
A Declarative Laboratory Approach for
Discrete Structures, Logic, and Computability

James L. Hein

Department of Computer Scienc e

Portland State University

Portland, OR 97207-075 1

jhein@cs .pdx.edu

19

Overview
Many students find it hard to grasp and retai n

the ideas presented in courses covering discret e
structures, logic, and computability. These sub-
jects provide a foundation for required upper divi-

sion courses in computer science . Therefore a ma-
jor effort must be made to improve the learnin g

environment for students studying these ideas a t

the lower division level .

Many of us succeeded academically in spite o f
the way we were taught . But how many people hav e

not succeeded because of the way material was
presented to them? Since people learn in different

ways, it makes sense to present students with a va -
riety of learning experiences .

We have created a laboratory component for a
year long sophomore course in discrete structures ,
logic, and computability for students majoring i n
computer science or computer engineering . The
labs consist of experiments in declarative pro-

gramming environments . The experiments are

designed to reinforce the learning of material o n

a daily basis, just like the regular homework as-
signments . In other words, the lab experiment s
are short in duration and relevant to the material
covered by each lecture .

Short programming labs that correspond t o
each lecture should be useful learning tools fo r
many traditional courses . The instant feedbac k

that students get from wrong assumptions can

give them incentive to try something new - to ex-

periment and see what happens . The lab compo-
nent can also encourage the use of laboratory

partners, interaction of students, team presenta -
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tions, and lively classes . Programming environ-

ments as lab tools can be as important to learnin g
as the traditional tools found in science and engi-
neering labs .

We are not talking about the well defined
ideas of Computer Aided Instruction and Intelli-

gent Tutoring Systems, where students interac t
with a program for a specific domain of knowl-
edge . We are talking about using declarative pro-

gramming languages as laboratory tools, to b e
used experimentally by students to learn new
ideas . The key is to give students traditional labo-
ratory work, where the experiments are well de -
fined and relevant to the lecture material .

The instant feedback obtained from an inter-

preter, in response to a declarative solution to a
problem, is a powerful incentive to try to get i t
right. Ideally a student should be able to complete a
laboratory experiment during one lab period, jus t
like a traditional science laboratory .

Implementation
Laboratory courses need more credit . The

learning that takes place by writing down solu-
tions to problems is not in question [7] . Thus we
don't wish to reduce the written homework in these
courses . We intend to supplement this learnin g
with a laboratory component . Therefore the credit
must be increased to reflect the extra work .

The Department of Computer Science at Port -
land State University has implemented, as part of
a curriculum change, a laboratory component fo r
a new year long sophomore course in discrete
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structures, logic, and computability . The course is
actually a sequence of three 10 week courses ,

where each course is four credits consisting o f
three credits of lecture and one credit of lab . Th e
three courses cover the following material :

Discrete Structure s

Introduction to notations and techniques to repre-

sent and analyze computational objects . Sets ,

bags, and tuples . Properties of functions. Con-
struction of sets, languages, and recursively de -

fined functions . Equivalence and order relations .

Inductive proof techniques . Elementary combina-

torics, Programming problems introduce use of a

functional language.

Logical Structures
Introduction to logic from a computational view -

point . Propositional calculus, first order predicat e

calculus, formal reasoning . Resolution and natu-

ral deduction. Applications to program corrrect-

ness and automatic reasoning. Proof techniques .

Programming problems introduce use of a logica l

language .

Computational Structure s

Elementary algebraic structures, Boolean alge-

bra . Regular languages and finite automata .

Context-free languages and pushdown automata .

Automata as computation devices. Turing ma-

chines. Chomsky language hierarchy. Church' s
thesis, computation models and their equivalence .

Solvability and unsolvability . Use of a declara-

tive language .

Lab Environment
The programming language chosen for the

laboratory experiments is a very important con-

sideration. A language must be easy to learn so i t

does not distract from the learning goals of the lab

experiments . The environment must be able t o

provide instant feedback for testing assumption s

and correcting mistakes . This will allow student s
to rapidly complete short experiments that rein -

force the daily class material . Declarative pro-
gramming languages satisfy these requirements .
For example, declarative programming Ian-
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guages have been shown to be good tools for learn-

ing recursion [4] .

From the several declarative languages tha t

are available, we have been using the Ianguages

FP, ML, and Prolog . All three have syntax and se-

mantics similar to the mathematical and logical

notations used to present the ideas of discret e

structures, logic, and computability . So the learn-

ing curve can be steep . For example, the FP lan-

guage is a powerful tool to explore composition o f

functions . Its non-variable nature can be used as

a tool for laboratories that encourage students to

think about combining simple functions to creat e

more complicated functions . The ML language

reflects the natural way we write definitions o f

functions . The type inference mechanism in M L

can be used as an experimental tool for a labora-

tory to learn about domains and codomains of

functions .

Logic is becoming an important part of th e

computer science curriculum [6] . Since we have a
full term course in logical structures, it make s

sense to use Prolog as a learning tool . Since the

language can be introduced from a relationa l

viewpoint, lab experiments concentrating on th e

propositional calculus can be given before stu-

dents have been introduced to the predicate calcu-

lus. Thus when predicate calculus is discussed ,

students can see Prolog as an automated predicate

calculus. Similarly, when resolution is dis-

cussed, students already have seen its use in th e

Prolog computation rule . Information on usin g

these languages can be found in [1], [2], and [3] .

Conclusion
Since people learn in different ways, it is es-

sential that we provide them with as many learn-

ing paths as we can . We must not restrict a stu-

dent's learning by the methods we use to teach .

The subjects of discrete structures, logic, and com-

putability are normally taught with paper an d

pencil type homework. The instant feedback pro-

vided by declarative programming labs can speed

the process of understanding, when compared t o

the slow feedback caused by the time it takes t o

grade and return homework papers. For those stu-

dents who can learn the ideas in the traditional



way, the laboratory will provide new ways to think
about those ideas. But for other students the labora -
tory approach might be the difference between suc-

cess and failure . Also, paper and pencil home -
work can take on a new dimension . For example ,
students will obtain valuable writing experienc e

by writing summaries of the lab experiments [4] .

It must be emphasized that the structure and
content of the laboratories is the key to success o r

failure of this learning method . Students have
asked for laboratory projects to be easier, shorter ,

and more relevant to the lecture material, just lik e

the daily homework . In other words, the lab shoul d

not be a traditional programming language lab .
The languages chosen must be easy to learn an d
reflect the notation used in the courses . As an

added benefit, students will be exposed in a natu-

ral way to new programming languages, and not

become addicted to one particular language .

We now have a crop of declarative language s

that are easy to learn and use because they emulat e
the natural notations of logic and mathematics [4 ]
and [5] . With carefully constructed lab experi-

ments, these languages could be used in man y
courses where mathematics and logic are used .
For example, a new kind of introductory cours e

may be possible, with the laboratory experiment s
serving as a first introduction to programming .

Sample Laboratories
Our goal is to build a portfolio of sixty or mor e

labs - two per week for thirty weeks of class . We
have constructed 25 labs that satisfy our criteria .
But much work is yet to be done, testing and modi-

fying existing labs, and creating new labs . The
following samples are representative of the exist-

ing labs. Some functions and predicates are lo-

cally defined .

Power Set Lab: We can use the FP interpreter to
compute the power set . For example, the power se t
of (a, b) is obtained by typing the comman d

power : <a, b>

The interpreter will respond with the answe r

<<>, <a>, <b>, <a, b>>

which represents the power set ( 0, {a), (b), (a, b)} .

For each of the following sets compute the power se t
by hand, and then use FP to check your answer .

a . (x, y, z) . b . 0 .

	

c . (a, {a, b)) .
d . (0)

	

e .

	

((a), 0) .

	

f .

	

{a, {a), ((a))) .

Bags (Multisets) Lab : The bag [a, a, b] is a subbag
of [a, a, a, b, b] . This can be verified by typing th e
FP expression

subbag : <<a, a, b>, <a, a, a, b, b>>

The interpreter returns the value t . The union of
the two bags [a, a, b] and [a, a, b, b, e] is [a, a, b, b, c ]
and it can be computed by typing the FP expressio n

bagUnion : <<a, a, b>, <a, a, b, b, c> >

The interpreter returns <a a b b c> . The intersec-
tion of the same two bags is [a, a, b] and it can be
computed by typing the FP expressio n

baglntersect : <<a, a, b>, <a, a, b, b, c>>

The interpreter returns <a a b> . For each pair o f
bags find whether the first is a subbag of the sec-

ond, and also find the union and intersection o f
the pair . First do each problem by hand, and the n
use FP to check your answer .

[x, y] and [x, y, z] .

[x, y, x] and [y, x, y, x] .

c. [a, a, a, b] and [a, a, b, b, c] .

d. [1, 2, 2, 3, 3, 4, 4] and [2, 3, 3, 4, 5] .

e. [x, x, [a, a], [a, a]] and [a, a, x, x] .

f. [a, a, [b, b], [a, [b]]] and [a, a, [b], [b]] .

Combining Functions Lab: We want to construct
the function f defined by

f (n) = <<0, 0>, <1, 1>, . . ., <n, n>> ,

We can use the existing functions seq and pairs to

define f(n) = pairs(seq(n), seq(n)) . This defini-
tion can be translated into FP by typing the expres-
sion

If pairs @ [seq, seq] )

The interpreter will respond with (f), indicating
that it has received the definition .

1. Use FP to test the function f.

2. Translate the following function into FP and

a .

b .
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test a few values : g(n) = dist(n, seq(n)) . Als o

give an informal description of g .

Recursively Defined Functions Lab : Suppose w e
have a function g defined in if-then-else fashio n
as follows :

g(x) = if a(x) then b(x) else c(x) .

We can translate this definition into FP by typin g

the expression

fg (a —j b; c))

1 . Translate each function into FP and test it o n

a few values. Use the trace command for at

least one test .

a. f(n)=ifn=Othen 3 elsen+f(n - 1) .

b . back(n) = if n = 0 then <0 >

else cons(n, back(n - 1)) .

2 . Construct a recursively defined function t o
add up the numbers in a list . Translate your

function into FP and test it .

Type Inference Lab : Figure out the type of each
function. Then use ML to check your answer .

a . f(x) = x + 4 .0 .

	

b . f(x) = x .

c. g(x) = x div

	

d . f(x) = [x] .

e. g(x) = hd(tl(x)) .

f. h(x, y) = ifx = 0 then y else [x] .

Modus Ponens Lab. Try out the modus ponens in-
ference rule with the following Prolog experi-
ment. First, ask the questio n

I-? q .

Then enter the following fact into the Prolo g

database :

q p .

Now ask the question

I-? q .

Finally, add the following fact in the database :

p .

Then ask the question :

I-? q .
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Question: Since the lab is about the modus ponen s

inference rule, what is a reasonable interpretatio n

of a prolog statement like b :- a?

If. .Then..Else Lab : We want to experiment with

the statement "If c then x else y" where x and y are

Boolean values . First, enter the following tw o

facts in the database :

x . c.

y :- not c .

Try out the following two questions :

I-? x .

I-?y .

Now enter the following fact in the database :

c .

Now ask the two questions again :

I -? x .

I -? y .

Make some observations and conclusions .

Quantification Lab . When we enter a statement
containing a variable into the database, the state-
ment is implicitly quantified by Prolog . Try the

following experiment to discover the kind of

quantification . Insert the following facts in the

database :

r(X) .

s(a) .

t(Z) :- r(Z), s(Z) .

Try to discover how each line is quantified . What

about the scope of the quantifiers? To get an ide a

about things, try some questions, like ,

I ?- t(book) .

I ?- t(a) .

I -? r(hello) .

I -? s(89) .

Equality Axioms Lab: Suppose we have the follow-

ing two axioms for an equality theory : Vx (x = x )

and t = u n p( . . . t . . .) —> p( . . . u . . .) . We can use

these axioms to prove the following symmetri c

and transitive properties for terms :



t=u-3U= t

tunu=V -) tV.

For example, we have the following proof of th e
symmetric property :

1. t=u

	

P

2. t =t

	

EA Axiom

3. t=unt=t- u=t

	

EE Axiom

4. t=unt=t

	

1,2,Conj

5. u=t

	

3,4,MP

6. t=u—9u=t

	

1,5,CP

QED .

To see if Prolog validates this argument, enter the
following facts in the database, where e(a, b )
means a = b .

e(X, X) .

e(t, u) .

e(u, t) :- e(t, u), e(t, t) .

Enter t in the Prolog database as a collection of

facts having the following form :

t(state, letter, nextstate) .

To indicate that state 3 is a final state, enter th e

fact

final(3) .

To test whether the string aaba is accepted by the

DFA, we write the string as a list of letters and typ e

the following goal :

I ?- accept([a, a, b, a]) .

This action starts the execution of the followin g

simple DFA interpreter :

accept(S) :- path(, S) .

path(K, []) :- final(K) .

path(K, [H I T]) :- t(K, H, N), path(N, T) .

Now ask the following question :

I ?- e(u, t) .

1. Why does this prolog experiment verify the si x
line proof of symmetry ?

2. Consider the following proof of transitivity :

1 . Perform the following experiments for th e

given DFA :

a . Use the DFA interpreter to test five string s
accepted by the DFA.

b. Use the DFA interpreter to test five strings
rejected by the DFA .

c. What is the regular expression for th e

DFA?

Find a DFA for the regular expression

aa*b + b(a + b) .

Then use the DFA interpreter to test the DFA on

five strings that are accepted and five strings

that are rejected .

1 .

	

t=u P

2 . u=v P

3 . u=vAt=u--t=V EE Axiom

4 . u=vnt=u 1,2,Conj

	

2 .

5 .

	

t=v 3,4,MP

6 . tunu=V -9 t=V

	

1,2,5,CP

QED .

a. Construct a Prolog experiment to verify

this proof.

b. Explain how your prolog experiment veri-

fies the transitivity proof.
NondeteYministic Finite Automata Lab : Calculate
the transition function t for the following NFA :

Finite Automata Lab : Calculate the transitio n
function t for the following DFA:

Start

b
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Enter t in the Prolog database as a collection of

facts of the form

t(state, symbol, nextstate) .

For example, since t(2, a) = (2, 3), there must be tw o

facts corresponding to the non-determinism :

t(2, a, 2) .
t(2, a, 3) .

When there is a A edge like t(0, A) = (2), write A a s

the empty list :

t(0, [ ], 2) .

Indicate a final state by a fact of the form

final(state) .

To test whether the string aaba is accepted by the
NFA, we write the string as a list of letters and

type the following goal :

I ?- accept([a, a, b, a]) .

This action starts the execution of the following

NFA interpreter :

accept(S) :- path(, S) .

path(K, []) :- final(K) .

path(K, [HI T]) :- t(K, H, N), path(N, T) .
path(K, X) :- t(K, [], N), path(N, X) .

1 . Perform the following experiments for th e

given NFA :

a. Use the NFA interpreter to test five strings

accepted by the NFA .

b. Use the NFA interpreter to test five strings

rejected by the NFA .

c. What is the regular expression for th e

NFA?

2 . Find an NFA for the regular expression

ab* + be*.

Then use the NFA interpreter to test the NF A

on five strings that are accepted and five

strings that are rejected .

Pushdown Automata Lab : Suppose we write a

pushdown automaton as a set of Prolog facts of th e

following form :

t(state, letter, top, operation, nextstate) .

final(state) .

In order to write a simple interpreter for PDAs ,

we'll need to make a few assumptions . We wil l

require that every PDA start in state 0 . The stack

is a list that is initialized with the value [e], which

means e is the top of the "empty" stack. We' l l

reserve the Ietters p and n for the operations po p

and nop, and we'll agree to let the push instructio n

be represented by the symbol that is to be pushed .

For example, in the instruction t(0, a, e, b, 1) th e

letter b means pushb .

For example, a PDA to recognize the languag e

(an bn I n >_ 0) can be written as the following set o f

facts :

t( 0, a, e, a, 0) .

t( 0, a, a, a, 0 ) .

t( 0, b, a, p, 1 ) .
t(0,El,e,n,2).

t( 1, b, a, p, 1) .
t(1,El,e,n,2) .
final(2) .

To check whether this PDA accepts the string aabb ,

we type the following goal :

I ?- accept([a, a, b, b]) .

This action starts the execution of the PD A

interpreter, which we will describe next .

Since the stack is necessary to the computa-

tion, we've added a third variable to the "path "

predicate to carry along the stack . The predicate

top(OldS, 7') checks to see if the top of OldS is T .

The predicate oper(OldS,Y, NewS) performs op-
eration Y on the stack OldS and returns the new

stack NewS. The interpreter can be written as fol-

lows :

accept(S) :- path(, S, [el) .

path(K, [ Stack) :- final(K) .

path(K, [HI TI, Stack) :- t(K, H, A, 0, M) ,
top(Stack, A) ,

oper(Stack, 0, NewStack) ,

path(M, T, NewStack) .
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path(K, X, Stack) :- t(K, [ ], A, 0, M) ,

top(Stack, A) ,

oper(Stack, 0, NewStack) ,

path(M, X, NewStack) .

top([H I T], H) .

oper([H I T], p, T) .

oper(X, n, X) .

oper(X, A, [A IX]) .

1. Test the example PDA by using the PDA inter-

preter to check acceptance of a few "strings" i n

the form of lists, such a s

[],[a,a,a],[a,a,b,b,b],[b,b,b],[b,a,b],etc .

2. Find a PDA for the language of all string s

over [a, b} that have the same number of a' s

and b's . Test your solution with the PDA inter-

preter .
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*******OBBRON Continued From Page 18******* *

7. CONCLUSION

(i) What is Oberon-2? Oberon-2 is an extensio n
of Oberon which provides the so-called type-boun d
procedures. A type-bound procedure is very close t o
what traditionally is called a " method" ,

(ii) How to find Oberon implementations? Th e
Oberon operating system, including a compiler, has bee n
implemented on different machines, including IBM PC s
and Mackintosh II computers . The executable codes an d
the sources can be obtained free via anonymous interne t
file transfer from the Institute of Computer Systems ,
Zurich, Switzerland .

FTP Hostname : neptune .inf .ethz .c h
Internet Address : 129 .132 .101 .33
FTP Directory : Obero n

(iii) What to read on Oberon? Three books hav e
been published in 1991 and 1992 . The book [1] provides
both a tutorial and a complete reference to the language
Oberon . Another book [2] contains everything that i s
needed to use the Oberon operating system . Finally, the
book [3] describes the implementation of the whol e
operating system, including the Oberon compiler . It
contains almost all sources in Oberon except for those
that are machine dependent .

An extended version of the present paper can b e
obtained from its author .
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