
Chadwick, David W. and Fatema, Kaniz (2009) An advanced policy based
authorisation infrastructure. In: DIM '09 Proceedings of the 5th ACM workshop
on Digital identity management. CCS Computer and Communications Security
. ACM, New York, USA, pp. 81-84. ISBN 978-1-60558-786-8.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/31990/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1145/1655028.1655045

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/31990/
https://doi.org/10.1145/1655028.1655045
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

An Advanced Policy Based Authorisation Infrastructure
David Chadwick
University of Kent

School of Computing
Canterbury

+44 1227 823 221

d.w.chadwick@kent.ac.uk

Kaniz Fatema
University of Kent

School of Computing
Canterbury

+44 1227 823 823

kf66@kent.ac.uk
ABSTRACT
We describe a more advanced authorisation infrastructure for
identity management systems which in addition to the
traditional Policy Enforcement Point (PEP) and Policy Decision
Point (PDP) has an application independent policy enforcement
point (AIPEP), a credential validation service (CVS) and a
master PDP. The AIPEP is responsible for handling sticky
policies, calling the master PDP, performing application
independent obligations, and validating credentials using the
CVS. The master PDP is responsible for calling multiple
traditional PDPs that support a variety of policy languages, and
resolving conflicts between the various authorisation decisions.
Whilst this authorisation infrastructure may seem more complex
to implement, it is in fact easier for applications to integrate
since nearly all of the complexity is hidden beneath the PEP
interface.

Categories and Subject Descriptors

D.4.6. Security and Protection, Access Controls

General Terms
Design, Security

Keywords
Credential Validation Service, Master PDP, Application
Independent PEP, Sticky Policy, PDP, PEP, Obligations Service

1. INTRODUCTION
Policy based access control systems are now well established.
They rely on an application independent policy decision point
(PDP) to make authorization decisions, and an application
dependent policy enforcement point (PEP) to enforce these
decisions. In a federated system we cannot assume that every
service provider (SP) and every user will use the same policy
language for specifying their rules Hence the same PDP cannot
be used for evaluating all policies. This is because different
policy languages support different rule sets and functionality; so
it is not possible to construct every type of required policy using
just one policy language. Today we have many examples of
different policy languages e.g. XACMLv2 [1], XACML v3 [2],

PERMIS [3], P3P [4], Keynote [5] etc. and hence many
different PDP implementations. If a user provides a sticky
consent policy in a different language to that used by the SP’s
access control policy, the SP will need an authorization
infrastructure that is capable of evaluating multiple policies
written in multiple languages.
Obligations are actions that must be performed when a certain
event occurs. When the event is an authorization decision, then
the obligations are actions that must be performed either before,
after or along with the enforcement of the authorization decision
[8]. Many obligations will be application specific, but some may
be application independent, for example, recording the
authorization decision in a secure audit trail, or notifying the
user that someone has been granted access to his personal data.
Other obligations may be introduced to make up for deficiencies
in the PDP’s policy language, e.g. [7] describes how obligations
can be used to specify over-ride policies in the XACML
language, whilst [8] says how obligations can be used to support
state based decision making in stateless PDPs. Given that some
obligations are naturally application independent, whilst others
are extensions of the functionality of the PDP, then it would be
beneficial to have these obligations enacted by an application
independent component of the authorization infrastructure,
thereby reducing the burden on the application developer.
PDPs need to obtain their policies from somewhere. The
XACMLv2 standard proposes a functional component called the
Policy Administration Point (PAP) which is responsible for
creating the policies and making them available to the PDP
through some back channel prior to the PDP making its
decisions. The back channel could be, for example, an API to an
integrated database, or a communications link to an external
repository. However, using a back channel and previously
prepared policies is too static for some use cases. Consider the
privacy protection of personal data, where a user’s privacy
policy is stuck to her personal identifying information (PII) [18].
In this case the policy needs to be passed dynamically along
with the decision request to the PDP.
In attribute based access controls (ABAC), the PDP makes it
decisions based on the attributes of the subject, requested action,
resource object and environment. In the XACML model the
attributes are provided by a Policy Information Point (PIP).
Whilst a PEP can usually reliably obtain the attributes of the
resource object and the user’s requested action, and in some
cases those of the environment, validating the attributes of the
subject (and in some cases those of the environment) requires
considerably more effort. This suggests that there are different
types of PIP. A subject’s attributes are most often transferred as
credentials, digitally signed by the authoritative source(s) of the
attributes. We thus need a type of PIP that is responsible for
validating credentials, extracting the valid attributes from them

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DIM 2009, November 13, 2009, Chicago, Ohio, USA.
Copyright 2009 ACM 1-58113-000-0/00/0004…$5.00.

and discarding the rest. We propose a credential validation
service (CVS) for this [9].
Finally, in an identity management system that uses sticky
policies, we need a way of securely transferring these policies
between system components along with the data they are
“stuck” to. Whilst we could leave this to each application to do
in its own protocol specific way, we could also do this in an
application protocol independent way thereby making it easier
for applications to incorporate sticky policies into their systems
[19]. We propose solutions for each of the above problems in
our advanced authorization infrastructure.
The rest of this paper is structured as follows. Section 2
describes our advanced authorization infrastructure. Section 3
concludes and describes our future plans.

2. AN ADVANCED AUTHORISATION
INFRASTRUCTURE
2.1 The Application Independent PEP
We introduce several new components into existing
authorization infrastructures. Firstly we introduce an application
independent policy enforcement point, the AIPEP. The AIPEP
is responsible for coordinating the various actions of the
application independent authorization infrastructure. It presents
a single interface to the application dependent PEP, in order to
make integration easy. To the PEP it appears to be a standard
PDP. To the (Master) PDP, it appears to be a normal PEP. It is
therefore a proxy for both. The interface that we are currently
using for the PEP-AIPEP is the recently published OASIS draft
standard [10]. This SAML profile allows an XACML formatted
authorization decision request to be combined with the policy
that is to be used by the PDP and both passed as a SAML query
in a new element called an XACMLAuthzDecisionQuery. The
SAML response allows an XACML response context,
containing a response and optional obligations, to be returned in
a newly defined SAML assertion, the
XACMLAuthzDecisionStatementType. Other optional
parameters can also be in the assertion, such as an altered
request context which contains the set of attributes that were
actually used in the authorization decision making. When the
AIPEP receives the authorization decision query message (step
1 in figure 1), it first calls the CVS to validate any credentials
that are contained in the query message (step 2 in figure 1). We
have specified how various types of unvalidated credentials
such as SAML attribute assertions, X.509 public key certificates
and X.509 attribute certificates can be passed to the AIPEP/PDP
proxy in an Open Grid Forum profile [11] of [10].

2.2 The Credential Validation Service
The CVS is described in detail in [9]. It is a specialized PIP that
is configured with a credential validation policy which tells it
which credentials are valid, in terms of who the trusted attribute
authorities (AAs) are and which attributes each are trusted to
issue to which groups of users. The protocol we use for
communicating between the AIPEP and the CVS is based on
WS-TRUST [12] and SAMLv2 [13] and the complete profile is
specified as an Open Grid Forum profile [14]. The CVS can
work in either pull mode, push mode or pull and push mode.
Pull mode means that the requester does not have any

credentials and requires the CVS to pull them itself from its
configured trusted AAs, or a subset of them. The reason for
adding the subset advisory field, is that in a large federation,
such as the UK Access Management Federation, there could be
several hundred trusted Identity Providers (IdPs) or AAs
configured into the CVS’s validation policy, and in pull mode
one would not want the CVS to ask each of these if it had any
credentials for the subject in question. We have also specified an
Open Grid Forum profile for the protocol to pull credentials
[15], which is based on SAMLv2. Our CVS implementation
however is more sophisticated than this, and can also pull X.509
attribute certificates from an LDAP repository or WebDav
server [16], LDAP string attributes from a trusted LDAP server,
and follow delegation chains of credentials. Our CVS therefore
contains a delegation policy that tells it which delegated
credentials it can trust. There currently isn’t a standard policy
language for a CVS policy, and in [9] we say why XACMLv2 is
not sufficient for this (neither is XACMLv3).

AppDep
PEP

App Indep
PEP

Master
PDP

2

Policy
PDPPolicy

PDPPolicy
PDP

3
4

5

1

6

CVS

Will Enforce
Conflict
Resolution
Policy

Will evaluate each
policy according to
the languages they
support

Will Enforce
Application
Independent
Obligations

Will Enforce Authz Decisions
and Application
Dependent Obligations

0. User’s request

Will validate
presented
credentials
and pull more

AA
AA

AA
Various
attribute
authorities
/ IdPs will
issue credentials

Obligations
Service

AppIndep
Obligation

ServiceAppIndep
Obligation

Service

7
8

9

10
11

12

13

14 Will coordinate obligation
enactment

will enact
obligations

Figure 1. An Advanced Authorisation Infrastructure
Push mode means that the WS-Trust request message contains
the full set of credentials which are to be validated by the CVS,
and none further need to be pulled. Note that the push/pull
dialect field is advisory only, since the CVS is allowed to pull
further credentials if it needs to. For example, if the AIPEP sent
a delegated credential to be validated and the delegator is not a
root of trust in the CVS’s policy, then the credentials of the
delegator will need to be pulled. Pull and push mode, as its
name implies, is requesting the CVS to validate the credentials
in the request message and pull any further credentials that it
can find for the subject of the authorization decision query.
Again an advice field can specify a subset of the AAs/IdPs to
pull from. Once the CVS has finished validating the subject’s
credentials, these are returned to the AIPEP as XACML
formatted attributes in step 5 of figure 1, ready to be passed to
the Master PDP.

2.3 The Master PDP
In order to evaluate multiple policies in different languages we
introduce a new conceptual component called the Master PDP.
The Master PDP is responsible for calling the multiple
configured policy language specific PDPs (step 7), obtaining
their authorization decisions (step 8), and then resolving any

conflicts between these decisions, before returning the overall
authorization decision and any resulting obligations to the
AIPEP (in step 9). The Master PDP is configured to know each
policy language that each subordinate PDP supports, so that
when it is passed a sticky policy it knows which PDP to give
each component of the sticky policy to. Each of the policy PDPs
supports the same interface, which is the SAMLv2 profile of
XACMLv2 [10]. This allows the Master PDP to call any
number of subordinate PDPs, each configured with its own
policy in its own language. The Master PDP can also
dynamically pass the policy that is to be used by each PDP at
decision time. One of a new breed of PDPs that is currently
being built as part of the EC TAS3 project [6] is a behavioral
trust engine which will return an authorization decision about
whether the requester is trusted or not to perform the requested
action on the specified resource. The policy language for
specifying the behavioral trust rules is SWI-Prolog and is still
being finalized, but the current design isolates this policy
language from the rest of the authorization infrastructure, and
the Master PDP will not be affected by any changes in this
policy language as it evolves. The behavioral trust PDP will
either be configured with its policy via a back channel, or
dynamically with the policy that accompanies the authorization
decision request message.

2.4 Sticky Policy Contents
We propose a StickyPAD which is a combination of a (set of)
sticky policy(ies) and the data to which the policies apply. The
stickyPAD is created by the authoritative source of the data
(typically the IdP) digitally signing the package. It is the
responsibility of the receiving PEP to validate the signature
when it receives a StickyPAD message in step 0 of figure 1. The
PEP will then parse and unpack valid StickyPAD messages and
re-package the various elements in the standard format of [11]
ready for passing to the AIPEP.
Each embedded sticky policy in the StickyPAD is flagged with
its policy language and its author. Various types of sticky policy
may be defined:
- authorization policies – these says who is authorized to

perform which actions on the associated data/resource.
Each authz policy has an author, so that it can be referred
to by the conflict resolution policy.

- conflict resolution policy – says how conflicts between the
different authorization policy decisions are to be resolved
and which authorisation decision and obligations should be
returned to the AIPEP. It must be written by the issuer of
the StickyPAD.

- audit policies – say what information should be audited
when the associated data/resource is accessed.

- obligations policies – say what actions need to be
undertaken by the receiving PEP when it initially receives
the StickyPAD.

- privacy policies – contain privacy specific rules such as
retention periods and purposes of use. (Note. These may be
combined in the authorization policies depending upon the
specific authz policy language used, but not all
authorization policy languages can support all privacy
specific rules).

- authentication policy – says what level of assurance (LoA)
is required of requesting subjects who are to be allowed to

access the associated data. (Whilst it is possible to
represent LoAs in the authorization policy e.g. as described
in [17], by keeping this as a separate policy it allows the
PEP to short circuit the whole authorization process if the
requesting subject has not been authenticated sufficiently.)

- data manipulation policy – provides rules for how the
associated data (usually PII) can be transformed, enriched
or aggregated with other personal data of the same data
subject or of other data subjects.

2.5 Conflict Resolution Policy
The Master PDP is statically configured with a Conflict
Resolution Policy which covers access to its static resources. In
addition it may be dynamically given a Conflict Resolution
Policy taken from a sticky policy attached to dynamic data. The
conflict resolution policy states how the decisions and
obligations returned from the multiple subordinate PDPs are to
be combined together to produce a single result. For example, if
the dynamic data is the favorite drink PII attribute of a data
subject, then the data subject would be the author of the sticky
conflict resolution policy, whereas for a data subject’s criminal
record the legal system would be the author of the sticky
conflict resolution policy. For a static computing resource, the
organization (resource owner) would be the author of the static
conflict resolution policy. The Master PDP ensures that any
resulting authorization decision conflicts are handled in
accordance with the wishes of the author of the current conflict
resolution policy.
The XACML standard has a reasonably comprehensive section
describing policy combining algorithms. XACMLv2 [1] defines
the following policy combining rules:
- Deny-overrides (both Ordered and Unordered) – A Deny

result over-rides all other results, but otherwise the other
results (Permit, Indeterminate and NotApplicable) may still
be returned.

- Permit-overrides (both Ordered and Unordered) – A Permit
result over-rides all other results, but otherwise the other
results (Deny, Indeterminate and NotApplicable) may still
be returned.

- First-applicable – After a policy has computed a Deny or
Permit result, processing of all further policies stops and
this first result is returned.

- Only-one-applicable – If from the set of policies only one
policy is applicable to the request, then the result of
evaluating this is returned. If however, multiple policies are
applicable then Indeterminate is returned.

In addition, XACMLv3 [2] defines the Deny-unless-permit and
Permit-unless-deny algorithms. The purpose of these is to
ensure that an Indeterminate or NotApplicable result is never
returned to the PEP by the PDP.
We can use the XACML policy combining rules as the basis for
the Master PDP’s conflict resolution policy. However, the above
rule set does not have a rule that allows the Master PDP to
preferentially choose the authorization policy of the
authoritative source. We need an additional rule, specifically:
- Identified Author’s policy overrides – this rule states that

the authorization policy written by the identified author
takes precedence over all other authorization policies.

The conflict resolution policy may also contain sets of

obligations that should be returned with either Deny or Permit
results, in addition to those returned by the PDPs.

2.6 Obligations Service
Obligations may be required before the user’s action is
performed, after the user’s action has been performed, or
simultaneously with the performance of the user’s action [8].
We call this the temporal type of the obligation, which can be
set to either before, with, or after. Examples are as follows:
before the user is given access, increase the amount of logging
to monitor what he is doing; after the user has been given
access, record the amount of cpu that was used; simultaneously
with the user’s access, decrement his account balance. As
described in [8] the failure semantics of each are as follows: a
before obligation will be enacted even if the user’s action
subsequently fails, an after obligation may fail to be performed
even if the user’s action succeeds, and a with obligation should
only succeed if the user’s action succeeds, and should fail if the
user’s action fails. The presence of a with temporal type means
that these obligations (at least) have to support two-phase
commit, and be prepared to rollback their effects if the user’s
action fails. If the user’s action succeeds then the with
obligation can be told to commit to its actions.
According to the XACML model, each obligation has a unique
ID (a URI). The obligations service will know which obligations
it can support, by being configured at construction time with the
set of obligation IDs that are supported. When passed a set of
obligations by the AIPEP, the obligations service will walk
through this list and call the appropriate application independent
obligation service. If any single obligation service returns an
error, then the obligations service must stop further processing
and return an error to the AIPEP. If all obligations are processed
successfully, a success result can be returned. Each of the
application independent obligation services must be of temporal
type before, otherwise they cannot be enacted by the AIPEP.

3. CONCLUSIONS AND FUTURE PLANS
The advanced authorization infrastructure described here is
currently being constructed as part of the EC TAS³ project. We
have already constructed the AIPEP, the obligations service and
the CVS and integrated these with both the PERMIS and
XACML PDPs using the protocols specified in [11], [14] and
[15]. We have implemented state based Break The Glass
policies using the AIPEP, obligations service and a stateless
PDP. A live demo of BTG is available at http://issrg-testbed-
2.cs.kent.ac.uk/. Our next step is to implement the Master PDP
and conflict resolution policy. We then plan to define an
application independent protocol for carrying sticky policies
between systems using the AIPEP instead of the PEP, as
described in [19].

4. ACKNOWLEDGMENTS
The research leading to these results has received funding from
the EC's FP7 programme under grant agreement n° 216287
(TAS³ - Trusted Architecture for Securely Shared Services).

5. REFERENCES
[1] OASIS “eXtensible Access Control Markup Language

(XACML) Version 2.0”OASIS Standard, 1 Feb 2005

[2] OASIS. "eXtensible Access Control Markup Language
(XACML) Version 3.0". Committee draft 1. 16 April 2009

[3] D.W.Chadwick, G.Zhao, S.Otenko, R.Laborde, L.Su and
T.A.Nguyen. “PERMIS: a modular authorization
infrastructure”. Conc. Comp. Prac. Exp, Vol.20, Issue 11,
10 Aug 2008. Pages 1341-1357.

[4] W3C: The Platform for Privacy Preferences 1.0 (P3P 1.0).
Technical Report. 2002

[5] M.Blaze, J.Feigenbaum, J.Ioannidis. “The KeyNote Trust-
Management System Version 2”, RFC 2704, Sept. 1999.

[6] See http://www.tas3.eu
[7] Alqatawna, J.; Rissanen, E.; Sadighi, B. "Overriding of

Access Control in XACML".Proc. 8th IEEE International
Workshop on Policies for Distributed Systems and
Networks (POLICY '07) 13-15 June 2007. Pages:87 – 95

[8] D.W.Chadwick, L.Su, R.Laborde. “Coordinating Access
Control in Grid Services”. Conc. Comp. Prac. Exp., Vol.
20, Issue 9, 25 June 2008, Pages 1071-1094.

[9] D.W.Chadwick, S.Otenko, T.A. Nguyen. “Adding Support
to XACML for Multi-Domain User to User Dynamic
Delegation of Authority”. Int.J. Inf. Sec. Vol. 8, No 2 /
April, 2009 pp 137-152

[10] OASIS “SAML 2.0 profile of XACML v2.0” Committee
Draft, 16 April 2009

[11] D.W.Chadwick, L.Su, R.Laborde. “Use of XACML
Request Context to access a PDP”. OGF GWD-R-P. 25
June 2009

[12] OASIS, “WS-Trust 1.3”, OASIS Standard, 19 March 2007
[13] OASIS. “Assertions and Protocol for the OASIS Security

Assertion Markup Language (SAML) V2.0”, OASIS
Standard, 15 March 2005

[14] D.W.Chadwick, L. Su. “Use of WS-TRUST and SAML to
access a Credential Validation Service”. OGF GWD-R-P,
25 June 2009.

[15] V. Venturi, T. Scavo, D.W. Chadwick, “Use of SAML to
retrieve Authorization Credentials”, OGF GWD-R-P, 25
June 2009

[16] D.W.Chadwick, S.Anthony. “Using WebDAV for
Improved Certificate Revocation and Publication”. LCNS
4582, “Public Key Infrastructure. Proc of 4th European PKI
Workshop, June, 2007, Spain. pp 265-279

[17] N. Zhang, L. Yao, A. Nenadic, J. Chin, C. Goble, A.
Rector, D. Chadwick, S. Otenko and Q. Shi; “Achieving
Fine-grained Access Control in Virtual Organisations”,
Conc. Comp. Prac. Exp., Vol. 19, Issue 9, June 2007, pp.
1333-1352.

[18] M.C.Mont, S.Pearson, P.Bramhall. “Towards accountable
management of identity and privacy: sticky policies and
enforceable tracing services”. Proc 14th Int Workshop on
Database and Expert Systems Applications, 1-5 Sept. 2003.
Page(s): 377 – 382

[19] D.W.Chadwick, S.F.Lievens. "Enforcing “Sticky” Security
Policies throughout a Distributed Application". MidSec
2008. December 1-5, 2008, Leuven, Belgium

