
Is Eight Enough ? - The Eight Queen s
Problem Re-examined

John S . Gray
Department of Math/Physics/Computer Scienc e

University of Hartford
West Hartford, CT 06117

email: gray@uhasun .hartford .edu

Abstract

A detailed analysis of a classic backtracking
problem, The Eight Queen Problem is presented .
The paper addresses additional facets of the Eight
Queen Problem that might be overlooked whe n
casually generating a program solution . The author
suggests that the extra time taken to fully analyz e
the problem will result in a better understanding o f
the problem which in turn will manifest itself in a
better program solution .

1 . Introduction

During the course of a semester a compute r
science instructor will assign a number of
programming problems to students . While
problem sets for introductory courses focus o n
syntax and basic programming constructs, advance d
courses tend to address more complex problems .
The problems assigned to students in advance d
classes can be grouped into two broad categories .
Those problems that are minor variations o f
problems that are discussed in the text (for whic h
the author has often provided a program solution)
and those problems that can be termed a s
interesting, related problems (members of th e
same problem class) for which no complet e
solution discussion or author generated program i s
readily available . In an attempt to challenge
students and foster independent, creative thinking ,
instructors have the tendency to lean towar d
assigning problems that fall into the latter categor y
not the former . Unfortunately, time ofte n
precludes the instructor from generating his ow n
detailed problem analysis / evaluations an d
program solutions to such problems . The student ,

E

	

Vol . 25 No . 3 SepL . 199 3BULLETIN

if not specifically directed to do so, will more time s
than not, fail to research the problem before
embarking on his own solution . In their press to
meet assignment deadlines, both instructors an d
students alike may miss the insights that can resul t
from a detailed, deliberate analysis of the problem .

The problem discussion that follows addresses a
programming problem assignment that falls int o
the interesting category . While some text author s
provide a basic discussion of the problem (and o n
rare occasions may offer a program solution), mos t
authors often do not have the time or space to
devote to an in-depth analysis of the problem . It is
the hope of the author that the materials presente d
below will serve both as a springboard for ne w
ideas and approaches to an old problem for futur e
computer science students and as a reference fo r
computer science instructors .

2. Problem Descriptio n

The problem, initially investigated by C . F. Gauss
in 1850 and often briefly described in college leve l
data structures texts in the section on backtracking
(N. Wirth [3], R. Kruse [1]), seems straigh t
forward. Place eight queens on an 8 x 8 chess
board so that no queen is in check by any othe r
queen . For non-chess aficionados a queen may
move an arbitrary number of squares horizontally ,
vertically or on the diagonal .

3. Problem Analysi s

There is nothing special about using an 8 x 8 ches s
board other than 8 x 8 is the normal size of a ches s
board. What is important is that the board b e

39

http://crossmark.crossref.org/dialog/?doi=10.1145%2F165408.165423&domain=pdf&date_stamp=1993-09-01

square and that the number of queens to be place d
be equal to the size of the board. We can
generalize the problem by replacing the eight's with
N (an arbitrary positive integral value) . It follows
that a 3 x 3 board would need 3 queens, a 4 x 4
board 4 queens, etc .

It is instructive to look at smaller board
configurations as they are easier to manipulate an d
their properties may be applicable to larger boards .
If we had a 4 x 4 chess board labeled as in th e
figure below, a queen placed on square 2 of th e
first column could legally move horizontally t o
square 6, 10, or 14 ; vertically to square 1, 3, or 4 ;
and diagonally to square 5, 7, or 12 .

1 5 9 1 3

0 6 10 1 4

3 7 11 1 5

4 8 12 16

quaintly referred to as the pigeon hole principl e
(only one pigeon to each hole) . If we change ou r
numbering to reflect row and column location, w e
see that the first queen (moving from left to right)
is at row 2, column 1 (2,1) . The second queen is a t
row 4, column 2 (4,2), the third queen at row 1 ,
column 3 (1,3) and the fourth queen at row 3 ,
column 4 (3,4) .

column
1

	

2

	

3

	

4

Considering that we can only have one queen i n
each column we can reduce the row / colum n
notation to a single 4 clement column vector tha t
contains only the row locations . With this notation
the solution above could be thought of as :

01

03

0 3

0 2

2
row

3

4

column vecto r

1 3If we wanted to place a second queen on this 4 x 4
board, six squares would still be available : 8, 9, 11 ,
13, 15 and 16. All other squares either contain th e
initial queen or are accessible by it . By placing the
second queen at square 8 (the only free square i n
the second column) the remaining availabl e
squares are reduced to : 9, 13, and 15. To place a
third queen in the third column we must put it a t
square 9 as this is the only free square in thi s
column. In turn this forces the fourth queen to b e
placed at location 15 in the fourth column . By
doing so we produce the solution below .

2

	

4

index

	

1

	

2

	

3

	

4

We can further simplify this to the sequence : 2, 4 ,
1, 3. Here the column locations are implied from
the index location of the row value in the sequence .
With pencil and paper and a small amount of trial
and error we should be able to find the secon d
valid solution for a 4 x 4 board . The two solution s
are :

1 .

	

2,4,1,3

	

2 . 3,1,4, 2

4 0

To meet the condition that no queen can be i n
check by any other queen, we have ended u p
placing one queen in each row and column of the
board. This one-to-one relationship is sometimes

SIGCSE Vol . 25 No . 3 Sept: . 1993BULLETIN

Looking at the two solutions we note that secon d
solution is the inverse of the fir st . The basis fo r
this lies in the reflective nature of the chess board .
If we were to flip the chess board over (assume th e
queens are attached) and look through the board,
we would see that the first solution becomes the
second solution . Therefore, for any solution a
second mirror image solution can be produced b y
flipping over the board . This property is applicabl e
to boards of all sizes .

0

Q

0

0

4 1

If we investigate a 5 x 5 board, other interestin g
properties are apparent. The 10 solutions for a
5 x 5 board are :

<-

	

inverted

	

- >

1 .

	

1, 3, 5, 2, 4

	

6 .

	

4, 2, 5, 3, 1
2 .

	

1, 4, 2, 5, 3

	

7 .

	

3, 5, 2, 4, 1
3 .

	

2, 4, 1, 3, 5

	

8 .

	

5, 3, 1, 4, 2
4 .

	

2, 5, 3, 1, 4

	

9 .

	

4, 1, 3, 5, 2
5 .

	

3, 1, 4, 2, 5

	

10 .

	

5, 2, 4, 1, 3

In pictorial format the first solution : 1, 3, 5, 2, 4 is :

2

3

4

5

If we rotate the board 90 degrees clockwis e
(keeping the queens attached), the queens are now
at: 3, 5, 2, 4, 1 (solution number 7 in the lis t
above) .

1

	

2

	

3

	

4

	

5

Rotating the board an additional 90 degrees (180
degrees from the start) moves the queens to : 2, 4 ,
1, 3, 5 (solution number 3) . A final 90 degree
rotation produces : 5, 2, 4, 1, 3 (solution number
10) . Therefore, starting with the first solution an d
rotating the board three times we generated a tota l
of eight solutions (four solutions plus their
inverses) .

SIGCSE

	

Vol . 25 No . 3 Sept . 199 3BULLETIN

If we look at the sequences that arise from the firs t
sequence via the rotations, an interesting patter n
can be observed. Using the first sequence as a bas e
(1, 3, 5, 2, 4), the next sequence produced b y
rotation is : 3, 5, 2, 4, 1 . This sequence is the sam e
as the first sequence except the initial value of 1 ha s
been rotated right to the last position . If we
continue to remove the first value and place it a t
the rear of the sequence, we in turn generate th e
remaining sequences produced by the 90 degre e
rotations (albeit in a slightly different order) . O f
even greater interest is the fact that if we continu e
this process until we return to the same startin g
value (i .e ., 1), we generate a new sequence no t
produced by the 90 degree rotations: 4, 1, 3, 5, 2
(solution number 9) . When this last solution i s
paired with its inverse it completes the list of th e
ten valid solutions for the 5 x 5 board .

How nice and neat things would be if the solution s
for boards of every size exhibited suc h
characteristics . Unfortunately this is not so . If we
attempt to apply the 90 degree rotation techniqu e
to our initial 4 x 4 board solution, it does not work .
No matter which way we rotate the board, 90, 18 0
or 270 degrees, we still obtain the same sequence .
if we implement the rotation using our secon d
technique by moving the first value of the sequenc e
to the last position (i .e ., 2, 4, 1, 3 becomes 4, 1, 3 ,
2), we end up placing location values next to on e
another that only differ by I (e .g ., the 3, 2
sequence) . Owing to the nature of the board, thes e
values indicate locations of queens that will be o n
the diagonal from one another . It is apparent tha t
not all boards and sequences exhibit the symmetr y
shown by the 5 x 5 board . While this lack o f
consistency is somewhat distressing, during ou r
discussion so far we have found :

1. There can be only one queen in each row . More
precisely a queen at row r threatens any other
queen at row r' if r = r' . By incorporating thi s
constraint into our solution for a board of size N,
we can produce N N possible solutions .

2. There can be only one queen in each column .
Therefore, a queen at column c threatens any othe r
queen at column c' if c = c' . This constraint, when
combined with the first, will further reduce th e

Q 1

Q3

04

05

0 2

1

	

2

	

3

	

4

	

5

Q1

Q 4

02

Q 5

Q 3

1

2

3

4

5

42

number of possible solutions to N! (i .e., all the
permutations of the values 1 - N) .

3. Queens cannot reside on the same diagonal .
Using the previous r, c notation, queens threaten i f
r + c = r' + c' (on same major diagonal) or if r -
c = r' - c' (same minor diagonal) . The addition o f
this constraint to the first two constraints wil l
reduce further the number of solutions .

4. All valid solutions have a mirror image inverse .
Thus, the number of solutions for any board shoul d
be divisible by two .

5. Some, but not all, solution sequences exhibi t
additional symmetric characteristics .

Sometimes if we change our viewpoint, we find new
aspects to a problem . We can view our chess
problem as a tree. If we start with the 5 x 5 boar d
and keep track of unbounded nodes (unbounded
nodes contain locations that have not bee n
removed due to boundary constraints), our tree
would be :

start

T

	

I

	

I

	

I

1 2 3 4 5

	

column 1

This tree shows that initially (in column one) w e
can place a queen at any of the five location s
(rows) . If we choose to place the first queen at 1
(row 1, column 1) as in our first 5 x 5 solution give n
previously, our tree becomes :

start

f

	

I

	

I

	

I

queen 1

	

(1) 2 3 4 5 column 1

I

	

I

	

I

3 4 5

	

column 2

Placing the first queen in row one causes locations
1 and 2 to be out of bounds for the second queen
(location 1 as queens cannot be on the same row ,
and location 2 as queens cannot be on the sam e
diagonal). Choosing location 3 (row 3, column 2)
produces the tree :

SIGCSE

	

Vol . 25 No . 3 Sept . 199 3

BULLETIN

star t

I I

queen 1 (1)

I
2 3 4 5 column 1

queen 2
I

(3) 4
I

5 column 2

5 column 3

At this point our boundary conditions are such tha t
each ensuing node can have only one leaf .
Completing our sequence, the tree becomes :

star t

f

	

I

	

I

	

T

	

I

queen 1

	

(1) 2 3 4 5

	

column 1

- I
queen 2

	

(3) 4 5

	

column 2

queen 3

	

(5)

	

column 3

queen 4

	

(2)

	

column 4

queen 5

	

(4)

	

column 5

The full unbounded tree for all the solutions to th e
5 x 5 board is shown below :

start

	 1
1

	

2

	

3

	

4

	

5

I I 1 f--I--I IH Hf I I

	

3 4 5 4

	

5

	

1

	

5

	

1

	

2 1 2 3

I

	

I

	

I

	

,

	

5 2 2 1 1

	

3 4

	

2 3

	

5 5 4 4 1

I

	

I

	

I

	

I

	

I

	

2 5

	

3 4

	

1 2

	

4 5

	

2 3

	

1 4

	

4 3

	

5

	

4 5

	

1 2

	

1

	

3 2

Note that only the 10 paths to the lowest level (fo r
a 5 x 5 board this would be level 5) show successfu l
solutions. Other paths (e .g., 1,5,2), while initiall y
containing unbounded nodes, lead to dead ends .

If we disregard the start and count the node s
(where each node represents a board location), w e
find a total of 53 nodes in the tree. This tree i s
considerably smaller (will contain fewer nodes)
than the tree that would be generated if n o
boundary conditions were applied . Staying with a
5 x 5 board with no boundary conditions, there ar e
25 possible locations for placement of the firs t
queen. The second queen also can be placed at an y
one of the 25 board locations (remember that wit h
no boundary conditions queens can, in theory, b e
placed on top of one another) . It follows in tur n
that the third, fourth and fifth queens each have 2 5

4 3

possible locations where they can be placed . This
tree, were we to attempt to diagram it, would b e
impressive indeed !

When viewing the chess problem as a tree w e
found:

1. Only the paths that lead to the lowest level (leve l
N) of the tree are successful solutions .

2. The application of boundary condition s
(constraints) greatly reduces the size of the tree we
generate. Boundary conditions produce th e
greatest reductions when applied early on in th e
construction of the tree .

4 . A Solution

From what we have seen it would appear best t o
view the chess problem at the abstract level as a
tree. Nodes (board locations) would be added t o
the tree based on the boundary conditions note d
earlier . By traversing the tree using a depth-firs t
search, valid solutions for a board size of N x N (i f
present) would be the path sequences to level N o f
the tree .

When we map these abstractions and our previou s
observations into code, a very good, compac t
solution can be generated . A complete solution to
the problem, written in C and described briefl y
below, can be found in Figure 1 . In writing the
solution I chose to break the code into fou r
functions which are briefly described as :

main() - Obtains initial settings (such as boar d
size, etc .) and then calls function find_sol() .

find sol() - Finds all valid solutions for the give n
board. Each new row, column location for a quee n
is tested for boundary conditions by calling th e
function no_conflict() . When a solution sequence
is found, the function print_it() is called to displa y
the solution in the selected manner .

no conflict() - Checks the row value passed in t o
determine if the specified location is in conflict wit h
any previously placed queen . The function returns a
TRUE if no conflict arises otherwise it returns a
FALSE .

SIG CSB

	

Vol . 25 No . 3 Sept . 199 3BULLETIN

print_it() - Displays the solution found in either a
numeric or diagrammatic (chess board) format .

/'
Queen Solution Program

John S . Gray

	

199 3

typedef enum (FALSE, TRUE) BOOLEAN ;

]define MAX 8

	

/' Largest board size

	

' /
/'

	

GLOBALS

	

1
int a(MAX),

	

/' vector holding solution

	

` 1

size = 0,

	

I . board size selected by user ' /

type = 0,

	

/' display type

	

/

numb = 0 ;

	

/' total number of solutions

	

/

void
main()

void find_sol(int, int) ;

printf(" \nQueen demonstration\n") ;

do (

	

i t Obtain board size

	

' /
printf(" \n\n\nEnter the size of the board 1-lld

	

, MAX) ;

scanf("9d ", &size) ;
while (size < 0 I) size > MAX) ;

do (

	

/' Obtain output format ' /

printf("Enter the output display type 1 = diagrammatic \

2 = numeric "1 ;
scanf("%d", &type I ;

) while (type < 0 II type > 2) ;

printf) " \n\nFor a board of size Ed solutions are) \ n " ,size) ;

find soli 0 , 0) ; /' Initial call ' /

if () numb) printf("\n\n2ERO)") ;

printf("\n\n\h') ;

/'
Function find_sol : Passed row and column position .

Generates locations for "size" number o f
queens . Uses recursion to backtrack .

void
find_sol(int row, int col) (

void print_itl) ;
BOOLEAN no_conflict(int, int) ;

if (no conflict(row, col))]/* Check for conflicts, if none' /

atcol)=row ; /' save the location in vector .` /

if (col == size-1)
print_itI) ;

	

/' If full solution display .

	

1

else

	

Otherwise reset the row and ` /

find sol(0, col+1) ;

	

check the next column .

	

/

if (row < size-1)

	

/' If more rows are available,

	

/

find sol(row+l, col) ;

	

/' try the next row same column* /

Function no_conflict : Passed row and column position . Return s
TRUE if no conflict with previou s
locations else returns FALSE

BOOLEAN
no_conflict(int row, int co l

register i ;
int d ;

	

/' Temporary diagonal offset value .' /

BOOLEAN ok = TRUE ;

	

/' Assume no conflict at the start .' /

Step backward and check for conflicts wiC h
previous selections .

for (i = col-I ; i >= 0 && ok ; --i) I
d = col - i ;
if)

	

row II /' Check for conflict in : same row,' /

a(i)-d == row II /' same major diagonal,

	

' /

ati]+d`== row

	

/' same minor diagonal .

	

' /

ok = FALSE ;

return(ok) ;

/*
Function print it : Displays output in user selected format .

* /

voi d
print it() (
register r, c ;
static char line[]="+---+---+---+---+---+---+---+---+" ;

line[size*4+1)

	

/* cut string to size * /

printf(" \n803d

	

, ++nursb) ;

switch (type) (
case 1 :

printf(" \n\nks\n " , line) ;
for (r = 0 ; r < size ; ++r)

for (c = 0 ; c < size ; ++ c
printf("I %c

	

a[r] == c
printf("I\nos\n", line) ;

break ;
case 2 .
default :

for (c = 0 ; c < size ; ++c)
printf("%3d", a(c]+l) ;

Figure 1
Listing of Queen Program

While most of the program is self explanatory, th e
function find sol() does bear some furthe r
interpretation. Fin d_sol() traverses the tre e
recursively in a depth-first manner . Each queen
location generated is tested against a set o f
constraints found in the function no_conflict() . If
the queen can be added at the specified locatio n
this information is stored in a global vector called
a[] . If an entire solution sequence has bee n
found, it is displayed . Otherwise the function resets
the value in row to its initial value and increment s
the column location and continues by calling itself .
If the queen cannot be added, the next row in th e
same column is checked . If all row locations in a
given column are invalid, the function return s
(backtracks) to the previous column location,
increments the row value for this location an d
begins again . The recursive nature of the functio n
provides the memory for previous row values . The
function will construct, prune, traverse and display
the tree . For comparison a second non-recursiv e
version of the findsol() function is shown in
Figure 2. The flow of logic for this function is very
similar to the first find sol() function . However ,
in this version of the function, backtracking i s
facilitated by using the vector a[] as a stack .
Previous queen locations that have been adde d
(pushed on) to the stack are popped when needed,
using the while loop at the foot of the function .

A non-recursive find_sol() function . A few more lines o f
code but less system intensive .

* /

void
find sol(int row, int col) 1

void print_itI) ;

BOOLEAN no conflict(int, int) ;

do (
if no conflict(row,col))I /*Check for conflicts, if none* /

a[col] = row ;

	

/*save the location in vector .* /
if (col==size-1)

	

/*If full solution display .

	

* /

print_itI 1 ;
else (

	

/*Otherwise reset the row and * /

row = 0 ; ++col ;

	

/*check the next column .

	

* /

continue ;

) /*If more rows are available * 1
/*try next row, same column . */
/*Otherwise backtrack until a * /

> size-1 1
/*column is found with a row * /

/*value that can be increment-* /

/*ed to the next row. */

/*Loop until beyond last row * /

/*in the first column .

	

* /

Figure 2
Non-recursive find sol() Functio n

A sample run of the program is shown in Figure 3 .
I should note that the program solution does no t
take into account the symmetries discussed earlier .
Those who wish to pursue the problem furthe r
should review the paper by Sosic and Gu [2] . The
authors present a unique, polynomial time, no n
exhaustive algorithm for the generation o f
solutions for large queen problem sets .

Queen demonstratio n

Enter the size of the board 1-8

	

6

Enter the output display type 1 = diagrammatic, 2

	

numeric 2

For a board of size 6 the solutions are :

001

	

2 4 6 1 3 5
002

	

3 6 2 5 1 4
003

	

4 1 5 2 6 3
004

	

5 3 1 6 4 2

Figure 3
Demonstration of Queen Program

5 . Conclusio n

When generating solutions to computer problems ,
as in life, Walter C . Hagen's advice "Don't hurry,
don't worry. You're only here for a short visit. So be
sure to stop and smell the flowers." is apropos . The
extra time taken to analyze a problem can lead t o
insights into the problem which in turn will result i n
cleaner more efficient solutions .

)
? 'Q' : (r+c) 6 2 ?

if (row < size- 1
++row ;

els e
while (col &s a[col-1)+ 1

--col ;
row = a(--col)+1 ;

while (row < size) ;

****EIGHT ENOUGH REFERENCES On Page 51****

SIGCSE

	

Vol . 25 No . 3 Sept . 199 3BULLETIN 44

5 1

compiler that they really know what they ar e
doing. Simply put, the programmer's motto
should be 'Plan Your Program and Progra m
Your Plan . '

Hints and Conclusio n

As with all classes, it is important to know you r
audience . A considerable number of "grad "
students take beginning C classes . These
students already have a degree(s) and career s
but want to know C. The instructor needs to
be careful not to focus on the interests of thes e
higher-level students. This approach quickly
alienates and loses the undergraduates th e
course was designed to serve . If willing, the
"grads" can serve as mentors for some of the
traditional students .

Picking C software is somewhat more difficul t
as both Microsoft and Borland move to blen d
C and C+ + product lines together . Using a
C+ + product in a C class would allow the us e
of new comment formats (// . . . instead of
/* . . .*/) and I/O functions (cin/cout instead o f
scanf/printf) albeit at the expense of backward s
compatibility . Perhaps more useful, will be th e
possibility of having a two-class sequence, ANS I
C followed by C+ + for object-oriente d
programming, where the students would use th e
same compiler and editor for both .

Finally, the C instructor should explain
advantages and disadvantages of various
approaches, showing more than one right way
to accomplish a task. Code from the book ca n
be modified on-the-run if a compute r
projection system is in use . Another way to
show multiple approaches to problems wher e
each student fully understands th e
specifications is to post student programming
assignments (two source code listings ar e
turned in -- one is marked during grading and
returned to the student, the other is availabl e
for taping to the board). Such "good examples "
may be demonstrated by the author in class i f
a computer projection system is available .

SIGCSE

	

Vol . 25 No . 3 Sept . 199 3BULLETIN

Reference s

The American Heritage Dictionary . (1985) .

Boston : Houghton Mifflin Company .

Baldwin, W. Debugging In C -- An
Overview . C Users Journal, 9(10) .
(Computer Select, October 1992, #74755)

Pournelle, J. The BYTE Summit: Obstacle s
to Overcome . BYTE, September 1990, 281 .

Kernighan, B . W., & Ritchie, D. M . (1978) .

The C Programming Language . Englewood
Cliffs, NJ: Prentice-Hall, Inc., 76 .

Norton, P . PC Magazine, February 10, 1987 ,

75-76 .

Plauger, P . Bugs . C Users Journal, 10(9) .
(Computer Select, October 1992, #2055)

Figure drawn by MET student Paul Pepka .

***EIGHT ENOUGH REFERENCES From Page 44** *

6. Reference s

[1] R. L. Kruse, Data Stnictures & Progra m
Design, Prentice Hall, Englewood Cliffs, New
Jersey, 1987, 586 pages .

[2] R. Sosic and J . Gu, "A Polynomial Tim e
Algorithm for the N-Queens Problem", SIGART
Bulletin, Vol . 1, No. 3, October 1990, 7-11 .

[3] N. Wirth, Algorithms + Data Structures=
Programs, Prentice Hall, Englewood Cliffs, Ne w
Jersey, 1976, 366 pages .

