =0} can be written as the following set of
facts:

{(0,a,ea,0).

#0,a,a¢,0).
t1(0,b,a,p,1).

1(0,[1,en,2).
(1, bap 1)

(1,[],e,n,2)
final(2).

To check whether this PDA accepts the string aabb,
we type the following goal:

1?- accept((a, a, b, b.

This action starts the execution of the PDA
interpreter, which we will describe next.

Since the stack is necessary to the computa-
tion, we've added a third variable to the “path”
predicate to carry along the stack. The predicate
top(01dS, T checks to see if the top of OldS is 7.
The predicate oper(01dS,Y, NewS) performs op-
eration Y on the stack OldS and returns the new
stack NewS. The interpreter can be written as fol-

lows:
accept(S) :- path(0, S, [el).
path(X, [], Stack) :- final(X).
path(X, [H|T1, Stack) :-#(K, H, A, O, M),
top(Stack, A),
oper(Stack, O, NewStack),
path(M, T', NewStack).

path(X, X, Stack) :- t(X,[], A, O, M),
top(Stack, A),
oper(Stack, O, NewStack),
path(M, X, NewStack).

top((H 1 T1, H).

oper({HIT1, p, D).
oper(X, n, X).
oper(X, A, [A1X]).

1. Test the example PDA by using the PDA inter-
preter to check acceptance of a few “strings” in
the form of lists, such as

[1, (e a al,la a b, b, bl (b b bl b a, bl ete.

2. Find a PDA for the language of all strings
over (a, b} that have the same number of a’s
and b’s. Test your solution with the PDA inter-

preter.

References

1. S. Baden, Berkeley FP User’s Manual, Rev.
4.1,1982.

2. M. Carlsson and J. Widen, SICStus Prolog
User’s Manual, 1990.

3. R. Harper, Introduction to Standard ML,
Technical Report 86-14, Department of Com-
puter Science, University of Edinburgh, 1986.

4. P. B. Henderson and F. J. Romero, Teaching
Recursion as a Problem-Solving Tool Using
Standard ML, ACM SIGCSE Bulletin 20, 1,
1989, 27-30.

5. R. A. Kowalski, Logic as a Computer Lan-
guage for Children, in New Horizons in
Educational Computing, M. Yazdani, Ed. El-
lis Horwood, 1984,

6. J. P. Meyers, Jr. The Central Role of Mathe-
matical Logic in Computer Science. ACM
SIGCSE Bulletin 22, 1, 1990 22-26.

7. G. Polya, How to solve it, McGraw-Hill,
Princeton, 1954.

SIGCSE

BULLETIN Vol- 25

No. 3 Sept. 1993

25

#rxxOBERON Continued From Page 18 swsrk

7. CONCLUSION

(i) What is Oberon-2? Oberon-2 is an extension
of Oberon which provides the so-called type-bound
procedures. A type-bound procedure is very close to
what traditionally ts called a "method”.

(ify How to find Oberon implementations? The
Oberon operating system, including a compiler, has been
implemented on different machines, including IBM PCs
and Mackintosh Il computers. The executable codes and
the sources can be obtained free via anonymous internet
file transfer from the Institute of Computer Systems,
Zurich, Switzerland.

FTP Hostname: neptune.inf.ethz.ch
Internet Address: 129.132.101.33
FTP Directory: Oberon

(iii) What to read on Oberon? Three books have
been published in 1991 and 1992, The book [1] provides
both a tutorial and a complete reference to the language
Oberon. Another book (2] contains everything that is
needed to use the Oberon operating system. Finally, the
book [3] describes the implementation of the whole
operating system, including the Oberon compiler. It
contains almost all sources in Oberon except for those
that are machine dependent.

An extended version of the present paper can be
obtained from its author.

8. REFERENCES

1. Reiser, M., Wirth, N. Programming in
Oberon. Steps beyond Pascal and Modula. Wokingham:
Addison-Wesley (1992).

2. Reiser, M. The Oberon System: User Guide
and Programmers Manual. Wokingham: Addison-Wesley
(1991).

3. Wirth, N., Gutknecht, J. Project Oberon.
Wokingham: Addison-Wesley (1992).

