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Abstract

A detailed analysis of a classic backtracking
problem, The Eight Queen Problem is presented.
The paper addresses additional facets of the Eight
Queen Problem that might be overlooked when
casually generating a program solution. The author
suggests that the extra time taken to fully analyze
the problem will result in a better understanding of
the problem which in turn will manifest itself in a
better program solution.

1. Introduction

During the course of a semester a computer
science instructor will assign a number of
programming problems to students. While
problem sets for introductory courses focus on
syntax and basic programming constructs, advanced
courses tend to address more complex problems.
The problems assigned to students in advanced
classes can be grouped into two broad categorics.
Those problems that arc minor variations of
problems that are discussed in the text (for which
the author has often provided a program solution)
and those problems that can be termed as
interesting, rclated problems (members of the
same problem class) for which no complete
solution discussion or author generated program is
readily available. In an attempt to challenge
students and foster independent, creative thinking,
instructors  have the tendency to lecan toward
assigning problems that fall into the latter category
not the former.  Unfortunately, time often
precludes the instructor from gencrating his own
detailed problem analysis / ecvaluations and
program solutions to such problems. The student,
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il not specifically directed to do so, will more times
than not, fail to rescarch the problem before
embarking on his own solution. In their press Lo
mect assignment deadlines, both instructors and
students alike may miss the insights that can result
from a detailed, deliberate analysis of the problem.

The problem discussion that follows addresses a
programming problem assignment that falls into
the interesting category. While some text authors
provide a basic discussion of the problem (and on
rare occasions may offer a program solution), most
authors often do not have the time or space to
devote to an in-depth analysis of the problem. It is
the hope of the author that the materials presented
below will serve both as a springboard for new
ideas and approaches to an old problem for future
computer science students and as a reference for
computer science instructors.

2. Problem Description

The problem, initially investigated by C. F. Gauss
in 1850 and often briefly described in college level
data structures texts in the section on backtracking
(N. Wirth [3], R. Krusc [1]), seems straight
forward. Place eight qucens on an 8 x 8 chess
board so that no queen is in check by any other
queen. For non-chess aficionados a queen may
move an arbitrary number of squares horizontally,
vertically or on the diagonal.

3. Problem Analysis
There is nothing special about using an 8 x 8 chess

board other than 8 x 8 is the normal size of a chess
board. What is important is that the board be
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square and that the number of queens to be placed
be equal to the size of the board. We can
generalize the problem by replacing the eight's with
N (an arbitrary positive integral value). It follows
that a 3x3 board would need 3 queens, a 4x4
board 4 queens, etc.

It is instructive to look at smaller board
configurations as they are easier to manipulate and
their properties may be applicable to larger boards.
If we had a 4x4 chess board labeled as in the
figure below, a queen placed on square 2 of the
first column could legally move horizontally to
square 6, 10, or 14; vertically to square 1, 3, or 4;
and diagonally to square 5,7, or 12,

1151] 9 (13
Q| 6 |10 (14
317 |11 |15
41 8 112 |16

Il we wanted to place a sccond queen on this 4 x4
board, six squares would still be available: 8, 9, 11,
13, 15 and 16. All other squarcs cither contain the
initial queen or are accessible by it. By placing the
second queen at square 8 (the only free square in
the second column) the remaining available
squares are reduced to: 9, 13, and 15. To place a
third queen in the third column we must put it at
squarc 9 as this is the only frec squarc in this
column. In turn this forces the fourth queen to be
placed at location 15 in the fourth column. By
doing so we produce the solution below.

To meet the condition that no queen can be in
check by any other queen, we have ended up
placing one queen in each row and column of the
board. This one-to-onc relationship is sometimes
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quaintly referred to as the pigeon hole principle
(only one pigeon to each hole). If we change our
numbering to reflect row and column location, we
sce that the first queen (moving from left to right)
is at row 2, column 1 (2,1). The second queen is at
row 4, column 2 (4,2), the third queen at row 1,
column 3 (1,3) and the fourth queen at row 3,
column 4 (3,4).

column

1 2 3 4
1 Q3
2] a1

row
3 Q3
4 Q2
J

Considering that we can only have one queen in
cach column we can reduce the row / column
notation to a single 4 clement column vector that
contains only the row locations. With this notation
the solution above could be thought of as:

column vector

G111 3

2

1 2 3 4

index

We can further simplify this to the sequence: 2, 4,
1, 3. Here the column locations are implied from
the index location of the row value in the sequence.
With pencil and paper and a small amount of trial
and error we should be able to find the second
valid solution for a 4 x 4 board. The two solutions
are:

1.

2,4,1,3 2. 3,1,4,2

Looking at the two solutions we note that second
solution is the inverse of the first. The basis for
this lics in the reflective nature of the chess board.
If we were to flip the chess board over (assume the
queens are attached) and look through the board,
we would see that the first solution becomes the
second solution. Therefore, for any solution a
sccond mirror image solution can be produced by
flipping over the board. This property is applicable
to boards of all sizes.



If we investigate a 5x S board, other interesting
propertics arc apparcnt. The 10 solutions for a
5 x 5 board are:

<- inverted ->
1. 1,3,52,4 6. 4,2,573,1
2. 1,4,2,53 7. 3,52,4,1
3. 2,4,1,3,5 8. 53,1,4,2
4. 2,53, 1,4 9, 4,1,3,5,2
5. 31,425 10. 5,2,4,1,3

In pictorial format the first solution: 1, 3, 5, 2, 4 is:

1T 2 3 4 5
1 1a1
2 Q4
3 @2
4 Q5
5 Q3

I we rotate the board 90 degrees clockwise
(keeping the queens attached), the queens are now

at: 3, 5,2, 4, 1 (solution number 7 in the list
above).
1 2 3 4 5

1 Q1

2 Q2

3] Q3

4 Q4

5 Q5

Rotating the board an additional 90 degrees (180
degrees from the start) moves the queens to: 2, 4,
1, 3, 5 (solution number 3). A final 90 degrec
rotation produces: 5, 2, 4, 1, 3 (solution number
10). Therefore, starting with the first solution and
rotating the board three times we generated a total

of cight solutions (four solutions plus their
inverses).
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If we look at the sequences that arise from the first
sequence via the rotations, an intercsting pattern
can be observed. Using the first sequence as a base
(1, 3,5 2,4 ), thc next sequence produced by
rotation is: 3, 5, 2, 4, 1. This sequence is the same
as the first sequence except the initial value of 1 has
been rotated right to the last position. If we
continue to remove the first value and place it at
the rear of the sequence, we in turn generate the
remaining scquences produced by the 90 degree
rotations (albeit in a slightly different order). Of
cven greater interest is the fact that if we continue
this process until we return to the same starting
value (i.c., 1), we gencrale a new sequence not
produced by the 90 degree rotations: 4, 1, 3, 5, 2
(solution number 9). When this last solution is
paired with its inverse it completes the list of the
ten valid solutions for the 5 x 5 board.

How nice and neat things would be if the solutions
for boards of every size cxhibited such
characteristics. Unfortunately this is not so. If we
atlempt to apply the 90 degree rotation technique
to our initial 4 x 4 board solution, it docs not work.,
No matter which way we rotate the board, 90, 180
or 270 degrees, we still obtain the same scquence.
If we implement the rotation using our sccond
technique by moving the first value of the scquence
to the last position (i.c., 2, 4, 1, 3 becomes 4, 1, 3,
2), we end up placing location valucs next to one
another that only differ by 1 (c.g, the 3, 2
scquence). Owing to the nature of the board, these
values indicate locations of qucens that will be on
the diagonal from onc another. Tt is apparent that
not all boards and scquences exhibit the symmetry
shown by the 5x5 board. While this lack of
consistency is somewhat distressing, during our
discussion so far we have found:

1. There can be only one queen in each row. More
precisely a queen at row r threatens any other
queen at row r' if r =r'. By incorporating this
constraint into our solution for a board of size N,

we can produce NN possible solutions.

2. There can be only one queen in each column.
Thercfore, a queen at column c threatens any other
queen at column ¢ if ¢ = ¢. This constraint, when
combined with the first, will further reduce the



number of possible solutions to N! (ie., all the
permutations of the values 1 - N).

3. Queens cannot reside on the same diagonal.
Using the previous r, ¢ notation, queens threaten if
r+c=r+c (on samc major diagonal) or if r-
¢ = r'- ¢ (same minor diagonal). The addition of
this constraint to the first two constraints will
reduce further the number of solutions,

4, All valid solutions have a mirror image inverse.
Thus, the number of solutions for any board should
be divisible by two.

5. Some, but not all, solution sequences exhibit
additional symmetric characteristics.

Somctimes if we change our viewpoint, we find new
aspects to a problem. We can view our chess
problem as a tree. If we start with the 5 x 5 board
and keep track of unbounded nodes (unbounded
nodes contain localtions that have not been
removed due to boundary constraints), our tree
would be:

start

T2 3 405 column 1

This trec shows that initially (in column one) we
can place a qucen at any of the five locations
(rows). 1f we choose to place the [lirst queen at 1
(row 1, column 1) as in our first 5 x 5 solution given
previously, our tree becomes:

start
F__T'_F__F—T
queen 1 (1Y 2 3 4 5 colum 1
—
3 4 5 column 2

Placing the first queen in row one causes locations
1 and 2 to be out of bounds for the second queen
(location 1 as queens cannot be on the same row,
and location 2 as queens cannot be on the same
diagonal). Choosing location 3 (row 3, column 2)
produces the tree:
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start
queen 1 (Y2 3 4 5 colum 1t
—4—
queen 2 3y 4 5 colum 2
I
5 column 3

At this point our boundary conditions are such that
each ensuing node can have only one leaf.
Completing our sequence, the tree becomes:

start
F—_T—_+°'7__7

queen 1 (1 2 3 4 5 column 1
—+

queen 2 (3) 4 5 column 2
l

gqueen 3 (5) column 3
l

queen 4 (2) column 4
|

queen 5  (4) column 5

The full unbounded trec for all the solutions to the
S x 5 board is shown below:

start
[ I % T 1
1 2 3 4 5
r‘%—_ﬂ FJ—T F—Lﬂ FJ~7 r’%__j
3454 5 15 1 2123
O e T A B e Y SO A A
5 22 11 3 4 23 55 4 4 1
| | A Y O A |
25 34 12 45 23 14
| ] | Lo I | ]
63 5 45 12 1 32

Note that only the 10 paths to the lowest level (for
a 5 x 5 board this would be level 5) show successful
solutions. Other paths (e.g., 1,5,2), while initially
containing unbounded nodes, lead to dead ends.

If we disregard the start and count the nodes
(where each node represents a board location), we
find a total of 53 nodes in the trec. This tree is
considerably smaller (will contain fewer nodecs)
than the trece that would be generated if no
boundary conditions were applied. Staying with a
5 x 5 board with no boundary conditions, there are
25 possible locations for placement of the first
queen. The second queen also can be placed at any
one of the 25 board locations (remember that with
no boundary conditions queens can, in theory, be
placed on top of one another). It follows in turn
that the third, fourth and fifth queens each have 25



possible locations where they can be placed. This
trec, were we to attempt to diagram it, would be
impressive indeed!

When viewing the chess problem as a tree we
found:

1. Only the paths that lcad to the lowest level (level
N) of the trec arc successful solutions.

2. The application of boundary conditions
(constraints) greatly reduces the size of the trec we
generate.  Boundary conditions produce the
greatest reductions when applied early on in the
construction of the tree.

4. A Solution

From what we have seen it would appear best to
view the chess problem at the abstract level as a
tree. Nodes (board locations) would be added to
the trec based on the boundary conditions noted
earlier. By traversing the trec using a depth-first
search, valid solutions for a board size of N x N (if
present) would be the path sequences to level N of
the trec.

When we map these abstractions and our previous
observations into code, a very good, compact
solution can be gencrated. A complete solution to
the problem, written in C and described briefly
below, can be found in Figure 1. In writing the
solution I chose to break the code into four
functions which are briefly described as:

main( ) - Obtains initial settings (such as board
size, etc.) and then calls function find_sol( ).

find sol( ) - Finds all valid solutions for the given
board. Each ncw row, column location for a queen
is tested for boundary conditions by calling the
function no_conflict( ). When a solution sequence
is found, the function print_it() is called to display
the solution in the selected manner.

no_conflict( ) - Checks the row value passed in to
determine if the specificd location is in conflict with
any previously placed queen. The function returns a
TRUE if no conflict arises otherwise it returns a
FALSE.
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print_it( ) - Displays the solution found in cither a
numeric or diagrammatic (chess board) format.

/i
Queen Solut.»n Program
John 5. Gray 1993

*/

typedef enum {FALSE, TRUE} BOOLEAM;

#define MAX 8 /* lLargest board size ~/

/* GLOBALS */

int a(MAX], /* vector holding solution “/
size = 0, /* board size selected by user */
type = O, /* display type f
numb = 0; /* total number of solutions */

void

main{ } {

void find_sol{ int, int };

printf ("\nQueen demonstration\n");

do | /* Obtain bcard size */
printf ("\n\n\nEnter the size of the board 1-%tld ", MAX):
scanf ("%d", &size )

} while ( size < 0 |{ size > MAX };
do | /* Obtain output format */
printf("Enter the output display type 1 = diagrammatic \
2 = numeric ");
scanf ("§d", &type };
) while ( type < 0 || type > 2 )}

printf(“\n\nFor a board of size %d solutions are: \n",size);
find sol( 0, 0 ), /* Initial call */
if (! numb ) printf(“\n\nZERO !");

printf ("\n\n\n');

/-b
Function find_sol: Passed row and column position.
Generates locations for "size" number of
queens., Uses recursion to backtrack.

v/

void
findasol( int row, int col }{

void print_itt( };
BOOLEAN no_conflict{ int, int };

if (no_conflict{row, col)) (/* Check for conflicts, if none*/

afcol)=row: /* save the location in vector.*/
if ( col == size-1 )}
print_it( ); /* If full solution display. */
else /* Otherwise reset the row and */
find _sol (0, col+l}; /* check the next column. v/
}
if (row < size-1} /* 1f more rows are available, */
find sclirow+l, col); /* try the next row same column*/

/i
Function no_conflict: Passed row and column position. Returns
TRUE if no conflict with previous
locations else returns FALSE
v/

BOOLEAN
no_conflict( int row, int cel }|(

register i;

int d; /* Temporary diagonal offset value.*/
BOOLEAN ok = TRUE; /* Assume no conflict at the start.*/
/t

Step backward and check for conflicts with
previous selections.

*/
for (i = col-1; i >= 0 &6 ok ; --i ) |
d = col - ij;
if ( ali) == row || /* Check for conflict in: same row,*/
a(i)-d == row || /* same major diagonal, */
a[i]+d¥== row /* same minor diagonal. */

} ok = FALSE;
)

return( ok ';

43



/i
function print it : Displays output in user selected format.

*/

void
print_it( }(
register r, c;
static char line[]="+4-~-4--—4-—=dwo-d-——dommt-m—d--—t";
line(size*4+1) = '\0'; /* cut string to size */
printf("\n%03d : ", ++numb );
switch ( type ) [
case 1l:
printf{"\n\n%s\n",
for { r = 0; r < size ;

line 1;
++r ) |

for { ¢ = 0; c < size ; ++c
printf("| %c ", afr] == ¢ ? 'Q"' : (rtc) %27 '"#
printf{“I\n%s\n", line );
}
break;
case 2
default :
for { ¢ = 0; c < size ; ++c
printf("¢3d", a(c]+l };
)
}
Figure 1

Listing of Queen Program

While most of the program is self explanatory, the
function find sol( ) does bear somc further
interpretation.  Find_sol( ) traverses the tree
recursively in a depth-first manner. Each queen
location generated is tested against a set of
constraints found in the function no_conflict( ). If
the queen can be added at the specified location
this information is stored in a global vector called
a[ ]. 1If an entire solution sequence has been
found, it is displayed. Otherwise the function resets
the value in row to its initial value and increments
the column location and continues by calling itself.
If the queen cannot be added, the next row in the
same column is checked. If all row locations in a
given column are invalid, the function returns
(backtracks) to the previous column location,
increments the row value for this location and
begins again. The recursive nature of the function
provides the memory for previous row values. The
function will construct, prune, traverse and display
the tree. For comparison a second non-recursive
version of the find sol( ) function is shown in
Figure 2. The flow of logic for this function is very
similar to the first find_sol( ) function. However,
in this version of the function, backtracking is
facilitated by using the vector af ] as a stack.
Previous queen locations that have been added
(pushed on) to the stack are popped when needed,
using the while loop at the foot of the function.
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/*

A non-recursive find soll } function. A few more lines of
code but less system intensive.

*/

void

find_sol{ int row, int cel ) {
void print_it( };
BOOLEAN no_conflict( int, int };
do {

if {no conflict{row,col)){ /*Check for conflicts, if none*/
a(col] = row; /*save the location in vector.*/
if { col==size-1 } /*1f full solution display. v/
print_it( );
alse { - /*Otherwise reset the row and */
row = 0; ++col; /*check the next column. */
continue;
)
1
if ( row < size-1 ) /*1f more rows are available */
++row; /*try next row, same column. */
else { /*Otherwise backtrack until a */
while (col && a[col-1)+1 > size-1)
~--col; /*column is found with a row */
row = af[--col)l+1l; /*value that can be increment-*/
] /*ed to the nexrt row. “/
} while ( row < size }: /*Loop until beyond last row */
} /*in the first column. v/
Figure 2

Non-recursive find_sol( ) Function

A sample run of the program is shown in Figure 3.
I should note that the program solution does not
take into account the symmectries discussed earlicr.
Those who wish to pursue the problem further
should review the paper by Sosic and Gu [2]. The
authors present a unique, polynomial time, non
cxhaustive  algorithm  for the generation of
solutions for large quecn problem scts.

Queen demonstration

Enter the size of the board 1-8§ 6
Enter the output display type 1 = diagrammatic, 2 = numeric 2

For a board of size 6 the solutions are:

001 : 2 4 6 1 3 5
002 : 3 6 2 5 1 4
003 : 4 1 5 2 6 3
004 : 5 3 1 6 4 2
Figure 3

Demonstration of Queen Program

S. Conclusion

When gencrating solutions to computer problems,
as in life, Walter C. Hagen's advice "Don't hurry,
don't worry. You're only here for a short visit. So be
sure to stop and smell the flowers." is apropos. The
extra time taken to analyze a problem can lead to
insights into the problem which in turn will result in
cleaner morce efficient solutions.

**EIGHT ENOUGH REFERENCES On Page 51****



compiler that they really know what they are
doing. Simply put, the programmer’s motto
should be 'Plan Your Program and Program
Your Plan.

Hints and Conclusion

As with all classes, it is important to know your
audience. A considerable number of "grad"
students take beginning C classes. These
students already have a degree(s) and careers
but want to know C. The instructor needs to
be careful not to focus on the interests of these
higher-level students. This approach quickly
alienates and loses the undergraduates the
course was designed to serve. If willing, the
"grads" can serve as mentors for some of the
traditional students.

Picking C software is somewhat more difficult
as both Microsoft and Borland move to blend
C and C+ + product lines together. Using a
C+ + product in a C class would allow the use
of new comment formats (//.. instead of
/*..*/) and 1/O functions (cin/cout instead of
scanf/printf) albeit at the expense of backwards
compatibility. Perhaps more useful, will be the
possibility of having a two-class sequence, ANSI
C followed by C++ for object-oriented
programming, where the students would use the
same compiler and editor for both.

Finally, the C instructor should explain
advantages and disadvantages of various
approaches, showing more than one right way
to accomplish a task. Code from the book can
be modified on-the-run if a computer
projection system is in use. Another way to
show multiple approaches to problems where
each student fully understands the
specifications is to post student programming
assignments (two source code listings are
turned in -- one is marked during grading and
returned to the student, the other is available
for taping to the board). Such "good examples"
may be demonstrated by the author in class if
a computer projection system is available.
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