Clarifying °C’

Rick Homkes
Assistant Professor
Computer Technology
Purdue University
2300 South Washington Street
Kokomo, IN 46904-9003
317-455-9242

Abstract

In the classroom of today, students learning C
often have experience in one or more
languages such as BASIC, COBOL or Pascal.
With the possible exception of students with
Assembler skills, many of these individuals
stumble when making the change to C. This
review of the teaching and learning processes
surrounding C highlights areas where students
either face misunderstandings or will
predictably under-use new features.

Clarifying *C’

Some readers may believe that Clarifying ’C’ is
an oxymoron. One (Pascal) colleague, upon
hearing this title, said “that’s like clarifying
mud." Another computing pundit went so far
as to say that "one of the biggest obstacles to
the future of computing is C. C is the last
attempt of the high priesthood to control the
computing business (Pournelle, 1990)."

However, in spite of its detractors, the rise of
C is no longer arguable. The marketplace has
decided that the strengths of C outweigh the
weaknesses. Referred to by Peter Norton as
"industrial strength programming,” C often
provides programmers in college with their first
chance to work on the edge. Norton (1987)
summed up this way: While it may be fair and

SIGCSE
BULLETIN "ol

25 No. 3 Sept. 1993

John Minor Ross
Associate Professor of
Data Processing
Indiana University Kokomo
2300 South Washington Street
Kokomo, IN 46904-9003
317-455-9213

accurate to throw bricks at C and bouquets at the
likes of Pascal and Modula II in the name of
programming design features, to do so would be
to miss a very important point: professional tools
work to a different standard and serve different
needs than amateur tools. If C is a 'dirty"
language that allows programmers to do lots of
tricky and powerful things, that’s why its become
the language of choice for deep professional
programming.

This is a guide to avoiding some of the
potential pitfalls awaiting those new to the C
language based upon the experiences of two C
instructors. The primary intent of the review is
to provide advice for the reader, someone
currently teaching or getting ready to use C, on
how to improve productivity by reducing
"C’onfusion.

C Syntax-related Confusion

When learning any new language (C, Ada,
French, Chinese or whatever), there are new
ways to say the same things. Certain ways are
better than others. Certain ways are simply
wrong.

Not surprisingly, there are many causes of
learner confusion. Some confusion s
attributable to chance but other syntax-related
problems can be foretold by the instructor and,

http://crossmark.crossref.org/dialog/?doi=10.1145%2F165408.165425&domain=pdf&date_stamp=1993-09-01

thereby, avoided by the student. At least some
of the confusion found among new C users can
be mitigated through emphasis on how and
when to apply various C syntax components
and through following traditional good coding
techniques.

Useful topic areas where extra emphasis in
teaching can return dividends are described
next. Sample code fragments are included
because "seeing working code always helps
(Plauger, 1992)."

for’ versus 'while’ loops. There are times in C
when it is easier and clearer to use a ’for’
instead of a ’while’ loop. This is because the
for’ controls are all shown at the top of the
code. The advice to give students is if they
need to initialize variables before entering a
loop or if they need to step variables at the end
of a loop then they should likely use a ’for’
loop. The next two examples produce identical
results.

/* Example A */

x = 10;

y = 20;

while (x) {
printf("\n z=%d", x + y);
_-X;
=Y

}

/* Example B */

for (x = 10,y = 20; x; X--, y--) {
printf("\n z=%d", x + y);

}

Some loops may be coded so they fit on a
single line. The loop then controls a NUL
statement. If this is done, the student should
use the {} around the semicolon to emphasize
the NUL statement.

for (x = 10; x; printf("\n x = ", x--)) {;}

Multiple exits. In the rush to learn C syntax,

the possibility exists for new C programmers to
back-slide on structured programming issues.
For example, functions with multiple return()s,

SIGCSE

BULLETIN Y°!-

25 No. 3 Sept. 1993

46

multiple exit()s, or a mixture of both often
show up on early student assignments. While
this may not seem like trouble in a small
routine it can lead to serious problems in
debugging and supporting real code. Students
need to be shown how multiple return code
(Example C) can be avoided (Example D).

/* Example C */
int FuncABC(int this) {
int x;
if (this < 0) {
return (-1);

} else {
if (this == 0) {
return (1);
}
}
x = FuncXYZ(this),
return (x);
}
/* Example D */
int FuncABC(int this) {
int rcode = 1;
if (this < 0) {
rcode = -1;
}else {
if (this 1= 0) {
rcode = FuncXYZ(this);
}
}

return (rcode);

}

Furthermore, the instructor can show students
situations where a return() in one function is
used to pass through the returned value from
another function. The second example in the
next section illustrates the code compression
which is possible.

Ternary operator (2 :). Students new to C
commonly hate the ternary operator.
Experienced C programmers hate to do without
it. Essentially an if/then/else, the ternary
operator allows powerful, clearly written code
to often fit on one line. For example, the
following line sets the exitsw variable to TRUE
(1) if the operator enters an X’ (or ’x’) or
FALSE (0) if any other key was pressed.

exitsw = toupper(getch()) == "X’ ? TRUE : FALSE;

Another example Is a substitute for the
multiple-return code shown in the prior section
(FuncXYZ returns an int). Note the use of
nested ternary decisions. Here ten lines of
code shown earlier is replaced by one -- with
no variables (x or rcode) defined.

int FuncABC(int this) {
return (this > 0 ? FuneXYZ(this) : (this ? -1: 1));

}

Buffered versus unbuffered input. Beginning C
students soon have several methods of
character input for their programs. However,
this is a mixed blessing in that it often results
in confusion over the delimiter for each
method. Therefore an early discussion of a
buffer is useful.

By explaining that some functions are separated
from the original source of the input by a
temporary storage area called a buffer, students
understand better that functions that use a
buffer, such as those accessing a file, have a
delimiter of \n. Examples of those functions
are getchar(), getc(), and scanf(). Other
functions, such as getch() and getche(), bypass
the buffer and directly receive input from the
keyboard device. These functions use \r as the
delimiter.

File "r"_before "w". Since an fopen() in write
mode will destroy an existing file of the same
name without warning, it is a dangerous first
move. Students should be told to avoid
opening "new" files in write mode until they
have opened them in read mode and have
gotten an error (confirming that the file does
not currently exist). An fopen() in read mode
that does not return an error value should be
followed by an fclose() and a message to the
user of the program asking for advice on how
to proceed (replace, exit, etc.).

= versus == operators. A classic mistake of
new and old C programmers alike, is to use the
= assignment operator when he or she meant
to use the == test for equality. A debugging
hint for the student is that this mistake usually

SIGCSE

BULLETIN vol. 25 No. 3

Sept. 1993

results in a TRUE decision while also changing
the value of the left operand (it is FALSE only
if the right operand was zero). Another
debugging hint is to use the editor to find all

occurrences of a "=" and check if it was used
appropriately.
Defines versus declare. In their 1978

foundation book on the C language, Kernighan
and Ritchie stress: it is important to distinguish
between the declaration of an external variable
and its definition. A declaration announces the
properties of an external variable (its type, size,
etc.); a definition also causes storage to be
allocated.

Unfortunately, many instructors (and texts) blur
this distinction. The confusion is further
complicated if a student who is unclear on
these terms then tries to consider what a
prototype (sometimes called a forward
declaration!) is and how it fits in with the first
two terms.

General Areas of Confusion

Storing Integers. Students coming into a C

class usually have an understanding of positive
binary numbers and binary arithmetic.
However, the concept of negative binary
numbers may remain unclear. A class
discussion of two’s complement notation for the
storing of integer values may prove useful. In
this notation an "on" high order bit is the "most
negative value." Turning other bits "on" chips
away at this negative value until a -1 1is
reached. Four representative values (using 8
bit storage) are:

1000 0000
1111 1111

= -128
-1

0000 0001 = 1
0111 1111 = 127

An example to demonstrate this is a routine to
cube a number.

int cube(int a) {
return(a * a * a);

}

Students run a program with this function for
increasing sample values and record the results.
When the students enter 32 and receive an
answer of -32,768 a pause results, followed by
the inevitable question: "How can this machine
multiply three positive numbers and end up
with a negative number?"

The instructor needs to explain that as the
result gets larger, the first "on" bit migrates
towards the left of the binary number. Finally
the left most bit is turned on. At this point the
number is interpreted as having a starting value
of -(2"%) or -32,768,,. Input of numbers slightly
larger than 32 result in a less negative number
as bits other than the left most are turned on.
However, an input of 41 results in positive
3385. This is the result of the left most "on" bit
migrating left off the storage area and into "bit
heaven" -- without an overflow error in C. The
resultant number is back to positive, but it is
still incorrect.

Modulus operator (%). The mod operator in
C (and other languages) can make many
programming tasks easier. It can prevent such
troublesome occurrences as screen overflow
(scrolling) and processing beyond the end of an
array. (Reminder: mod division returns the
remainder of a division operation and discards
any whole number results. The result returned
is an integer remainder between zero and the
divisor minus 1. Examples: 6 % 3 returns 0; 7
% 3 returns 1.)

Consider a routine to print the next three
entries in an array (char txt[20]). The value of
x is incremented without regard to the
maximum size of the array so that the array is
cycled through as if it were a seamless loop
(i.e., array element 19 is followed by 0 and 1).
Using mod finds the next three characters
without multiple "if" statements to reset x if it
gets too big.

printf("\n%c %c %c",
txt[x % 20], xt[(x+1) % 20], txt{(x+2) % 20]);

SIGCSE

BULLETIN Vol

25 No. 3 Sept. 1993

48

When x is 19, the characters printed will come
from the desired array locations since 19 % 20
returns a remainder of 19, 20 % 20 has a 0
remainder, and 21 % 20 has a remainder of 1.

Page/Screen Breaks. Mod can also eliminate
page or screen line counters from programs.
To check for a page break, a brand new C
programmer writes code based on traditional
approaches using both line and page counters:

if (lines == 55) {
page = page + 1,
PageBreak(page);
lines = 0;

}else {

lines = lines +1;
}

Using the ternary operator (without mod yet),
the prior seven lines of code may be replaced
with a single line (lines is incremented after the
test and page is incremented before it is sent to
the PageBreak function):

lines+ + = = 55 ? PageBreak(+ +page), lincs = 0 : NUL,;

Putting mod to work with the ternary operator
uses a logical not (1) that is TRUE whenever
mod returns O (lines is evenly divisible 55).
Here the PageBreak function is passed the
page number by dividing the lines by the page
size. During program execution, lines is not
reset to zero (watch out for integer overflow at
32,768 plus as mentioned earlier).

! (lines % 55) ? PageBreak(lines+ + / 55) : lines+ +;

Arguments. The organization of a C program
into independent functions allows great
freedom in writing code. It is not necessary to
remember the hierarchy of function ownership.
Instead, any function can be invoked (called)
from any other function. Even the required
function main() can invoke itself or be invoked
from another function (though such recursion
is usually a bad idea).

These independent functions often require
independent, or local, variables. This leads to

the passing of variable values from the calling
to the called function. Some texts refer to
these values are parameters. However, a better
term is argument. Argument is defined as "the
independent variable of a function (American,
1985)."

An argument can be further differentiated as
either a formal argument declared in a
function’s prototype and header or as an actual
argument used in a function’s call. It is impor-
tant for students to note that an actual
argument can be a numeric constant or
alphabetic literal, but the formal arguments
must be variables. Luckily, the value returned
by a function seems to have no other name
than that of a returned value.

Local variables. Local variables are created
each time a function is invoked. Their scope
(where their values are accessible) is within the
function and their life (how long their values
are accessible) is for the time that the function
is active (unless they are defined as static

types).

Students typically accept the previous
statements without much question -- but also
without total understanding. This is

demonstrated by the receipt each semester of
programs with a type of sideways recursion. In
these programs main() calls a function to
perform a task, but when the task is complete
the function calls main() instead of simply
returning to main().

While this does show that the concept of
reusability of functions has gotten across, it is
still bad code. Pointing out the error here
always generates this response: "But it works."
True, for small test data sets. However, the
program will run out of memory for production
runs because of the stack overflow caused by
this hidden recursion. In order to demonstrate
this problem the following function to calculate
a factorial number (e.g. 3! =3 *2* 1 = 6) is
used in a laboratory test. The function is
recursive so that it calls itself to execute as

SIGCSE

BULLETIN Yoo

25 HNo. 3 Sept. 1993

49

many times as there are factors in the
expression.

int fact(int a) {
return((a == 1) 7 1: fact(a-1) * a);
}

Students run a program with this function and
record the two problems that result. The first
is a numeric overflow of the integer number
with an initial value of 7. The second is a stack
overflow when too many versions of the same
function are resident in memory at the same
time when the initial input value is 123,

Arrays. The introduction of arrays to new
programmers often can be referred to as a
‘blank stare generator.” The instructor starts
talking about ’dense lists’ of characters or

numbers and students respond with a blank
stare. However, C makes this first discussion

easier because of the handling of strings. By
making a string nothing more that a group of
consecutive characters, it is much easier to
visualize the string in memory as a simple
array. Each character of the string or character
array is stored in one byte of memory and the
entire array is ended with the special character
\O (ASCII zero). It can be visualized as a line
of text running from left to right.

It is important to visualize the one dimensional
array as a row instead of a column in order to
move on to the two and n - dimensional arrays.
This is because of the storage method used
when a multidimensional array is kept in
memory. This method is referred to as ’row
major.” Thus a two dimensional numeric array
can be defined and initialized as:

The nine members of this two dimensional
array are stored in consecutive bytes of memory
in row order (i.e. 012345678). Adding a third

dimension to the array adds layers to the table.
An array declared as [2]{3]{4] has two pages of
a three row by four column table. Thus
twenty-four storage locations are defined. The
order of storage is column within row within
page and the visual reference is a two by three
by four cube.

Four and more dimensional arrays. Many
minds start to bend when a fourth dimension is
added to an array. While the declaration is
simple, [2][2][3][4], the visual reference of the
shape of this 'object’ is not simple. However,
it can be pictured simply as a row of cubes.
Likewise, five dimensions can be pictured as a
table of cubes and six dimensions can be
pictured as a cube of cubes. The arrays
[2](3][4] and [2][2][2][2][3][4] are shown below.

This relating of four or more dimensions back
to a three dimensional shape can obviously be
continued until the programmer gets tired of
the ever expanding picture. Data storage is
still linear with the last dimension (column)
being the most minor for storage purposes.

Truth tables. A truth table of logical values is
seen by students in many forms. These range
from the sparse tables seen by students in a
Logic Circuits class to the verbose tables seen
by students in a Systems Analysis class. A few
problems are constant, however. In creating a
table, students often miss possible variations of
the table, do not produce the table in
ascending order, and do not understand the
direct relationship of zero (FALSE) and non-
zero (TRUE). The following function is given
to students as a laboratory exercise to help in
the understanding of a truth table.

SIGCSE

BULLETIN 1993

Vol. 25 No. 3 Sept.

50

void truthtable(void) {
int a, b, ¢;
printf("a\tb\tc\t(a| |b)&&c\n");
printf("
for (a=0; a<=1;a++) {
for (b=0; b<=1; b+ +) {
for (c=0; c<=1; ¢+ +) {
printf("%d\t%d\t%d\t%d", a, b, ¢, (a| |b)&&c);
printf("\t %s\n", ((a] |b)&&c) ?
“TRUE" : "FALSE");
}

}
}
} /* end truthtable */

\n");

It produces a truth table with all eight possible
combinations in ascending order using
((a] |b)&&c) to display either a "TRUE" or
"FALSE." This will not end all confusion, but
it does give students a routine to modify to try
other logical expressions.

Formatting errors. Those just learning C

should resist the pressure to get something
running and then make it look better. "The
price you pay in finicky typing and editing is
repaid many times over [Plauger]." Code that
looks bad will be much harder to debug and
support. This includes trouble-compounders
like: poor variable and function naming style,
lack of consistent indentation, and lack of
internal documentation.

While avoiding creating bugs sounds like a
platitude, it is probably the most effective form
of debugging. The best method of bug
avoidance is to know what is expected of your
program and to develop clearly written
specifications before writing the code. In
addition, writing a comment block for each
function -- that describes its input, output, and
assumptions -- will not only prevent bugs, but
will make them much easier to find, not only
now, but three years in the future (Baldwin,
1991).

After learning the foundations of the language,
the programmer should move up from the level
zero error detection level they probably started
with -- even if it takes longer to satisfy the

compiler that they really know what they are
doing. Simply put, the programmer’s motto
should be 'Plan Your Program and Program
Your Plan.

Hints and Conclusion

As with all classes, it is important to know your
audience. A considerable number of "grad"
students take beginning C classes. These
students already have a degree(s) and careers
but want to know C. The instructor needs to
be careful not to focus on the interests of these
higher-level students. This approach quickly
alienates and loses the undergraduates the
course was designed to serve. If willing, the
"grads" can serve as mentors for some of the
traditional students.

Picking C software is somewhat more difficult
as both Microsoft and Borland move to blend
C and C+ + product lines together. Using a
C+ + product in a C class would allow the use
of new comment formats (//.. instead of
/*..*/) and 1/O functions (cin/cout instead of
scanf/printf) albeit at the expense of backwards
compatibility. Perhaps more useful, will be the
possibility of having a two-class sequence, ANSI
C followed by C++ for object-oriented
programming, where the students would use the
same compiler and editor for both.

Finally, the C instructor should explain
advantages and disadvantages of various
approaches, showing more than one right way
to accomplish a task. Code from the book can
be modified on-the-run if a computer
projection system is in use. Another way to
show multiple approaches to problems where
each student fully understands the
specifications is to post student programming
assignments (two source code listings are
turned in -- one is marked during grading and
returned to the student, the other is available
for taping to the board). Such "good examples"
may be demonstrated by the author in class if
a computer projection system is available.

SIGCSE

BULLETIN VoL

25 No. 3 Sept. 1993

51

References

The American Heritage Dictionary. (1985).
Boston: Houghton Mifflin Company.

Baldwin, W. Debugging In C -- An
Overview. C Users Journal, 9(10).
(Computer Select, October 1992, #74755)

Pournelle, J. The BYTE Summit: Obstacles
to Overcome. BYTE, September 1990, 281.

Kernighan, B. W,, & Ritchie, D. M. (1978).
The C Programming Language. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 76.

Norton, P. PC Magazine, February 10, 1987,
75-76.

Plauger, P. Bugs. C Users Journal, 10(9).
(Computer Select, October 1992, #2055)

Figure drawn by MET student Paul Pepka,

*+EIGHT ENOUGH REFERENCES From Page 44%**

6. References

[1] R.L.Kruse,Data Structures & Program
Design, Prentice Hall, Englewood Cliffs, New
Jersey, 1987, 586 pages.

[2] R. Sosic and J. Gu, "A Polynomial Time
Algorithm for the N-Queens Problem", SIGART
Bulletin, Vol. 1, No. 3, October 1990, 7-11.

[3] N. Wirth, Algorithms + Data Structures
Programs, Prentice Hall, Englewood Cliffs, New
Jersey, 1976, 366 pages.

