
Clarifying 'C'

Rick Homkes
Assistant Professo r

Computer Technology
Purdue University

2300 South Washington Stree t
Kokomo, IN 46904-9003

317-455-9242

John Minor Ros s
Associate Professor of

Data Processing
Indiana University Kokomo

2300 South Washington Stree t
Kokomo, IN 46904-9003

317-455-9213

4 5

Abstract

In the classroom of today, students learning C
often have experience in one or mor e
languages such as BASIC, COBOL or Pascal .
With the possible exception of students wit h
Assembler skills, many of these individuals
stumble when making the change to C . This
review of the teaching and learning processe s
surrounding C highlights areas where student s
either face misunderstandings or wil l
predictably under-use new features .

Clarifying 'C '

Some readers may believe that Clarifying 'C' i s
an oxymoron . One (Pascal) colleague, upon
hearing this title, said "that's like clarifyin g
mud ." Another computing pundit went so fa r
as to say that "one of the biggest obstacles to
the future of computing is C . C is the las t
attempt of the high priesthood to control th e
computing business (Pournelle, 1990) . "

However, in spite of its detractors, the rise o f
C is no longer arguable . The marketplace ha s
decided that the strengths of C outweigh the
weaknesses . Referred to by Peter Norton a s
"industrial strength programming," C often
provides programmers in college with their firs t
chance to work on the edge . Norton (1987)
summed up this way : While it may be fair and

SIGC E

	

Vol .BULLETIN

	

zs r]o
. "'Pt

. 1993

accurate to throw bricks at C and bouquets at th e
likes of Pascal and Modula II in the name of
programming design features, to do so would b e
to miss a very important point : professional tools
work to a different standard and serve differen t
needs than amateur tools . If C is a "dirty "
language that allows programmers to do lots of
tricky and powerful things, that's why its becom e
the language of choice for deep professional
programming.

This is a guide to avoiding some of th e
potential pitfalls awaiting those new to the C
language based upon the experiences of two C
instructors . The primary intent of the review is
to provide advice for the reader, someone
currently teaching or getting ready to use C, on
how to improve productivity by reducin g
'C'onfusion .

C Syntax-related Confusio n

When learning any new language (C, Ada ,
French, Chinese or whatever), there are new
ways to say the same things . Certain ways are
better than others. Certain ways are simply
wrong .

Not surprisingly, there are many causes of
learner confusion . Some confusion i s
attributable to chance but other syntax-relate d
problems can be foretold by the instructor and,

http://crossmark.crossref.org/dialog/?doi=10.1145%2F165408.165425&domain=pdf&date_stamp=1993-09-01

4 6

thereby, avoided by the student. At least some
of the confusion found among new C users ca n
he mitigated through emphasis on how an d
when to apply various C syntax component s
and through following traditional good codin g
techniques .

Useful topic areas where extra emphasis i n
teaching can return dividends are describe d
next. Sample code fragments are included
because "seeing working code always helps
(Plauger, 1992) . "

'for' versus 'while' loops . There are times in C
when it is easier and clearer to use a 'for '
instead of a 'while' loop . This is because the
'for' controls are all shown at the top of th e
code. The advice to give students is if they
need to initialize variables before entering a
loop or if they need to step variables at the en d
of a loop then they should likely use a 'for '
loop . The next two examples produce identica l
results .

/* Example A * /
x = 10;
y = 20;
while (x) {

printf("\n z=%d", x + y) ;
--x ;
--y ;

}

/* Example B * /
for (x = 10, y = 20; x ; x--, y--) {

printf("\n z=%d", x + y) ;
}

Some loops may be coded so they fit on a
single line. The loop then controls a NUL
statement . If this is done, the student shoul d
use the {} around the semicolon to emphasiz e
the NUL statement .

for (x = 10 ; x; printf("\n x = ", x--)) { ; }

Multiple exits . In the rush to learn C syntax ,
the possibility exists for new C programmers t o
back-slide on structured programming issues .
For example, functions with multiple returnOs ,

SIGCSE

	

Vol . 25 No . 3 Sept . 199 3BULLETIN

multiple exit()s, or a mixture of both ofte n
show up on early student assignments . While
this may not seem like trouble in a smal l
routine it can lead to serious problems i n
debugging and supporting real code . Students
need to be shown how multiple return code
(Example C) can be avoided (Example D) .

/* Example C */
int FuncABC(int this) {

int x ;
if (this < 0) {

return (1) ;

} else { if (this = = 0) {
return (1) ;

}
}
x = FuncXYZ(this) ;
return (x) ;

}

/* Example D * /
int FuncABC(int this) {

int rcode = 1 ;
if (this < 0) {

rcode = -1 ;
} else {

if (this != 0) {
rcode = FuncXYZ(this) ;

}
}
return (rcode) ;

}

Furthermore, the instructor can show student s
situations where a return() in one function i s
used to pass through the returned value fro m
another function. The second example in th e
next section illustrates the code compression
which is possible .

Ternary operator (?) . Students new to C
commonly hate the ternary operator .
Experienced C programmers hate to do withou t
it. Essentially an if/then/else, the ternary
operator allows powerful, clearly written cod e
to often fit on one line . For example, the
following line sets the exitsw variable to TRU E
(1) if the operator enters an 'X' (or 'x') o r
FALSE (0) if any other key was pressed.

exitsw = toupper(getch()) = = 'X' ? TRUE : FALSE;

Another example is a substitute for th e
multiple-return code shown in the prior sectio n
(FuncXYZ returns an int) . Note the use of
nested ternary decisions . Here ten lines o f
code shown earlier is replaced by one -- wit h
no variables (x or rcode) defined .

int FuncABC(int this) {
return (this > 0 ? FuncXYZ(this) : (this ? -1 : 1)) ;

}

Buffered versus unbufferedin p ut. Beginning C
students soon have several methods o f
character input for their programs. However ,
this is a mixed blessing in that it often result s
in confusion over the delimiter for each
method . Therefore an early discussion of a
buffer is useful .

By explaining that some functions are separate d
from the original source of the input by a
temporary storage area called a buffer, student s
understand better that functions that use a
buffer, such as those accessing a file, have a
delimiter of \n . Examples of those function s
are getchar(), getcO, and scanfO . Other
functions, such as getch() and getche(), bypas s
the buffer and directly receive input from th e
keyboard device . These functions use \r as th e
delimiter .

File "r" before "w" . Since an fopen() in write
mode will destroy an existing file of the sam e
name without warning, it is a dangerous firs t
move. Students should be told to avoi d
opening "new" files in write mode until the y
have opened them in read mode and hav e
gotten an error (confirming that the file doe s
not currently exist) . An fopen() in read mode
that does not return an error value should b e
followed by an fclose() and a message to the
user of the program asking for advice on ho w
to proceed (replace, exit, etc .) .

	 versus = = operators . A classic mistake o f
new and old C programmers alike, is to use th e
= assignment operator when he or she mean t
to use the = = test for equality . A debuggin g
hint for the student is that this mistake usually

results in a TRUE decision while also changing
the value of the left operand (it is FALSE onl y
if the right operand was zero) . Another
debugging hint is to use the editor to find al l
occurrences of a "=" and check if it was used
appropriately .

Defines	 versus	 declare .

	

In their 1978
foundation book on the C language, Kernighan
and Ritchie stress : it is important to distinguis h
between the declaration of an external variabl e
and its definition . A declaration announces th e
properties of an external variable (its type, size ,
etc.); a definition also causes storage to b e
allocated.

Unfortunately, many instructors (and texts) blur
this distinction. The confusion is further
complicated if a student who is unclear o n
these terms then tries to consider what a
prototype (sometimes called a forward
declaration!) is and how it fits in with the firs t
two terms .

General Areas of Confusio n

Storing Integers . Students coming into a C
class usually have an understanding of positive
binary numbers and binary arithmetic .
However, the concept of negative binar y
numbers may remain unclear . A class
discussion of two's complement notation for the
storing of integer values may prove useful . In
this notation an "on" high order bit is the "mos t
negative value ." Turning other bits "on" chip s
away at this negative value until a -1 i s
reached. Four representative values (using 8
bit storage) are :

0000 0001 = 1 1000 0000 = -128
0111 1111 = 127 1111 111 .1

	

= -1

An example to demonstrate this is a routine t o
cube a number .

int cube(int a) {
return(a " a * a) ;

}

BULLETIN Vol . 25 No . 3 SepC . 1993

	

47

4 8

Students run a program with this function fo r
increasing sample values and record the results .
When the students enter 32 and receive an
answer of -32,768 a pause results, followed b y
the inevitable question: "How can this machine
multiply three positive numbers and end u p
with a negative number? "

The instructor needs to explain that as th e
result gets larger, the first "on" bit migrate s
towards the left of the binary number. Finally
the left most bit is turned on. At this point th e
number is interpreted as having a starting value
of -(2 1S) or -32,76810. Input of numbers slightl y
larger than 32 result in a less negative numbe r
as bits other than the left most are turned on .
However, an input of 41 results in positive
3385 . This is the result of the left most "on" bi t
migrating left off the storage area and into "bi t
heaven" -- without an overflow error in C. The
resultant number is back to positive, but it i s
still incorrect .

Modulus operator (%) . The mod operator in
C (and other languages) can make many
programming tasks easier . It can prevent such
troublesome occurrences as screen overflow
(scrolling) and processing beyond the end of an
array. (Reminder: mod division returns the
remainder of a division operation and discard s
any whole number results . The result returne d
is an integer remainder between zero and th e
divisor minus 1 . Examples : 6 % 3 returns 0 ; 7
% 3 returns 1 .)

Consider a routine to print the next three
entries in an array (char txt[20]) . The value of
x is incremented without regard to the
maximum size of the array so that the array i s
cycled through as if it were a seamless loop
(i .e., array element 19 is followed by 0 and 1) .
Using mod finds the next three character s
without multiple "if' statements to reset x if i t
gets too big .

printf("\n%c %c %c" ,
txt[x % 20], txt[(x+1) % 20], txt[(x+2) % 20]) ;

SIGCSE

	

vol . 25 No . 3 Sept . 199 3BULLETIN

When x is 19, the characters printed will come
from the desired array locations since 19 % 2 0
returns a remainder of 19, 20 % 20 has a 0
remainder, and 21 % 20 has a remainder of 1 .

Page/Screen Breaks . Mod can also eliminate
page or screen line counters from programs .
To check for a page break, a brand new C
programmer writes code based on traditiona l
approaches using both line and page counters :

if (lines = = 55) {
page = page + 1 ;
PageBreak(page) ;
lines = 0 ;

} else {
lines = lines + 1 ;

}

Using the ternary operator (without mod yet) ,
the prior seven lines of code may be replace d
with a single line (lines is incremented after th e
test and page is incremented before it is sent t o
the PageBreak function) :

lines+ + = = 55 ? PageBreak(+ + page), lines = 0 : NUL ;

Putting mod to work with the ternary operato r
uses a logical not (!) that is TRUE wheneve r
mod returns 0 (lines is evenly divisible 55) .
Here the PageBreak function is passed th e
page number by dividing the lines by the pag e
size . During program execution, lines is not
reset to zero (watch out for integer overflow a t
32,768 plus as mentioned earlier) .

! (lines % 55) ? PageBreak(lines + + / 55) : lines++ ;

Arguments . The organization of a C program
into independent functions allows grea t
freedom in writing code . It is not necessary to
remember the hierarchy of function ownership .
Instead, any function can be invoked (called)
from any other function. Even the required
function main() can invoke itself or be invoke d
from another function (though such recursion
is usually a bad idea) .

These independent functions often requir e
independent, or local, variables . This leads to

4 9

the passing of variable values from the callin g
to the called function. Some texts refer to
these values are parameters . However, a bette r
term is argument . Argument is defined as "th e
independent variable of a function (American ,
1985) . "

An argument can be further differentiated a s
either a formal argument declared in a
function's prototype and header or as an actua l
argument used in a function's call . It is impor-
tant for students to note that an actua l
argument can be a numeric constant o r
alphabetic literal, but the formal argument s
must be variables . Luckily, the value returne d
by a function seems to have no other nam e
than that of a returned value.

Local variables . Local variables are created
each time a function is invoked . Their scope
(where their values are accessible) is within the
function and their life (how long their value s
are accessible) is for the time that the functio n
is active (unless they are defined as stati c
types) .

Students typically accept the previou s
statements without much question -- but als o
without total understanding . This is
demonstrated by the receipt each semester o f
programs with a type of sideways recursion . In
these programs main() calls a function t o
perform a task, but when the task is complet e
the function calls main() instead of simply
returning to main() .

While this does show that the concept of
reusability of functions has gotten across, it i s
still bad code. Pointing out the error her e
always generates this response : "But it works . "
True, for small test data sets . However, th e
program will run out of memory for productio n
runs because of the stack overflow caused by
this hidden recursion . In order to demonstrat e
this problem the following function to calculat e
a factorial number (e .g. 3! = 3 * 2 * 1 = 6) i s
used in a laboratory test . The function i s
recursive so that it calls itself to execute a s

SIGCSE

	

Vol . 2S No . 3 SepL . 1993BULLETIN

many times as there are factors in th e
expression .

int fact(int a) {
return((a = = 1) ? 1 : fact(a-1) * a) ;

}

Students run a program with this function and
record the two problems that result . The first
is a numeric overflow of the integer number
with an initial value of 7. The second is a stack
overflow when too many versions of the sam e
function are resident in memory at the same
time when the initial input value is 123 .

Arrays . The introduction of arrays to new
programmers often can be referred to as a
'blank stare generator .' The instructor starts
talking about 'dense lists' of characters o r
numbers and students respond with a blan k
stare . However, C makes this first discussion
easier because of the handling of strings . By
making a string nothing more that a group o f
consecutive characters, it is much easier t o
visualize the string in memory as a simpl e
array. Each character of the string or characte r
array is stored in one byte of memory and th e
entire array is ended with the special character
\O (ASCII zero) . It can be visualized as a lin e
of text running from left to right .

It is important to visualize the one dimensiona l
array as a row instead of a column in order t o
move on to the two and n - dimensional arrays .
This is because of the storage method used
when a multidimensional array is kept in
memory . This method is referred to as 'row
major.' Thus a two dimensional numeric array
can be defined and initialized as :

int mdarray[3][3] = {
{ 0, 1, 2} ,
{3,4,5} ,
{6,7,8}

} ;

The nine members of this two dimensiona l
array are stored in consecutive bytes of memor y
in row order (i .e. 012345678). Adding a third

5 0

dimension to the array adds layers to the table .
An array declared as [2][3][4] has two pages o f
a three row by four column table . Thus
twenty-four storage locations are defined . Th e
order of storage is column within row withi n
page and the visual reference is a two by thre e
by four cube .

Four and more dimensionalarras . Many
minds start to bend when a fourth dimension i s
added to an array. While the declaration i s
simple, [2][2][3][4], the visual reference of th e
shape of this 'object' is not simple . However ,
it can be pictured simply as a row of cubes .
Likewise, five dimensions can be pictured as a
table of cubes and six dimensions can b e
pictured as a cube of cubes . The arrays
[2][3][4] and [2][2][2][2][3][4] are shown below .

This relating of four or more dimensions bac k
to a three dimensional shape can obviously b e
continued until the programmer gets tired of
the ever expanding picture. Data storage is
still linear with the last dimension (column)
being the most minor for storage purposes .

Truth tables . A truth table of logical values is
seen by students in many forms . These range
from the sparse tables seen by students in a
Logic Circuits class to the verbose tables seen
by students in a Systems Analysis class . A few
problems are constant, however. In creating a
table, students often miss possible variations o f
the table, do not produce the table i n
ascending order, and do not understand th e
direct relationship of zero (FALSE) and non -
zero (TRUE) . The following function is given
to students as a laboratory exercise to help i n
the understanding of a truth table .

SIGCSE

	

Vol . 25 No . 3 Sept . 199 3BULLETIN

void truthtable(void) {
int a, b, c ;
printf("a\tb\tc\t(a I I b)&&c\n") ;
printf("

for (a=0; a< =1 ; a+ +) {
for (b=0; b<=1; b++) {

for (c=0; c< =1; c++) {
printf("%d\t%d\t%d\t%d", a, b, c, (al I b)&&c) ;
printf("\t %s\n", ((al I b)&&c) ?

"TRUE" : "FALSE") ;
}

}
}

} /* end truthtable * /

It produces a truth table with all eight possibl e
combinations in ascending order usin g
((a 1 1 b)&&c) to display either a "TRUE" o r
"FALSE." This will not end all confusion, bu t
it does give students a routine to modify to tr y
other logical expressions .

Formatting errors . Those just learning C
should resist the pressure to get something
running and then make it look better . "The
price you pay in finicky typing and editing i s
repaid many times over [Plauger] ." Code that
looks bad will be much harder to debug an d
support. This includes trouble-compounder s
like : poor variable and function naming style ,
lack of consistent indentation, and lack of
internal documentation .

While avoiding creating bugs sounds like a
platitude, it is probably the most effective form
of debugging. The best method of bug
avoidance is to know what is expected of you r
program and to develop clearly written
specifications before writing the code . In
addition, writing a comment block for each
function -- that describes its input, output, and
assumptions -- will not only prevent bugs, bu t
will make them much easier to find, not onl y
now, but three years in the future (Baldwin ,
1991) .

After learning the foundations of the language ,
the programmer should move up from the level
zero error detection level they probably starte d
with -- even if it takes longer to satisfy the

5 1

compiler that they really know what they ar e
doing. Simply put, the programmer's motto
should be 'Plan Your Program and Progra m
Your Plan . '

Hints and Conclusio n

As with all classes, it is important to know you r
audience . A considerable number of "grad "
students take beginning C classes . These
students already have a degree(s) and career s
but want to know C. The instructor needs to
be careful not to focus on the interests of thes e
higher-level students. This approach quickly
alienates and loses the undergraduates th e
course was designed to serve . If willing, the
"grads" can serve as mentors for some of the
traditional students .

Picking C software is somewhat more difficul t
as both Microsoft and Borland move to blen d
C and C+ + product lines together . Using a
C+ + product in a C class would allow the us e
of new comment formats (// . . . instead of
/* . . .*/) and I/O functions (cin/cout instead o f
scanf/printf) albeit at the expense of backward s
compatibility . Perhaps more useful, will be th e
possibility of having a two-class sequence, ANS I
C followed by C+ + for object-oriente d
programming, where the students would use th e
same compiler and editor for both .

Finally, the C instructor should explain
advantages and disadvantages of various
approaches, showing more than one right way
to accomplish a task. Code from the book ca n
be modified on-the-run if a compute r
projection system is in use . Another way to
show multiple approaches to problems wher e
each student fully understands th e
specifications is to post student programming
assignments (two source code listings ar e
turned in -- one is marked during grading and
returned to the student, the other is availabl e
for taping to the board). Such "good examples "
may be demonstrated by the author in class i f
a computer projection system is available .

SIGCSE

	

Vol . 25 No . 3 Sept . 199 3BULLETIN

Reference s

The American Heritage Dictionary . (1985) .

Boston : Houghton Mifflin Company .

Baldwin, W. Debugging In C -- An
Overview . C Users Journal, 9(10) .
(Computer Select, October 1992, #74755)

Pournelle, J. The BYTE Summit: Obstacle s
to Overcome . BYTE, September 1990, 281 .

Kernighan, B . W., & Ritchie, D. M . (1978) .

The C Programming Language . Englewood
Cliffs, NJ: Prentice-Hall, Inc., 76 .

Norton, P . PC Magazine, February 10, 1987 ,

75-76 .

Plauger, P . Bugs . C Users Journal, 10(9) .
(Computer Select, October 1992, #2055)

Figure drawn by MET student Paul Pepka .

***EIGHT ENOUGH REFERENCES From Page 44** *

6. Reference s

[1] R. L. Kruse, Data Stnictures & Progra m
Design, Prentice Hall, Englewood Cliffs, New
Jersey, 1987, 586 pages .

[2] R. Sosic and J . Gu, "A Polynomial Tim e
Algorithm for the N-Queens Problem", SIGART
Bulletin, Vol . 1, No. 3, October 1990, 7-11 .

[3] N. Wirth, Algorithms + Data Structures=
Programs, Prentice Hall, Englewood Cliffs, Ne w
Jersey, 1976, 366 pages .

