
ar
X

iv
:0

70
8.

35
64

v2
  [

cs
.L

O
]  

20
 M

ar
 2

00
9

Deciding security properties for cryptographic
protocols. Application to key cycles

HUBERT COMON-LUNDH
ENS CACHAN & Research Center for Information Security, AIST, Tokyo
and
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There is a large amount of work dedicated to the formal verification of security protocols. In this
paper, we revisit and extend the NP-complete decision procedure for a bounded number of sessions.
We use a, now standard, deducibility constraint formalism for modeling security protocols. Our
first contribution is to give a simple set of constraint simplification rules, that allows to reduce
any deducibility constraint system to a set of solved forms, representing all solutions (within the
bound on sessions).

As a consequence, we prove that deciding the existence of key cycles is NP-complete for a
bounded number of sessions. The problem of key-cycles has been put forward by recent works
relating computational and symbolic models. The so-called soundness of the symbolic model
requires indeed that no key cycle (e.g., enc(k, k)) ever occurs in the execution of the protocol.
Otherwise, stronger security assumptions (such as KDM-security) are required.

We show that our decision procedure can also be applied to prove again the decidability of
authentication-like properties and the decidability of a significant fragment of protocols with
timestamps.

Categories and Subject Descriptors: F.3.1 [Logics and Meanings of Programs]: Verifying and Reasoning about
Programs

General Terms: Security

Additional Key Words and Phrases: formal proofs, security protocols, symbolic constraints, veri-
fication

1. INTRODUCTION

Security protocols are small programs that aim at securing communications over a public
network, like Internet. Considering the increasing size ofnetworks and their dependence
on cryptographic protocols, a high level of assurance is needed in the correctness of such
protocols. The design of such protocols is difficult and error-prone; many attacks are dis-

This work has been partially supported by the ACI-SI Satin and the ARA SSIA Formacrypt.
Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 2018 ACM 1529-3785/2018/0700-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, October 2018, Pages 1–39.

http://arxiv.org/abs/0708.3564v2
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covered even several years after the publication of a protocol. Consequently, there has
been a growing interest in applying formal methods for validating cryptographic protocols
and many results have been obtained. The main advantage of this approach is its rela-
tive simplicity which makes it amenable to automated analysis. For example, the secrecy
preservation is co-NP-complete for a bounded number of sessions [Amadio and Lugiez
2000; Rusinowitch and Turuani 2001], and decidable for an unbounded number of ses-
sions under some additional restrictions [Comon-Lundh andCortier 2003; Durgin et al.
1999; Lowe 1998; Ramanujam and Suresh 2005]. Many tools havealso been developed to
automatically verify cryptographic protocols, like [Armando et al. 2005; Blanchet 2001;
Millen and Shmatikov 2001; Cremers 2008].

Generalizing the constraint system approach.In this paper, we re-investigate and ex-
tend the NP-complete decision procedure for a bounded number of sessions [Rusinowitch
and Turuani 2001]. In this setting (i.e. finite number of sessions), deducibility constraint
systems have become the standard model for verifying security properties, with a spe-
cial focus on secrecy. Starting with Millen and Shmatikov’spaper [Millen and Shmatikov
2001] many results (e.g. [Comon-Lundh and Shmatikov 2003; Baudet 2005; Bursuc et al.
2007]) have been obtained and several tools (e.g. [Corin andEtalle 2002]) have been devel-
oped within this framework. Our first contribution is to provide a generic approach derived
from [Comon-Lundh and Shmatikov 2003] to decide general security properties. We show
that any deducibility constraint system can be transformedin (possibly several) much sim-
pler deducibility constraint systems that are calledsolved forms, preservingall solutions
of the original system, and not only its satisfiability. In other words, the deducibility con-
straint system represents in a symbolic way all the possiblesequences of messages that
are produced, following the protocol rules, whatever are the intruder’s actions. This set
of symbolic traces is infinite in general. Solved forms are a simple (and finite) represen-
tation of such traces and we show that it is suitable for the verification of many security
properties. We also consider sorted terms, symmetric and asymmetric encryption, pairing
and signatures, but we do not consider algebraic propertieslike Abelian groups or exclu-
sive or. In addition, we prove termination inpolynomial timeof the (non-deterministic)
deducibility constraint simplification. Compared to [Rusinowitch and Turuani 2001], our
procedure preserves all solutions. Hence, we can representfor instance, all attacks on the
secrecy and not only decide if there exists one. Moreover, presenting the decision proce-
dure using a small set of simplification rules yields more flexibility for further extensions
and modifications.

The main originality is that the method is applicable to any security property that can
be expressed as a formula on the protocol trace and the agent memories. For example, our
decision procedure (published in the LPAR’06 proceedings [Cortier and Zălinescu 2006])
has been used in [Cortier et al. 2006] for proving that a new notion of secrecy in presence
of hashes is decidable (and co-NP-complete) for a bounded number of sessions. It has also
been used in [Cortier et al. 2007] in the proof of modularity results for security of proto-
cols. To illustrate the large applicability of our decisionprocedure, we show in this paper
how it can be used for proving co-NP-completeness of three kinds of security properties:
the existence of key cycles, authentication-like properties, and secrecy of protocols with
timestamps.

For authentication properties, we introduce a small logic that allows to specify authen-
tication and some similar security properties. Using our solved forms, we show that any
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property that can be expressed within this logic can be decided. The logic is smaller than
NPATRL [Syverson and Meadows 1996] orPS-LTL [Corin et al. 2005; Corin 2006], but
we believe that decidability holds for a larger logic, closer to the two above ones. How-
ever, the goal of this work is not to introduce a new logic, butrather to highlight the proof
method. Note also that the absence of key cycles cannot be expressed in any of the three
mentioned logics because it is not only a trace property but also a property of the message
structure (see below).

For timestamps, we actually retrieve a significant fragmentof the decidable class identi-
fied by Bozgaet al[Bozga et al. 2004]. We believe that our result can lead more easily to an
implementation, since we only need to adapt the procedure implemented in AVISPA [Ar-
mando et al. 2005], while Bozgaet alhave designed a completely new decision procedure,
whichde factohas not been implemented.

Application to key cycles.Our second main contribution is to use this approach to pro-
vide an NP-complete decision procedure for detecting the generation of key cycles during
the execution of a protocol, in the presence of an intruder, for a bounded number of ses-
sions. To the best of our knowledge, this problem has not beenaddressed before. The key
cycle problem is a problem that arises from the cryptographic community. Indeed, two dis-
tinct approaches for the rigorous design and analysis of cryptographic protocols have been
pursued in the literature: the so-called Dolev-Yao, symbolic, or formal approach on the
one hand and the cryptographic, computational, or concreteapproach on the other hand.
In the symbolic approach, messages are modeled as formal terms that the adversary can
manipulate using a fixed set of operations. In the cryptographic approach, messages are
bit strings and the adversary is an arbitrary probabilisticpolynomial-time Turing machine.
While results in this model yield strong security guarantees, the proofs are often quite in-
volved and only rarely suitable for automation (see, e.g., [Goldwasser and Micali 1984;
Bellare and Rogaway 1993]).

Starting with the seminal work of Abadi and Rogaway [Abadi and Rogaway 2002],
recent results investigate the possibility of bridging thegap between the two approaches.
The goal is to obtain the best of both worlds: simple, automated security proofs that entail
strong security guarantees. The approach usually consistsin proving that the Dolev-Yao
abstraction of cryptographic primitives is correct as soonas strong enough primitives are
used in the implementation. For example, in the case of asymmetric encryption, it has
been shown [Micciancio and Warinschi 2004b] that the perfect encryption assumption is a
sound abstraction for IND-CCA2, which corresponds to a well-established security level.
The perfect encryption assumption intuitively states thatencryption is a black-box that can
be opened only when one has the inverse key. Otherwise, no information can be learned
from a cipher-text about the underlying plain-text.

However, it is not always sufficient to find the right cryptographic hypotheses. Formal
models may need to be amended in order to be correct abstractions of the cryptographic
models. A widely used requirement is to control how keys can encrypt other keys. In a
passive setting, soundness results [Abadi and Rogaway 2002; Micciancio and Warinschi
2004a] require that nokey cyclescan be generated during the execution of a protocol.
Key cycles are messages likeenc(k, k) or enc(k1, k2), enc(k2, k1) where a key encrypts
itself or more generally when the encryption relation between keys contains a cycle. Such
key cycles have to be disallowed simply because usual security definitions for encryption
schemes do not yield any guarantees otherwise. In the activesetting, the typical hypotheses
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are even stronger. For instance, in [Backes and Pfitzmann 2004; Janvier et al. 2005] the
authors require that a keyk never encrypts a key generated beforek or, more generally,
that it is known in advance which key encrypts which one. Moreprecisely, the encryption
relation has to be compatible with the order in which keys aregenerated, or more generally,
it has to be compatible with an a priori givenordering on keys.

Related work on key cycles.Some authors circumvent the problem of key cycles by
providing new security definitions for encryption,Key Dependent Messagessecurity, or
KDM in short, that allow key cycles [Adão et al. 2005; Backeset al. 2007]. However,
the standard security notions do not imply these new definitions, and ad-hoc encryption
schemes have to be constructed. Most of these constructionsuse the random oracle model,
which is provably non implementable. Though there was some recent progress [Hofheinz
and Unruh 2008] towards constructing a KDM-secure encryption scheme in the standard
model, none of the usual, implemented encryption schemes has been proved to satisfy
KDM-security.

In a passive setting, Laud [Laud 2002] proposed a modification of the Dolev-Yao model
such that the new model is a sound abstraction even in the presence of key cycles. In his
model the intruder’s power is strengthened by adding new deduction rules. With the new
rules, from a message containing a key cycle, the intruder can infer all keys involved in
the cycle as well as the messages encrypted by these keys. Subsequently, Janvier [Janvier
2006] proved that the intruder deduction problem remains polynomial for the modified
deduction system. It was also suggested that this approach can be extended to active in-
truders and incorporated in existing tools, though, to the best of our knowledge, this has
not been completed yet. Note that the definition of key cyclesused in [Janvier 2006] is
more permissive than in [Abadi and Rogaway 2002] (which is unnecessarily restrictive)
and it corresponds to the approach of Laud [Laud 2002].

Deciding key cycles.In this paper, we provide an NP-complete decision procedurefor
detecting the generation of key cycles during the executionof a protocol, in the presence
of an active intruder, for a bounded number of sessions. Our procedure works for all
the above mentioned definitions of key cycles: strict key cycles (̀a la Abadi, Rogaway),
non-strict (̀a la Laud) key cycles, key orderings (à la Backes). We therefore provide a
necessary component for automated tools used in proving strong, cryptographic security
properties, using existing soundness results. Since our approach is an extension of the
transformation rules derived from the result of [Rusinowitch and Turuani 2001], we believe
that our algorithm can be easily implemented since it can be adapted from the associated
procedure, already implemented in AVISPA [Armando et al. 2005] for deciding secrecy
and authentication properties.

Outline of the paper.The messages and the intruder capabilities are modeled in Sec-
tion 2. In Section 3.1, we define deducibility constraint systems and show how they can be
used to express protocol executions. In Section 3.2, we define security properties and their
satisfaction. In Section 4, we show that the satisfaction ofany (in)security property can be
non-deterministically, polynomially reduced to the satisfiability of the same problem, this
time on simpler constraint systems. The simplification rules derived from [Comon-Lundh
and Shmatikov 2003] are provided in Section 4.1. They are actually not sufficient to en-
sure termination in polynomial time. Thus we introduce in Section 4.6 a refined decision
procedure, which is correct, complete, and terminating in polynomial time. We show in
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Section 5 how this approach can be used to obtain our main result of NP-completeness
for the decision of the key cycles generation. In Section 6, we introduce a small logic
to express authentication-like properties and we show how our technique can be used to
decide any formula of this logic. In Section 7, we show how it can be used to derive NP-
completeness for protocols with timestamps. Some concluding remarks about further work
can be found in Section 8.

2. MESSAGES AND INTRUDER CAPABILITIES

2.1 Syntax

Cryptographic primitives are represented by function symbols. More specifically, we con-
sider asignature(S,F) consisting in a set ofsortsS = {s, s1 . . .} and a set offunction
symbolsF = {enc, enca, sign, 〈 〉, priv}. Each function symbol is associated with anar-
ity: ar is a mapping fromF to S∗ × S, which we writear(f) = s1 × · · · × sn → s.
The four first function symbols inF are binary: for each of them there ares1, s2, s ∈ S
such thatar(f) = s1 × s2 → s. The last symbol is unary: there ares, s′ ∈ S such that
ar(f) = s → s′.

The symbol〈 〉 represents the pairing function. The termsenc(m, k) andenca(m, k)
represent respectively the messagem encrypted with the symmetric (resp. asymmetric)
key k. The termsign(m, k) represents the messagem signed by the keyk. The term
priv(a) represents the private key of the agenta. For simplicity, we confuse the agents
names with their public key. (Or conversely, we claim that agents identities are defined by
their public keys).
N = {a, b . . .} is a set ofnamesandX = {x, y . . .} is a set ofvariables. Each name

and each variable is associated with a sort. We assume that there are infinitely many names
and infinitely many variables of each sort.

The set ofterms of sorts is defined inductively by

t ::= term of sorts
| x variablex of sorts
| a namea of sorts
| f(t1, . . . , tn) application of symbolf ∈ F such thatar(f) = s1 × · · · × sn → s

and eachti is a term of sortsi.

We assume a special sortMsg that subsumes all the other sorts: any term is of sortMsg.
Sorts are mostly left unspecified in this paper. They can be used in applications to

express that certain operators can be applied only to some restricted terms. For example,
we use sorts explicitly to express that messages are encrypted by atomic keys (only in
Section 5), and to represent timestamps (only in Section 7).

As usual, we writeV(t) for the set of variables occurring int. For a setT of terms,V(T )
denotes the union of the variables occurring in the terms ofT . A termt is groundor closed
if and only if V(t) = ∅. A positionor anoccurrencein a termt is a sequence of positive
integers corresponding to paths starting from the root in the tree-representation oft. For
a termt and a positionp in this term,t|p denotes the subterm oft at positionp. We write
St(t) andSt(T ) for the set of subterms of a termt, and of a set of termsT , respectively.
Thesizeof a termt, denoted|t|, is defined inductively as usual:|t| = 1 if t is a variable
or a name andt = 1 +

∑n

i=1 |ti| if t = f(t1, . . . , tn) for f ∈ F . If T is a set of terms
then|T | denotes the sum of the sizes of its elements. The cardinalityof a setT is denoted
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Pairing
S ⊢ x S ⊢ y

S ⊢ 〈x, y〉
Symmetric encryption

S ⊢ x S ⊢ y

S ⊢ enc(x, y)

Asymmetric encryption
S ⊢ x S ⊢ y

S ⊢ enca(x, y)
Signing

S ⊢ x S ⊢ y

S ⊢ sign(x, y)

Symmetric decryption
S ⊢ enc(x, y) S ⊢ y

S ⊢ x

First Projection
S ⊢ 〈x, y〉

S ⊢ x

Asymmetric decryption
S ⊢ enca(x, y) S ⊢ priv(y)

S ⊢ x

Second Projection
S ⊢ 〈x, y〉

S ⊢ y

Unsigning(optional)
S ⊢ sign(x, y)

S ⊢ x

Axiom
S, x ⊢ x

Fig. 1. Intruder deduction system.

by ♯T . By abuse of notation, we sometimes denote byT, u the setT ∪ {u}.
Substitutions are writtenσ = {t1/x1

, . . . , tn/xn
} with dom(σ) = {x1, . . . , xn}. We only

considerwell-sortedsubstitutions, for whichxi andti have the same sort.σ is closedif
and only if everyti is closed. The application of a substitutionσ to a termt is writtenσ(t)
or tσ. A most general unifier of two termsu andv is denoted bymgu(u, v).

2.2 Intruder capabilities

The ability of the intruder is modeled by the deduction rulesdisplayed in Figure 1 and
corresponds to the usual Dolev-Yao rules.

Pairing, signing, symmetric and asymmetric encryption arethecompositionrules. The
other rules aredecomposition rules. Intuitively, these deduction rules say that an intruder
can compose messages by pairing, encrypting, and signing messages provided she has
the corresponding keys and conversely, she can decompose messages by projecting or de-
crypting provided she holds the decryption keys. For signatures, the intruder is also able
to verify whether a signaturesign(m, k) and a messagem match (provided she has the
verification key), but this does not give rise to any new message: this capability needs not
to be represented in the deduction system. We also consider an optional rule

S ⊢ sign(x, y)

S ⊢ x

that expresses the ability to retrieve the whole message from its signature. This prop-
erty may or may not hold depending on the signature scheme, and that is why this rule is
optional. Note that this rule is necessary for obtaining soundness properties w.r.t. crypto-
graphic digital signatures. Our results will hold in both cases, whether or not this rule is
considered in the deduction relation.

A proof tree(sometimes simply called a proof) is a tree whose labels are sequentsT ⊢ u
whereT is a finite set of terms andu is a term. A proof tree is inductively defined as
follows:

—if u is a term andu ∈ T , thenT ⊢ u is a proof tree whose conclusion isT ⊢ u, using
the axiom;
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—if π1, . . . , πn are proof trees, whose respective conclusions areT ⊢ u1, . . . , T ⊢ un

respectively and
S ⊢ t1 · · · S ⊢ tn

S ⊢ t
is a ruleR of the Figure 1 such that, for some

(well-sorted) substitutionσ, t1σ = u1, . . . , tnσ = un, then
π1 · · · πn

T ⊢ tσ
is a proof tree

usingR, whose conclusion isT ⊢ tσ.

We will call subproof a subtree of a proof tree. Anstrict subproof (resp. immediate
subproof) of π is a subproof ofπ distinct fromπ (resp. a maximal strict subproof ofπ).

A termu is deduciblefrom a set of termsT , which we sometimes writeT ⊢ u by abuse
of notation, if there exists a proof tree whose conclusion isT ⊢ u.

Example2.1. The term〈k1, k2〉 is deducible from the setS1 = {enc(k1, k2), k2}, as
the following proof tree shows:

S1 ⊢ enc(k1, k2) S1 ⊢ k2

S1 ⊢ k1 S1 ⊢ k2

S1 ⊢ 〈k1, k2〉

3. DEDUCIBILITY CONSTRAINT SYSTEMS AND SECURITY PROPERTIES

Deducibility constraint systems are quite common (see e.g.[Millen and Shmatikov 2001;
Comon-Lundh and Shmatikov 2003]) in modeling security protocols. We recall here their
definition and show how they can be used to specify general security properties. Then we
prove that any deducibility constraint system can be transformed into simpler ones, called
solved. Such simplified constraints are then used to decide the security properties.

3.1 Deducibility constraint systems

In the usual attacker’s model, the intruder controls the network. In particular she can
schedule the messages. Once such a scheduling is fixed, she can still replace the messages
with fake ones, which are nevertheless accepted by the honest participants. More precisely,
some pieces of messages cannot be analyzed by the participants, hence can be replaced by
any other piece, provided that the attacker can construct the overall message. This can be
used to mount attacks.

In the formal model, pieces that cannot be analyzed are replaced with variables. Any
substitution of these variables will be accepted, providedthat the attacker can deduce (us-
ing the deduction system of Figure 1) the corresponding instance. The main problem then
is to decide whether there is such a substitution, yielding aviolation of the security prop-
erty.

Let us give a detailed example recalling how possible execution traces are formalized.

Example3.1. Consider the famous Needham-Schroeder asymmetric keyauthentica-
tion protocol [Needham and Schroeder 1978] designed for mutual authentication:

A → B : enca(〈NA, A〉, B)
B → A : enca(〈NA, NB〉, A)
A → B : enca(NB, B)

The agentA sends toB his name and a fresh nonce (a randomly generated value) encrypted
with the public key ofB. The agentB answers by copyingA’s nonce and adds a fresh

ACM Transactions on Computational Logic, Vol. V, No. N, October 2018.



8 · Hubert Comon-Lundh et al.

nonceNB, encrypted byA’s public key. The agentA acknowledges by forwardingB’s
nonce encrypted byB’s public key.

Formally, this protocol can be described using two rolesA andB. The roleA has two
parameters:a, b (initiator and responder), and is (informally) specified asfollows:

A(a, b) : generate(na)
A1. send(enca(〈na, a〉, b))
A2. receive(enca 〈na, y〉, a) → send(enca(y, b))

wherey is a variable:a cannot check that this piece of the message is a nonce generated
by b. Hence it can be replaced by any term (or any term of a given sort, depending on what
we want to model).

Similarly, the role ofB takes the two parametersb, a, and is specified as:

B(b, a) : generate(nb)
B1. receive(enca(〈x, a〉, b)) → send(enca(〈x, nb〉, a))
B2. receive(enca(nb, b))

Without loss of generality, we may assume thatsend actions are performed as soon as
the correspondingreceive action is completed: this is the best scheduling strategy for the
attacker, who will get more information for further computing fake messages. For this
reason, we only need to consider the possible scheduling ofreceive events.

Leta, b be honest participants andi be a corrupted one. Consider one sessionA(a, i) and
one sessionB(b, a). There are three message deliveries to schedule:A2, B1, B2 andB2
has to occur afterB1. Assume the chosen scheduling isB1, A2, B2. In this scenario, the
possible sequences of message delivery are instances ofenca(〈x, a〉, b), enca(〈na, y〉, a),
enca(nb, b). The variablesx, y can be replaced by any term, provided that the attacker can
build the corresponding instances from her knowledge at theappropriate control point.

The initial intruder knowledge can be set toT0 = {a, b, i, priv(i)}, including the private
key of the corrupted agent.

For the first message delivery, the attacker has to be able to build the first message
instance from this initial knowledge and the message sent atstepA1:

T1
def
= T0 ∪ {enca(〈na, a〉, i)} 
 enca(〈x, a〉, b) (1)

This notation will be formally defined later on. Informally,this is a formula, which is
satisfied by a substitutionσ onx if enca(〈x, a〉, b)σ is deducible fromT1, expressing the
ability of the intruder to constructenca(〈x, a〉, b)σ.

Then, the agentb replies sending the corresponding instanceenca(〈x, nb〉, a), which
increases the attacker’s knowledge, hence enabling its usefor building the next message;
we get the second deducibility constraint:

T2
def
= T1 ∪ {enca(〈x, nb〉, a)} 
 enca(〈na, y〉, a) (2)

Similarly, we construct a third deducibility constraint for the last message delivery:

T3
def
= T2 ∪ {enca(y, i)} 
 enca(nb, b) (3)

Definition 3.2. A deducibility constraint systemC is a finite set of expressionsT 
 u,
calleddeducibility constraints, whereT is a non empty set of terms, called theleft-hand
sideof the deducibility constraint andu is a term, called theright-hand sideof the de-
ducibility constraint, such that:

ACM Transactions on Computational Logic, Vol. V, No. N, October 2018.



Deciding security properties for cryptographic protocols · 9

(1) the left-hand sides of all deducibility constraints aretotally ordered by inclusion;
(2) if x ∈ V(T ) for some(T 
 u) ∈ C then

Tx
def
= min{T ′ | (T ′


 u′) ∈ C, x ∈ V(u′)}

exists andTx ( T .

Informally, the first condition states that the intruder knowledge is always increasing.
The second condition expresses that variables abstract pieces ofreceivedmessages: they
have to occur first on the right side of a constraintT 
 u, before occurring in some left side.
Note that, due to point(1), Tx exists if and only if the set{T ′ | (T ′


 u′) ∈ C, x ∈ V(u′)}
is not empty. The linear ordering on left hand sides also implies the uniqueness of the
minimum. Hence(2) can be restated equivalently as:

(2) ∀x ∈ V(C), ∃ (T 
 u) ∈ C, x ∈ V(u) \ V(T )

In what follows, we may use this formulation instead.
Theleft-hand sideof a deducibility constraint systemC, denoted bylhs(C), is the max-

imal left-hand side of the deducibility constraints ofC. Theright-hand sideof a deducibil-
ity constraint systemC, denoted byrhs(C), is the set of right-hand sides of its deducibility
constraints.V(C) denotes the set of variables occurring inC. ⊥ denotes the unsatisfiable

system. Thesizeof a constraint system is defined as|C|
def
= |lhs(C) ∪ rhs(C)|.

A deducibility constraint systemC is also written as a conjunction of deducibility con-
straints

C =
∧

1≤i≤n

(Ti 
 ui)

with Ti ⊆ Ti+1, for all i with 1 ≤ i ≤ n− 1. The second condition in
Definition 3.2 then implies that ifx ∈ V(Ti) then∃j < i such thatTj = Tx andTj ( Ti.

Definition 3.3. A solutionσ of a deducibility constraint systemC is a (well-sorted)
ground substitution whose domain isV(C) and such that, for everyT 
 u ∈ C, Tσ ⊢ uσ.

Example3.4. Coming back to Example 3.1, the substitutionσ1 = {na/x,
nb/y} is a

solution of the deducibility constraint system since

T0 ∪ {enca(〈na, a〉, i)} ⊢ enca(〈x, a〉, b)σ1

T1σ1 ∪ {enca(〈x, nb〉, a)σ1} ⊢ enca(〈na, y〉, a)σ1

T2σ1 ∪ {enca(y, i)σ1} ⊢ enca(nb, b)

3.2 Security properties

Deducibility constraint systems represent in a symbolic and compact way a possibly infi-
nite set of traces (behaviors), which depend on the attacker’s actions. Security properties
are formulas, that are interpreted over these traces.

Definition 3.5. Given a set of predicate symbols together with their interpretation over
the set of ground terms, a(in)security propertyis a first-order formulaφ built on these
predicate symbols. Asolutionof φ is a ground substitutionσ of V(φ) such thatφσ is true
in the given interpretation. (We also writeσ |= φ).

If C is a deducibility constraint system andφ is a (in)security property, possibly sharing
free variables withC, a closed substitutionσ from V(φ) ∪ V(C) is anattack forφ andC,
if is a solution of bothC andφ.
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Example3.6. If the security property is simplytrue (which is always satisfied) and the
only sort isMsg then we find the usual deducibility constraint system satisfaction problem,
whose satisfiability is known to be NP-complete [Rusinowitch and Turuani 2003].

Example3.7. Secrecy can be easily expressed by requiring that the secret data is not
deducible from the messages sent on the network. We consideragain the deducibility
constraint systemC1 defined in Example 3.1. The (in)security property then expresses
thatnb is deducible:φ is the deducibility constraintT3 
 nb. Note that we may view a
constraint (system) as a first order formula.

Then the substitutionσ1 = {na/x,
nb/y} is an attack forφ andC1 and corresponds to the

attack found by G. Lowe [Lowe 1996]. Note that such a deduction-based property can be
directly included in the constraint system by adding a deducibility constraintT3 
 nb.

Example3.8. Let us show here an example of authentication property.Two agentsA
andB authenticate on some messagem if wheneverB finishes a sessionbelievinghe has
talked toA thenA has indeed finished a session withB and they share the same value
for m. Note that the agentsA andB have in general a different view of the messagem,
depending e.g. on which nonces they have generated themselves and on which nonces they
have received. IfmA denotes the view ofm from A andmB the view ofm fromB, then
the insecurity property states that there is a trace in whichthese two messages are distinct.

Back to Example 3.1, consider another scenario with two instances of the roleA: A(a, i)
andA(a, b) and one instance of the roleB: B(b, a). The attacker schedules the commu-
nications as in Example 3.1: in particular the expected message delivery inA(a, b) is not
scheduled (the message is not delivered). Then the deducibility constraint systemC′

1 is
identical toC1, except thatT0 is replaced withT ′

0 = T0∪{enca(〈n′
a, a〉, b)}. The noncex

received byb should correspond to the noncen′
a sent bya for b; we considermA = n′

a,
mB = x.

The failure of authentication can be stated as the simple formulax 6= n′
a. The substitu-

tion σ1 defined in Example 3.7 is then an attack, sinceb accepts the noncena instead of
n′
a: xσ1 6= n′

a.

In Sections 5, 6, 7 we provide with other examples corresponding to time constraints,
more general authentication-like properties, or to express that no key cycles are allowed.

4. SIMPLIFYING DEDUCIBILITY CONSTRAINT SYSTEMS

Using simplification rules, solving deducibility constraint systems can be reduced to solv-
ing simpler constraint systems that we call solved. One niceproperty of the transformation
is that it works for any security property.

Definition 4.1. A deducibility constraint system issolvedif it is ⊥ or each of its con-
straints are of

the formT 
 x, wherex is a variable.

This definition corresponds to the notion of solved form in [Comon-Lundh and Shmatikov
2003]. Note that the empty deducibility constraint system is solved.

Solved deducibility constraint systems with the single sort Msg are particularly simple
in the case of thetrue predicate since they always have a solution, as noticed in [Millen
and Shmatikov 2001]. Indeed, letT1 be the smallest (w.r.t. inclusion) left hand side of all
constraints of a deducibility constraint system. From Definition 3.2,T1 is non empty and
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R1 C ∧ T 
 u  C if T ∪ {x | (T ′ 
 x) ∈ C, T ′ ( T}⊢u

R2 C ∧ T 
 u  σ Cσ ∧ Tσ 
 uσ if σ = mgu(t, u), t ∈ St(T ),
t 6= u, t, u not variables

R3 C ∧ T 
 u  σ Cσ ∧ Tσ 
 uσ if σ = mgu(t1, t2), t1, t2 ∈ St(T ),
t1 6= t2, t1, t2 not variables

R′

3
C ∧ T 
 u  σ Cσ ∧ Tσ 
 uσ if σ = mgu(t2, t3), enca(t1, t2), priv(t3) ∈ St(T ),

t2 6= t3, t2 or t3 (or both) is a variable

R4 C ∧ T 
 u  ⊥ if V(T, u) = ∅ andT 6⊢ u

Rf C ∧ T 
 f(u, v)  C ∧ T 
 u ∧ T 
 v for f ∈ { 〈 〉, enc, enca, sign}

Fig. 2. Simplification rules.

has no variables. Lett ∈ T1. Then the substitutionθ defined byxθ = t for every variablex
is a solution sinceT ⊢ xθ = t for any constraintT 
 x in the solved system.

4.1 Simplification rules

The simplification ruleswe consider are defined in Figure 2. For instance, the ruleR1

removes a redundant constraint, i.e., when it is a logical consequence of smaller constraints.
The ruleR3 guesses some identity (confusion) between two sent sub-messages.

All the rules are in fact indexed by a substitution: when there is no index then the identity
substitution is implicitly assumed. We writeC  n

σ C′ if there areC1, . . . , Cn with n ≥ 1,
C′ = Cn, C  σ1

C1  σ2
. . .  σn

Cn, andσ = σ1σ2 . . . σn. We writeC  ∗
σ C′ if

C  n
σ C′ for somen ≥ 1, or if C′ = C andσ is the identity substitution.

Example4.2. Let us consider the following deducibility constraintsystemC:
{

T1 
 〈 enca(x, a), enca(y, a) 〉
T2 
 k1

whereT1 = {a, 〈enca(k1, a), enca(k2, a)〉} andT2 = T1 ∪ {enc(y, x)}. The deducibility
constraint systemC can be simplified into a solved form using (for example) the following
sequence of simplification rules.

C
R〈〉
 







T1 
 enca(x, a)
T1 
 enca(y, a)
T2 
 k1

Renca
 















T1 
 x
T1 
 a
T1 
 enca(y, a)
T2 
 k1

R1
 







T1 
 x
T1 
 enca(y, a)
T2 
 k1

sinceT1 ⊢ a. Letσ = mgu
(

enca(k1, a), enca(y, a)
)

= {k1/y}. We have






T1 
 x
T1 
 enca(y, a)
T2 
 k1

R2
 σ







T1 
 x
T1 
 enca(k1, a)

T2σ 
 k1

R1
 

{

T1 
 x
T2σ 
 k1

R1
 T1 
 x

sinceT1 ⊢ enca(k1, a) andT2σ ∪ {x} ⊢ k1. Intuitively, it means that any substitution of
the form{m/x, k1/y} such thatm is deducible fromT1 is solution ofC.

The simplification rules are correct and complete: a deducibility constraint systemC
has a solution, which is also a solution of a (in)security propertyφ, if and only if there
exists a deducibility constraint systemC′ in solved form such thatC  ∗

σ C′ and there is a
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solution of bothC′ andφσ. Note that several simplification rules can possibly be applied
to a given deducibility constraint system.

THEOREM 4.3. Let C be a deducibility constraint system,θ a substitution, andφ a
(in)security property.

(1) (Correctness) IfC  ∗
σ C′ for some deducibility constraint systemC′ and some sub-

stitutionσ, and ifθ is an attack forφσ andC′, thenσθ is an attack forφ andC.
(2) (Completeness) Ifθ is an attack forC andφ, then there exist a deducibility constraint

systemC′ in solved form and substitutionsσ, θ′ such thatθ = σθ′, C  ∗
σ C′, andθ′

is an attack forC′ andφσ.
(3) (Termination) There is no infinite derivation sequenceC  σ1

C1 σ2
· · · σn

Cn · · · .

Theorem 4.3 is proved in Sections 4.2, 4.3, and 4.4.
Getting a polynomial bound on the length of simplification sequences requires however

an additional memorization technique. This is explained inSection 4.6.

4.2 Correctness

We first give two simple lemmas.

LEMMA 4.4. If T ⊢ u thenV(u) ⊆ V(T ).

PROOF. The statement follows by induction on the depth of a proof ofT ⊢ u, observing
that no deduction rule introduces new variables. Indeed,V(t) ⊆

⋃

i V(ti) for deduction
rules of the form

S ⊢ t1 . . . S ⊢ tk

S ⊢ t

with k > 0, andV(t) ⊆ V(S) for the axiom (that is, ift ∈ S).

The next lemma shows the “cut elimination” property for the deduction system⊢.

LEMMA 4.5. If T ⊢ u andT, u ⊢ v thenT ⊢ v.

PROOF. Consider a proofπ of T ⊢ u and a proofπ′ of T, u ⊢ v. The tree obtained
from π′ by

—replacing the nodesT, u ⊢ t in π′ with T ⊢ t,
—replacing each new leafT ⊢ u (the oldT, u ⊢ u) with the treeπ,

is a proof ofT ⊢ v.

As a consequence, ifT ⊆ T ′, T ′ ⊢ v, andT ⊢ u, for all u ∈ T ′ \ T , thenT ⊢ v.

We show now that the simplification rules preserve deducibility constraint systems.

LEMMA 4.6. The simplification rules transform a deducibility constraint system into a
deducibility constraint system.

PROOF. Let C be a deducibility constraint system,C =
∧

i(Ti 
 ui) andC  σ C′.
SinceTi ⊆ Ti+1 implies Tiσ ⊆ Ti+1σ, C′ satisfies the first point of the definition of
deducibility constraint systems.

We show thatC′ also satisfies the second point of the definition of deducibility constraint
systems. Let(T ′


 u′) ∈ C′ andx ∈ V(T ′). We have to prove thatT ′
x exists andT ′

x ( T ′.
We distinguish cases, depending on which simplification rule is applied:

ACM Transactions on Computational Logic, Vol. V, No. N, October 2018.
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—If the ruleR1 is applied, eliminating the constraintT 
 u. ThenC′ = C \ {T 
 u}. If
Tx 6= T thenT ′

x = Tx (and thusT ′
x exists andT ′

x ( T ′). Suppose thatTx = T . Then
there is(T 
 u′′) ∈ C such thatx ∈ V(u′′). If u 6= u′′ then againT ′

x = Tx (since
(T ′

x 
 u′′) ∈ C′). Finally, suppose thatu = u′′. By the minimality ofT , it follows that
x /∈ V(T ) andx /∈ {y | (T ′′


 y) ∈ C, T ′′ ( T }. Sincex ∈ V(u), by Lemma 4.4,
T ∪ {y | (T ′′


 y) ∈ C, T ′′ ( T } 6⊢ u, which contradicts the applicability of ruleR1.

—If one of the rulesR2, R3 or R′
3 is applied, then, for each constraint(T ′′


 u′′) ∈ C′,
there is a constraint(T 
 u) ∈ C such thatTσ = T ′′ anduσ = u′′. Consider
(T 
 u) ∈ C such thatTσ = T ′ anduσ = u′.
If x is not introduced byσ, thenx ∈ V(T ). ThenTx exists andTx ( T . ThusTxσ ⊆
Tσ. If Txσ = Tσ, thenx ∈ V(Tx), which contradicts the minimality ofTx. Thus
Txσ ( Tσ. We also have that{T ′′σ | (T ′′


 u′′) ∈ C, x ∈ V(u′′)} ⊆ {T ′′σ | (T ′′σ 

u′′σ) ∈ C′, x ∈ V(u′′σ)}, since, for any termu′′, if x ∈ V(u′′), thenx ∈ V(u′′σ). It
follows thatT ′

x exists andT ′
x ⊆ Txσ. HenceT ′

x ( T ′.
Otherwise, assume thatx is introduced byσ: ∃y ∈ V(T ) such thatx ∈ V(yσ). Then
Ty exists andTy ( T . Let Y = {z ∈ V(T ) | x ∈ V(zσ)} and lety0 ∈ Y be such that
Ty0

= min{Ty | y ∈ Y }. For ally′ ∈ Y , we have that

A
def
= {T ′′σ | (T ′′


 u′′) ∈ C′, x ∈ V(u′′)}

= {Tσ | (T 
 u) ∈ C, x ∈ V(uσ)}

⊇ {Tσ | (T 
 u) ∈ C, ∃z ∈ V(u), x ∈ V(zσ)}

⊇ {Tσ | (T 
 u) ∈ C, y′ ∈ V(u), x ∈ V(y′σ)}

= {Tσ | (T 
 u) ∈ C, y′ ∈ V(u)}
def
= By′ .

ThusT ′
x = minA ⊆ minBy′ = Ty′σ. FromTy0

( T , we obtain thatTy0
σ ⊆ Tσ.

Suppose, by contradiction, thatTy0
σ = Tσ. Thenx ∈ V(Ty0

σ) (sincex ∈ V(Tσ)).
That is, there existsz ∈ V(Ty0

) such thatx ∈ V(zσ). From condition 2 of Definition 3.2
applied toz, it follows thatTz ( Ty0

. As z is in Y , this contradicts the choice ofy0.
ThusT ′

x ⊆ Ty0
σ ( Tσ = T ′.

—If the ruleR4 is applied then there is nothing to prove.

—If some ruleRf is applied, then the property is preserved, since, ifx ∈ V(u′′) for some
termu′′ such that(T ′′


 u′′) ∈ C′, then there is a termv with x ∈ V(v) such that
(T ′′

 v) ∈ C.

LEMMA 4.7 CORRECTNESS. If C  σ C′, then for every solutionτ for C′, στ is a
solution ofC.

PROOF. If C′ is obtained by applyingR1, then we have to prove thatTτ ⊢ uτ , where
T 
 u is the eliminated constraint. We know thatT ∪ {x | (T ′


 x) ∈ C, T ′ ( T} ⊢ u. It
follows thatTτ ∪ {xτ | (T ′


 x) ∈ C, T ′ ( T} ⊢ uτ . All constraintsT ′

 x in C with

T ′ ( T are also constraints inC′. Thus, for all such constraints, we have thatT ′τ ⊢ xτ ,
and henceTτ ⊢ xτ . Then, from Lemma 4.5, we obtain thatTτ ⊢ uτ .

If C′ is obtained by applyingR2, R3 or R′
3, then, for every constraintT 
 u of C,

(Tσ)τ ⊢ (uσ)τ , henceT (στ) ⊢ u(στ).
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If C′ is obtained by applying some ruleRf , then we obtain thatTτ ⊢ f(u, v)τ from
Tτ ⊢ uτ andTτ ⊢ vτ by applying the corresponding inference rule (e.g. encryption if
f = enc).

Finally,C′ cannot be obtained by the ruleR4, since it is satisfiable.
It follows that, in all cases,στ satisfiesC.

4.3 Completeness

Let T1 ⊆ T2 ⊆ · · · ⊆ Tn. We say that a proofπ of Ti ⊢ u is left minimalif, whenever
there is a proof ofTj ⊢ u for somej < i, then, replacingTi with Tj in all left members of
the labels ofπ, yields a proof ofTj ⊢ u. In other words, the left-minimal proofs are those
that can be performed in a minimalTj .

We say that a proof issimpleif all its subproofs are left minimal and there is no repeated
label on any branch. Remark that a subproof of a simple proof is simple.

LEMMA 4.8. If there is a proof ofTi ⊢ u, then there is a simple proof of it.

PROOF. We prove the property by induction on the pair(i,m) (considering the lexico-
graphic ordering), wherem is the size of a proof ofTi ⊢ u.

If i = 1 then any (subproof of any) proof ofT1 ⊢ u is left minimal and there exists a
proof without repeated labels on any path.

If i > 1 and there is aj < i such thatTj ⊢ u, then we apply the induction hypothesis
to obtain the existence of a simple proof ofTj ⊢ u. This proof is also a simple proof of
Ti ⊢ u.

If i > 1 and there is noj < i such thatTj ⊢ u, then we apply the induction hypothesis
on the immediate subproofsπ1, . . . , πn of the proofπ of Ti ⊢ u. If the labelTi ⊢ u appears
in one of the resulting proofsπ′

i, then replaceπ with a subproof ofπ′
i whose conclusion

is Ti ⊢ u. The new proof does not contain any labelTi ⊢ u. Otherwise, ifπ is obtained
by applying an inference ruleR to π1, . . . , πn, then replaceπ with the proof obtained by
applyingR to π′

1, . . . , π
′
n. In both cases the resulting proof and all of its subproofs are left

minimal by construction, and hence the resulting proof is simple.

LEMMA 4.9. Let C be a deducibility constraint system,θ be a solution ofC, Ti be
a left hand side ofC such that, for any(T 
 v) ∈ C, if T ( Ti, thenv is a variable.
Let u be any term. If there is a simple proof ofTiθ ⊢ u, whose last inference rule is a
decomposition, then there is a non-variablet ∈ St(Ti) such thattθ = u.

PROOF. Consider a simple proofπ of Tiθ ⊢ u. We may assume, without loss of gen-
erality, thati is minimal. Otherwise, we simply replace everywhere in the proof Ti with a
minimalTj such thatTjθ ⊢ u is derivable; by left minimality, we get again a proof tree,
whose last inference rule is a decomposition. Such aTj ⊆ Ti also satisfies the hypotheses
of the lemma.

We reason by induction on the depth of the proofπ. We make a case distinction, de-
pending on the last rule ofπ:

The last rule is an axiom.Thenu ∈ Tiθ and there ist ∈ Ti (thust ∈ St(Ti)) such that
tθ = u. By contradiction, ift was a variable thenTt 
 w, with t ∈ V(w) is a constraint in
C such thatTt ( Ti. Moreover, by hypothesis of the lemma,w must be a variable. Hence
w = t. ThenTtθ ⊢ u, which contradicts the minimality ofi.
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The last rule is a symmetric decryption.

π =

π1

Tiθ ⊢ enc(u,w)
π2

Tiθ ⊢ w

Tiθ ⊢ u

By simplicity, the last rule ofπ1 cannot be a composition:Tiθ ⊢ u would appear twice
on the same path. Then, by induction hypothesis, there is a non variablet ∈ St(Ti) such
that tθ = enc(u,w). It follows that t = enc(t′, t′′) with t′θ = u. If t′ was a variable,
thenTt′θ ⊢ t′θ would be derivable. HenceTt′θ ⊢ u would be derivable, which again
contradicts the minimality ofi. Hencet′ is not variable, as required.

The last rule is an asymmetric decryption, (resp. projection, resp. unsigning).The proof
is similar to the above one: by simplicity and by induction hypothesis, there is a non-
variablet ∈ St(Ti) such thattθ = enca(u, v) (resp.tθ = 〈u, v〉, resp.tθ = sign(u, priv(v))).
Thent = enca(t′, t′′) (resp.t = 〈t′, t′′〉, resp.t = sign(t, t′′)). t′ ∈ St(Ti), t′θ = u and,
by minimality of i, t′ is not a variable.

LEMMA 4.10. LetC be a deducibility constraint system andθ be a solution ofC. Let
Ti be a left hand side of a constraint inC andu be a term, such that:

(1) for any(T 
 v) ∈ C, if T ( Ti, thenv is a variable;
(2) Ti does not contain two distinct non-variable subtermst1, t2 with t1θ = t2θ;
(3) Ti does not contain two termsenca(t1, x) andpriv(t2) wherex is a variable distinct

from t2;
(4) Ti does not contain two termsenca(t1, t2) andpriv(x) wherex is a variable distinct

from t2;
(5) u is a non-variable subterm ofTi;
(6) Tiθ ⊢ uθ.

ThenT ′
i ⊢ u, whereT ′

i = Ti ∪ {x | (T 
 x) ∈ C, T ( Ti}.

PROOF. Let j be minimal such thatTjθ ⊢ uθ. Thusj ≤ i andTj ⊆ Ti. Consider a
simple proofπ of Tjθ ⊢ uθ. We reason by induction on the depth ofπ. We analyze the
different cases, depending on the last rule ofπ:

The last rule is an axiom.Suppose, by contradiction, thatu /∈ Tj. Then there ist ∈ Tj

such thattθ = uθ andt 6= u. By hypothesis 5,u is not a variable and, by hypothesis 2 of
the lemma,t, u cannot be both non-variable subterms ofTi. It follows thatt is a variable.
ThenTtθ ⊢ tθ, which impliesTtθ ⊢ uθ, contradicting the minimality ofj, sinceTt ( Tj.
Henceu ∈ Tj and thenT ′

i ⊢ u, as required.
The last rule is the symmetric decryption rule.There isw such thatTjθ ⊢ enc(uθ, w),

Tjθ ⊢ w:

Tjθ ⊢ enc(uθ, w) Tjθ ⊢ w

Tjθ ⊢ uθ

By simplicity, the last rule of the proof ofTjθ ⊢ enc(uθ, w) is a decomposition. By
Lemma 4.9, there ist ∈ St(Tj), t not a variable, such thattθ = enc(uθ, w). Let t =
enc(t1, t2) andt1θ = uθ, t2θ = w. By induction hypothesis,T ′

i ⊢ t.
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If t1 was a variable, thenTt1 ( Tj and, by hypothesis 1 of the lemma,Tt1 must be the
left-hand-side of a solved constraint:(Tt1 
 t1) ∈ C and thereforeTt1θ ⊢ uθ, contradict-
ing the minimality ofj.

Now, by hypothesis 5 of the lemma,u is a non-variable subterm ofTi, hencet1, u are
two non variable subterms ofTi such thatt1θ = uθ. By hypothesis 2 of the lemma, this
impliest1 = u.

On the other hand, ift2 is a variable,t2 ∈ V(Ti) impliesTt2 ( Ti and, sinceTi is
minimal unsolved,(Tt2 
 t2) ∈ C, which impliest2 ∈ T ′

i . If t2 is not a variable, then,
from Tjθ ⊢ t2θ and by induction hypothesis,T ′

i ⊢ t2. So, in any case,T ′
i ⊢ t2.

Now, we have bothT ′
i ⊢ enc(u, t2) andT ′

i ⊢ t2, from which we conclude thatT ′
i ⊢ u,

by symmetric decryption.

The last rule is an asymmetric decryption rule.There is aw such thatTjθ ⊢ priv(w)
andTjθ ⊢ enca(uθ, w). As in the previous case, there is a non-variablet ∈ St(Tj) such
thattθ = enca(uθ, w). By induction hypothesis,T ′

i ⊢ t. Let t = enca(t1, t2).
As in the previous case,t1 cannot be a variable. Thereforet1, u are two non-variable

subterms ofTi such thatt1θ = uθ, which implies thatt1 = u. (We use here the hypothe-
ses 2 and 5).

On the other hand, the last rule in the proof ofTjθ ⊢ priv(w) is a decomposition (no
composition rule can yield a term headed withpriv). Then, by Lemma 4.9 (Tj satisfies
the hypotheses of the lemma sinceTj ⊆ Ti), there is a non-variable subtermw1 ∈ St(Tj)
such thatw1θ = priv(w). Letw1 = priv(w2). By induction hypothesis,T ′

j ⊢ priv(w2).

enca(t1, t2)θ
‖

Tjθ ⊢ enca(uθ, w)

priv(w2)θ
‖

Tjθ ⊢ priv(w)

Tjθ ⊢ uθ

By hypothesis 2 of the lemma,t2 andw2 cannot be both non-variable, unless they are
identical. Then, by hypotheses 3 and 4 of the lemma, we must havet2 = w2. Finally, from
T ′
i ⊢ enca(u, t2), T

′
i ⊢ priv(t2) we concludeT ′

i ⊢ u.

The last rule is a projection rule.

Tjθ ⊢ 〈uθ, v〉

Tjθ ⊢ uθ

As before, by simplicity, the last rule of the proof ofTjθ ⊢ 〈uθ, v〉 must be a decomposition
and, by Lemma 4.9, there is a non variable termt ∈ St(Tj) such thattθ = 〈uθ, v〉. We let
t = 〈t1, t2〉. By induction hypothesis,T ′

i ⊢ t.
Now, as in the previous cases,t1 cannot be a variable, by minimality ofTj and hypoth-

esis 1 of the lemma. Next, by hypotheses 2 and 5, we must havet1 = u. Finally, from
T ′
i ⊢ 〈u, t2〉 we concludeT ′

i ⊢ u by projection.

The last rule is an unsigning rule.

Tjθ ⊢ sign(uθ, v)

Tjθ ⊢ uθ

This case is identical to the previous one.
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The last rule is a composition.Assume for example that it is the symmetric encryption
rule.

Tjθ ⊢ v1 Tjθ ⊢ v2

Tjθ ⊢ enc(v1, v2)

with uθ = enc(v1, v2). Sinceu is not a variable,u = enc(u1, u2), u1θ = v1, andu2θ =
v2. If u1 (resp.u2) is a variable thenu1 (resp.u2) belongs toV(Ti) sinceu ∈ St(Ti). By
point 2 of Definition 3.2 and hypothesis 1 of the lemma,u1 ∈ T ′

i (resp.u2 ∈ T ′
i ).

Otherwise,u1 andu2 are non-variables. Then, by induction hypothesis,T ′
i ⊢ u1 and

T ′
i ⊢ u2. Hence in both cases we haveT ′

i ⊢ u1 andT ′
i ⊢ u2. ThusT ′

i ⊢ u.
The proof is similar for other composition rules.

LEMMA 4.11COMPLETENESS. If C is an unsolved deducibility constraint system and
θ is a solution ofC, then there is a deducibility constraint systemC′, a substitutionσ, and
a solutionτ ofC′ such thatC  σ C′ andθ = στ .

PROOF. Consider a constraintTi 
 ui such that, for any(T 
 v) ∈ C such thatT ( Ti,
v is a variable and assumeui is not a variable. IfC is unsolved, there is such a constraint
in C.

Sinceθ is a solution,Tiθ ⊢ uiθ. Consider a simple proof ofTiθ ⊢ uiθ. We distinguish
cases, depending on the last rule applied in this proof:

The last rule is a composition.Sinceu is not a variable,u = f(u1, . . . , un) andTiθ ⊢
ujθ for everyj = 1, ..., n. Then we may apply the transformation ruleRf to C, yielding
constraintsTi 
 uj in C′ for everyj. θ is a solution of the resulting deducibility constraint
systemC′ by hypothesis.

The last rule is an axiom or a decomposition.By Lemma 4.9, there is a non-variable
termt ∈ St(Ti) such thattθ = uiθ. We distinguish then again between cases, depending
on t, ui:

Caset 6= ui. Then, sincet, ui are both non-variable terms, we may apply the simplifica-
tion ruleR2 toC: C  σ C′ whereC′ = Cσ andσ = mgu(t, ui). Furthermore,tθ = uiθ,
hence (by definition of a mgu) there is a substitutionτ such thatθ = στ . Finally, θ is a
solution ofC, henceτ is a solution ofC′.

Caset = ui. Thenui ∈ St(Ti).
(1) If there are two distinct non-variable termst1, t2 ∈ St(Ti) such thatt1θ = t2θ.

Then we apply the simplification ruleR3, yielding a deducibility constraint system
C′ = Cσ. As in the previous case, there is a substitutionτ such thatθ = στ andτ is
a solution ofC′.

(2) If there areenca(t1, t2), priv(t3) ∈ St(Ti) such that eithert2 or t3 is a variable,
t2 6= t3 andt2θ = t3θ, then we may apply the ruleR′

3 and conclude as in the previous
case.

(3) Otherwise, we match all hypotheses of Lemma 4.10 and we conclude thatT ′
i ⊢ ui.

Then the ruleR1 can be applied toC, yielding a deducibility constraint system, of
whichθ is again a solution.
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4.4 Termination

The simplification rules also terminate, whatever strategyis used for their application:

LEMMA 4.12. The constraint simplification rules of Figure 2 are (strongly) terminat-
ing.

PROOF. Interpret any deducibility constraint systemC as a pair of non-negative inte-
gersI(C) = (n,m) wheren is the number of variables of the system andm is the number
of function symbols occurring in the right hand sides of the system (here, we assume no
sharing of subterms). IfC  σ C′, thenI(C) >lex I(C′) where≥lex is the lexicographic
ordering on pairs of integers. Indeed, the first component strictly decreases by applying
R2, R3, R

′
3, and any other rule strictly decreases the second component, while not increas-

ing the first one. The well foundedness of the lexicographic extension of a well-founded
ordering implies the termination of any sequence of rules.

4.5 Proof of Theorem 4.3

Theorem 4.3 follows from Lemmas 4.7, 4.11, and 4.12, by induction on the derivation
length, and since deducibility constraint systems on whichno simplification rule can be
applied must be solved. Note that the extension of the correctness and completness lemmas
to security properties is trivial. Indeed, ifφ is a (in)security property, thenθ is a solution
of φσ if and only if σθ is a solution ofφ, for any substitutionsθ andσ.

4.6 A decision procedure in NP-time

The termination proof of the last section does not provide with tight complexity bounds.
In fact, applying the simplification rules may lead to branches of exponential length (in the
size of the constraint system). Indeed when applying a simplification rule to a deducibility
constraint, the initial constraint is removed from the constraint system and replaced by
new constraint(s). But this deducibility constraint may appear again later on, due to other
simplification rules. It is the case for example when considering the following deducibility
constraint system.

T0
def
= {enc(a, k0)} 
 enc(x0, k0)

T1
def
= T0 ∪ {enc(〈x0, 〈x0, a〉〉, k1)} 
 enc(x1, k1)

...

Tn
def
= Tn−1 ∪ {enc(〈xn−1, 〈xn−1, a〉〉, kn)} 
 enc(xn, kn)

Tn+1
def
= Tn ∪ {a} 
 xn

The deducibility constraint systemC is clearly satisfiable and its size is linear inn. We
have that

C  2n
σ

{

T0 
 enc(x0, k0)
Tn+1σ 
 xnσ

with σ(xi+1) = 〈xi, 〈xi, a〉〉 for 0 ≤ i ≤ n − 1. This derivation is obtained by applying
ruleR2 and thenR1 for each constraintTi 
 enc(xi, ki) with 1 ≤ i ≤ n. The ruleR1

cannot be applied toTn+1σ 
 xnσ sincex0 and the keyski are not present in or derivable
from Tn+1σ. Note thatσ′ = σ ∪ {a/x0

} is a solution ofC and can be easily obtained by
ruleR2 on the first constraint and then ruleR1 on both constraints.
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However, there is a branch of length3(2n − 1) from T 
 xnσ leading toT 
 x0 (in
solved form), whereT denotesTn+1σ. This is easy to see by induction onn. It is true for
n = 0. Then using only the rulesR〈 〉 andR1, we have

T 
 xnσ
R〈〉
 

{

T 
 xn−1σ
T 
 〈xn−1σ, a〉

 
m

{

T 
 x0

T 
 〈xn−1σ, a〉

R〈〉
 







T 
 x0

T 
 xn−1σ
T 
 a

R1
 

{

T 
 x0

T 
 xn−1σ
 

m T 
 x0

with m = 3(2n−1 − 1) by induction hypothesis. The length of the branch is2× 3(2n−1 −
1) + 3 = 3(2n − 1). This shows that there exist branches of exponential lengthin the size
of the constraint.

We can prove that it is actually not useful to consider deducibility constraints that have
already been seen before (like the constraintT 
 xn−1σ in our example). Thus we mem-
orize the constraints that have already been visited. The constraint simplification rules,
instead of operating on a single deducibility constraint system, rewrite a pair of two con-
straint systems, the second one representing deducibilityconstraints that have already been
processed at this stage: ifC  σ C′, then

C;D  σ C′ \D;D ∪ (C \ C′)

The constraints (“memorized”) inD are those which were already analyzed (i.e. trans-
formed or eliminated). The initial constraint system isC; ∅.

First, memorization indeed prevents from performing several times the same transfor-
mation:

LEMMA 4.13. If C is a deducibility constraint system andC; ∅  ∗
σ C′;D′ thenC′ ∩

D′ = ∅.

PROOF.

(C′ \D) ∩ ((C \ C′) ∪D) = ((C′ \D) ∩D) ∪ ((C′ \D) ∩ (C \ C′)) = ∅

This kind of memorization is correct and complete in a more general setting. We assume
in this section that the reader is familiar with the usual notions of first-order formulas, first-
order structures, and models of first-order logic.

A (general) constraintis a (first-order) formula, together with an interpretationstruc-
tureS. A (general) constraint systemC is a finite set of constraints, whose interpretation
is the same as their conjunction. Ifσ is an assignment of the free variables ofC to the
domain ofS, σ is asolutionof C if σ, S |= C. In the context of constraint systems,S is
omitted: the satisfaction relation|= refers implicitly toS. It is extended, as usual, to entail-
ment:C |= C′ if any solution ofC is also a solution ofC′. We may consider constraintsc
as singleton constraint systems, and thus write for examplec |= c′ instead of{c} |= {c′}.

A (general) constraint system transformationis a binary relation❀ on constraints such
that, for any sequence (finite or infinite)C1 ❀ · · · ❀ Cn ❀ · · · , there is an ordering≥
on individual constraints such that, for everyi, for everyc ∈ Ci \ Ci+1, we have

{d ∈ Ci+1 | d < c} |= c. (4)
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This expresses thecorrectnessof the transformations: only redundant formulas are re-
moved. The ordering needs not to be well-founded.

Our deducibility constraint systems and deducibility constraint simplification rules sat-
isfy these properties. More precisely, we need to consider the substitutions (partial as-
signments) as part of the constraint system, in order to fit with the above definition: con-
straint systems come in two parts: a set of deducibility constraints and a set of solved
equations, recording the substitution computed so-far. Inother words, a sequence of sim-
plification stepsC0  σ1

C1  σ2
. . . can be written as a general transformation sequence

C0 ❀ (C1 ∧σ1) ❀ (C2 ∧σ1 ∧σ2) ❀ . . . , where substitutions{t1/x1
, . . . , tn/xn

} are seen
as conjunctions of solved equations(x1 = t1) ∧ · · · ∧ (xn = tn).

We show next that for any sequenceC0  σ1
C1  σ2

. . . of simplification steps there
is an ordering≥ on the corresponding general constraints such that (4) holds.

We start by defining the ordering. First, we order the variables byx > y if, for somei,
y ∈ V(xσ1 . . . σi). Intuitively, x > y if x is instantiated beforey in the considered
derivation. Indeed, letix be the minimum among all indexesi such thatxσi 6= x if
this minimum exists and∞ otherwise. Thenx > y implies that eitherix < iy, or ix = iy
andy ∈ V(xσix). (Note that in this last case we cannot have bothy ∈ V(xσix ) and
x ∈ V(yσix), by the definition of amgu.) This observation proves that the relation> on
variables is an ordering. Next, we let(T 
 u) > (T ′


 u′) if

—either the multiset of variables occurring inT is strictly larger than the multiset of vari-
ables occurring inT ′; such multisets are ordered by the multiset extension of theorder-
ing on variables;

—or else the multisets of variables are identical, andT ′ ( T ;

—or elseT = T ′ and the multiset of variables inu is strictly larger than the multiset of
variables inu′;

—or else,T = T ′, the multisets of variable are identical and the size ofu is strictly larger
than the size ofu′.

This is an ordering as a lexicographic composition of orderings. Finally, any solved equa-
tion (i.e. substitution) is strictly smaller than any deducibility constraint, and equations are
not comparable.

The ordering we have just defined could have been used for the termination proof, as it is
a well-founded ordering. It will now be considered as the default ordering on constraints,
when a derivation sequence is fixed.

This ordering also satisfies the above required hypotheses for general constraint system
transformations, as shown by the proof of the following proposition.

PROPOSITION 4.14. The simplification rules on deducibility constraint systems form a
general constraint system transformation.

PROOF. LetC0  σ0
C1  σ1

. . . be a simplification sequence. We consider the order-
ing on deducibility constraints (viewed as general constraints) defined above.

We show next that (4) holds. Note that in (4),c cannot be a solved equation, because at
each step solved equations (x = xσi) may be added but no equation is eliminated. Thus
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let (T 
 u) ∈ Ci \ Ci+1, for somei ≥ 0. We need to show that
∧

(T ′

u′)∈Ci+1

(T ′

u′)<(T
u)

T ′

 u′ ∧

∧

1≤j≤i

σj |= T 
 u (5)

We investigate the possible transformation rules.
For the rulesR2, R3, R

′
3, Ci+1 = Ciσi. We have(T 
 u) ≥ (Tσi 
 uσi) since

either the multiset of variables ofTσi is strictly smaller than the multiset of variables of
T , or elseT = Tσi and, in the latter case, either the multiset of variables ofuσi is strictly
smaller than the multiset of variables ofu or elseuσi = u. Moreover,cσ ∧ σ |= c for all
constraintsc and substitutionsσ. Indeed, ifθ is a solution ofcσ ∧ σ thenxθ = xσθ for
anyx ∈ dom(σ). It follows thatcθ = cσθ, and thusθ is a solution ofc.

Hence, we have in particular that(Tσi 
 uσi) ∧ σi |= T ⊢ u, which shows that (5)
holds for this case.

For the ruleRf , it suffices to notice that{T 
 u1, . . . , T 
 un} |= (T 
 f(u1, . . . , un))
and(T 
 ui) < (T 
 f(u1, . . . , un)) for everyi.

For the ruleR1, the constraintT 
 u is a consequence of the (strictly smaller) con-
straintsT ′


 x for T ′ ( T .
Finally, the ruleR4 only applies to unsatisfiable deducibility constraints.

The memorization strategy can be defined, as above, for any general constraint system
transformation. The correctness of the memorization strategy relies on the following in-
variant:

LEMMA 4.15. For any constraint system transformation❀, if C; ∅ ❀
∗ C′;D′, then

C′ |= D′.

PROOF. We prove, by induction on the length of the derivation sequence the following
stronger result:∀d ∈ D′, {c ∈ C′ | c < d} |= d.

The base case is straightforward asD′ is empty. Next, assume thatC;D ❀ C′;D′. By
definition,D′ = D ∪ (C \ C′). If d ∈ C \C′, by definition of a constraint transformation
rule, {c ∈ C′ | c < d} |= d. If d ∈ D, by induction hypothesis,{c ∈ C | c < d} |= d.
Hence{c ∈ C′ |c < d} ∪ {c ∈ C \C′ | c < d} |= d. But, again by definition of constraint
transformations, any constraint in the second set is a consequence of the first set: we get
{c ∈ C′ |c < d} |= d.

It follows that the memorization strategy is always correctwhen the original constraint
transformation is correct.

Now, the memorization strategy preserves the properties ofour deducibility constraint
systems:

LEMMA 4.16. If C is a deducibility constraint system andC; ∅  ∗
σ C′;D′ thenC′ is

a deducibility constraint system.

PROOF. Let (Ci;Di)  σi+1
(Ci+1;Di+1), with 0 ≤ i < n be the sequence of de-

ducibility constraint systems obtained by applying successively the simplification rules,
whereC0 = C, D0 = ∅, Cn = C′, andCi  σi+1

C′
i+1 (and thusCi+1 = C′

i+1 \ Di,
andDi+1 = Di ∪ (Ci \ C′

i+1)). We know thatC′
i is a deducibility constraint system, by

Lemma 4.6.
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First, the left members ofCi are linearly ordered by inclusion, as they are a subset of
the left members ofC′

i.
We consider now the other property of deducibility constraint systems. We let≥ be the

ordering on constraints defined before. We show below, by induction oni that, for every
x ∈ V(Ci), for every(T 
 u) ∈ Di such thatx ∈ V(u) \ V(T ), there is a(T ′


 u′) ∈ Ci

such thatx ∈ V(u′) \ V(T ′) and(T ′

 u′) < (T 
 u).

Note that this property implies thatCi is a deducibility constraint system: For every
variablex ∈ V(Ci), there is(Tx 
 u) ∈ C′

i such thatx ∈ V(u) \ V(Tx), asC′
i is a

deducibility constraint system. If(Tx 
 u) ∈ Ci then we’re done, otherwise(Tx 
 u) ∈
Di, and hence, by the stated property, there is(T ′

x 
 u′) ∈ Ci such thatx ∈ V(u′)\V(T ′
x).

This shows thatCi is a deducibility constraint system.
The property holds trivially fori = 0. For the induction step, letx ∈ V(Ci+1) and

(T 
 u) ∈ C′
i+1 be such thatx ∈ V(u) \ V(T ). We investigate three cases:

—if Ci+1 is obtained by one of the rulesR2, R3, R
′
3, thenCi+1 = Ciσi+1 \ Di, and

x /∈ dom(σi+1). We assume w.l.o.g. thatT 
 u is a minimal constraint inDi+1 such
thatx ∈ V(u) \ V(T ).
There is(T ′


 u′) ∈ Ci such thatx ∈ V(u′) \ V(T ′) and(T ′

 u′) ≤ (T 
 u): if

(T 
 u) /∈ Ci, then(T 
 u) ∈ Di and by induction hypothesis, there is a(T ′

 u′) ∈

Ci such thatx ∈ V(u′) \ V(T ′) and(T ′

 u′) < (T 
 u).

Let S = {y ∈ V(T ′) | x ∈ V(yσi+1)}. By induction hypothesisCi is a constraint
system, and hence, for everyy ∈ S, there is a (minimal) constraintTy 
 uy ∈ Ci

such thaty ∈ V(uy) \ V(Ty). Sincey ∈ V(T ′), Ty ( T ′. Let T1 
 u1 be a minimal
element in{Ty 
 uy | y ∈ S} ∪ {T ′


 u′}. Suppose thatx ∈ V(T1σi+1). Since
x /∈ V(T ′) andTy ( T ′, it follows thatx /∈ V(Ty), and hence there isz ∈ V(T1) such
thatx ∈ V(zσi+1). It follows thatz ∈ S andTz ( T1, which contradicts the minimality
of T1 
 u1. Hencex ∈ V(u1σi+1) \ V(T1σi+1). Also (T1σi+1 
 u1σi+1) ≤ (T1 


u1) ≤ (T ′

 u′) ≤ (T 
 u). Furthermore, at least one of the inequalities is strict: if

(T 
 u) ∈ Di the last inequality is strict, otherwise(T 
 u) ∈ (Ci\C′
i+1) = (Ci\Ciσ)

hence(Tσi+1 
 uσi+1) < (T 
 u). It follows that(T1σi+1 
 u1σi+1) ∈ Ci+1 by
minimality of T 
 u.

—if Ci+1 is obtained by anRf rule. We may assume w.l.o.g. thatT 
 u is a minimal
constraint inDi+1 such thatx ∈ V(u) \ V(T ).
Either(T 
 u) ∈ Di, in which case, by induction hypothesis, there is(T ′


 u′) ∈ Ci

such thatx ∈ V(u′) \ V(T ′) and (T ′

 u′) < (T 
 u). If (T ′


 u′) ∈ Ci+1,
there is nothing to prove. Otherwise,u′ = f(u1, . . . , un) and, for everyj, (T ′


 uj) ∈
Ci+1∪Di. Moreover, there is an indexj such thatx ∈ V(uj)\V(T ′) and, by minimality
of T 
 u, (T ′


 uj) ∈ Ci+1, hence completing this case.
Or else(T 
 u) ∈ Ci \ C′

i+1, in which caseu = f(u1, . . . , un) and (T 
 uj) ∈
Ci+1∪Di. As above, we conclude that for somej, x ∈ V(uj)\V(T ), (T 
 uj) ∈ Ci+1

and(T 
 uj) < (T 
 u).

—if Ci+1 is obtained by the ruleR1, removing a constraintT1 
 u1, thenDi+1 = Di ∪
{T1 
 u1} and, by Lemma 4.6 for any variabley ∈ V(u1) \ V(T1) there is a strictly
smaller constraint(T2 
 u2) ∈ Ci such thaty ∈ V(u2) \ V(T2). Then we simply apply
the induction hypothesis.
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THEOREM 4.17. Let C be a deducibility constraint system,θ a substitution andφ a
security property.

(1) (Correctness) IfC; ∅ ∗
σ C′;D′ for some deducibility constraint systemC′ and some

substitutionσ, if θ is an attack forC′ andφσ, thenσθ is an attack forC andφ.

(2) (Completeness) Ifθ is an attack forC andφ, then there exist a deducibility constraint
systemC′ in solved form, a set of deducibility constraintsD′ and substitutionsσ, θ′

such thatθ = σθ′, C; ∅ ∗
σ C′;D′, andθ′ is an attack forC′ andφσ.

(3) (Termination) IfC; ∅ n
σ C′;D′ for some deducibility constraint systemC′ and some

substitutionσ, thenn is polynomially bounded in the size ofC.

PROOF. For correctness, we rely on Lemmas 4.7, and 4.15: by Lemma 4.15, any solu-
tion θ of C′ is also a solutionC′∪D′σ and, by Lemma 4.7 (and induction),σθ is a solution
of C.

For completeness, from Lemma 4.11, we know that ifCi is an unsolved deducibility
constraint system andθ is an attack forCi andφ, then there is a deducibility constraint
systemC′

i+1, a substitutionσi, and an attackτi for C′
i+1 andφσi such thatCi  σi

C′
i+1

andθ = σiτi. Thenτi is an attack also forC′
i+1 \ Di andφσ, for any set of constraints

Di. By Lemma 4.16, we know that whenDi represents already visited constraints, then
C′

i+1 \ Di is a deducibility constraint system. We can thus conclude byinduction on the
derivation lengthn, takingC0 = C, D0 = ∅, Ci+1 = C′

i+1 \Di for all i, andCn = C′.
Concerning termination, we assume a DAG representation of the terms and constraints,

in such a way that the size of the constraint is proportional to the number of the distinct
subterms occurring in it. Next, observe that♯St(tσ) ≤ ♯(St(t) ∪

⋃

x∈dom(θ) St(xθ)).
Hence, when unifying two subterms oft, with mgu θ, ♯St(tθ) ≤ ♯St(t) since, for every
variablex ∈ dom(θ), xθ is a subterm oft. It follows that, for any constraint systemC′;D′

such thatC; ∅ ∗
σ C′;D′, ♯St(C′) ≤ ♯St(C).

Next, observe that the number of distinct left hand sides of the constraints♯lhs(C′) is
never increasing:♯lhs(C′) ≤ ♯lhs(C). Furthermore, as long as we only apply the rules
R1, Rf , starting fromC′′, the left hand sides of the deducibility constraint systemsare
fixed: there are at most♯lhs(C′′) of them. Now, since, thanks to memorization, we cannot
get twice the same constraint, the number of consecutiveR1, Rf steps is bounded by

♯lhs(C′′)× ♯St(rhs(C′′)) ≤ ♯lhs(C)× ♯St(C)

It follows that the length of a derivation sequence is bounded by ♯V(C) × ♯lhs(C) ×
♯St(C) (for R1, Rf steps) plus♯V(C) (for R2, R3, R

′
3 steps) plus1 (for a possibleR4

step).

Theorem 4.17 extends the result of [Rusinowitch and Turuani2001] to sorted messages
and general security properties. Handling arbitrary security properties is possible as soon
as we do not forget any solution of the deducibility constraint systems (as we do). If we
only preserve the existence of a solution of the constraint (as in [Rusinowitch and Turuani
2001]), it might be the case that the solution ofC that we kept is not a solution of the
propertyφ, while there are solutions of bothφ andC, that were lost in the satisfiability
decision ofC. In addition, compared to [Rusinowitch and Turuani 2001], presenting the
decision procedure using a small set of simplification rulesmakes it more easily amend-
able to further extensions and modifications. For example, Theorem 4.17 has been used
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in [Cortier et al. 2006] for proving that a new notion of secrecy in presence of hashes is
decidable (and co-NP-complete) for a bounded number of sessions.

Note that termination in polynomial time also requires the use of a DAG (Directed
Acyclic Graph) representation for terms.

The following corollary is easily obtained from the previous theorem by observing that
we can guess the simplification rules which lead to a solved form.

COROLLARY 4.18. Any propertyφ that can be decided in polynomial time on solved
deducibility constraint systems can be decided in non-deterministic polynomial time on
arbitrary deducibility constraint systems.

4.7 An alternative approach to polynomial-time termination

Inspecting the completeness proof, there is still some roomfor choosing a strategy, while
keeping completeness (correctness is independent of the order of the rules application).
To obtain even more flexibility, we slightly relax the condition on the application of the
ruleR2 on a constraintT 
 u: we require unifying a subtermt ∈ St(T ) and a subterm
t′ ∈ St(u) (instead of unifyingt with u) where, as before,t 6= t′, t, t′ non-variables.
Remark that this change preserves the completeness of the procedure.

Let us group the rulesR2, R3, R
′
3 and call themsubstitution rulesS. We writeS(u, v)

if the substitution is obtained by unifyingu andv. There are some basic observations:

(1) If C  Rf C′
 

S
σ C′σ, thenC  S

σ Cσ  Rf C′σ. Hence we may always move
forward the substitution rules.

(2) If C1  
Rf C′

1 andC2  
Rf C′

2, thenC1 ∧ C2  
Rf C′

1 ∧ C2  
Rf C′

1 ∧ C′
2 and

C1 ∧C2  
Rf C1 ∧C′

2  
Rf C′

1 ∧C′
2, hence any two consecutive applications ofRf

on different constraints can be performed in any order.

(3) The rulesR1, R4 can be applied at any time when they are enabled; we may apply
them eagerly or postpone them until no other rule can be applied.

(4) If C  S(u1,v1)
σ1 Cσ1  

S(u2σ1,v2σ1)
σ2 Cσ1σ2, then, for someθ1, θ2,

C  
S(u2,v2)
θ1

Cθ1  
S(u1θ1,v1θ1)
θ2

Cσ1σ2

Hence any two consecutive substitution rules can be performed in any order.

(5) If C  S
σ Cσ  Rf C′σ, andS 6= R2, thenC  Rf C′

 
S
σ C′σ.

This provides with several complete strategies. For instance the following strategy is
complete:

—apply eagerlyR4 and postponeR1 as much as possible

—apply the substitution rules eagerly (as soon as they are enabled). This implies that
all substitution rules are applied at once, since the rulesR1, R4, Rf cannot enable a
substitution.

—whenR4 and substitutions rules are not enabled, applyRf to the constraint, whose right
hand side is maximal (in size).

Such a strategy will also yield polynomial length derivations, since we cannot get twice the
same constraint: in any derivation sequenceC0  σ1

· · · σn
Cn, if (T 
 u) ∈ Ci \Ci+1

(we say then thatT 
 u has been eliminated at this step), then, for anyj > i, (T 
 u) /∈
Cj . Indeed, for the substitution rules,T 
 u is eliminated only whenx ∈ V(T 
 u) and
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x ∈ dom(σi+1), in which case for anyj > i, x /∈ V(Cj). And, if T 
 u is eliminated by
anRf rule, then|u| = maxt∈rhs(Ci) |t|. If, for somej > i, the constraintT 
 u was in
Cj+1 and not inCj , then we would havemaxt∈rhs(Cj) |t| > |u|. Thus the maximum of the
sizes of the right hand sides terms would have increased, which is not possible according
to our strategy.

Then the complexity analysis of the proof of Theorem 4.17 canbe applied here.

The above observations can also be used to bound the non-determinism (which is useful
in practice): for instance from (1) and (4), we see that substitution rules can be applied
“don’t care”: if we use a substitution rule, we do not need to consider other alternatives.
More precisely, ifS(t, u) is a substitution rule that is applicable toC, letΦ(C) be the set
of substitution rulesS(t′, u′), which are applicable toC and such that there is noθ other
than the identity such thatmgu(t, u)θ = mgu(t′, u′). Then

θ |= C =⇒
∨

S(t′,u′)∈Φ(C)

∃θ′. θ = mgu(t′, u′)θ′

Similarly, from (5), a right-hand side member that is not unifiable with a non-variable
subterm of the corresponding left hand side, can be “don’t care” decomposed:

θ |= C ∧ (T 
 f(u1, . . . , un)) =⇒ θ |= C ∧ (T 
 u1) ∧ . . . ∧ (T 
 un)

if f(u1, . . . , un) is not unifiable with any non-variable subterm ofT .

5. DECIDABILITY OF ENCRYPTION CYCLES

Using the general approach presented in the previous section, verifying particular prop-
erties like the existence of key cycles or the conformation to ana priori given ordering
relation on keys can be reduced to deciding these propertieson solved deducibility con-
straint systems. We deduce a new decidability result, useful in models designed for proving
cryptographic properties.

To show that formal models (like the one presented in this article) are sound with respect
to cryptographic ones, the authors usually assume that no key cycle can be produced during
the execution of a protocol or, even stronger, assume that the “encrypts” relation on keys
follows ana priori given ordering.

For simplicity, and since there are very few papers constraining the key relations in an
asymmetric setting, in this section we restrict our attention to key cycles and key orders on
symmetric keys. Moreover, we consider atomic keys for symmetric encryption since there
exists no general definition (with a cryptographic interpretation) of key cycles in the case
of arbitrary composed keys and soundness results are usually obtained for atomic keys.

More precisely, we assume a sortKey ⊂ Msg and we assume that the sort ofenc is
Msg × Key → Msg. All the other symbols are of sortMsg × · · · ×Msg → Msg. Hence
only names and variables can be of sortKey. In this section we callkeya variable or a
name of sortKey. Finally, for any list of termsL, Ls is the set of terms that are members
of the list.

In this section, we consider (in)security properties of theformP (L) whereP is a pred-
icate symbol andL is a list of terms. Informally,σ will be a solution ofP (L) if Lsσ
contains a key cycle. The precise interpretation ofP depends on the notion of key-cycle:
this is what we investigate first in the following section.
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5.1 Key cycles

Many definitions of key cycles are available in the literature. They are stated in terms of an
“encryption” relation between keys or occurrences of keys.An early definition proposed
by Abadi and Rogaway [Abadi and Rogaway 2002], identifies a key cycle with a cycle
in the encryption relation, with no conditions on the occurrences of the keys. However,
the definition induced by Laud’s approach [Laud 2002] corresponds to searching for such
cycles only in the “visible” parts of a message. For example the messageenc(enc(k, k), k′)
contains a key cycle using the former definition but does not when using the latter one and
assuming thatk′ is secret. It is generally admitted that the Abadi-Rogaway definition is
unnecessarily restrictive and hence we will say that the corresponding key cycles arestrict.
However, for completeness reasons, we treat both cases.

There can still be other variants of the definition, depending on whether the relation
“k encryptsk′” is restricted or not to keysk′ that occur in plain-text. For example,
enc(enc(a, k), k) may or may not contain a key cycle. As above, even if occurrences
of keys used for encrypting (ask in enc(m, k)) need not be considered as encrypted keys,
and hence can safely be ignored when defining key cycles, we consider both cases. Note
that the initial Abadi-Rogaway setting considers thatenc(enc(a, k), k) has a key cycle.

We writes <st t if and only if s is a subterm oft. ⊑ is the least reflexive and transitive
relation satisfying:s1 ⊑ (s1, s2), s2 ⊑ (s1, s2), and, if s ⊑ t, thens ⊑ enc(t, t′).
Intuitively, s ⊑ t if s is a subterm oft that either occurs (at least once) in clear (i.e. not
encrypted) or occurs (at least once) in a plain-text position. A positionp is a plain-text
positionin a termu if there exists an occurrenceq of an encryption inu such thatq ·1 ≤ p.

Definition 5.1. Let ρ1 be a relation chosen in{<st,⊑}. Let S be a set of terms and
k, k′ be two keys. We say thatk encryptsk′ in S (denotedk ρSe k′) if there existm ∈ S
and a termm′ such that

k′ ρ1 m
′ and enc(m′, k) ⊑ m.

For simplicity, we may writeρe instead ofρSe , if S is clear from the context. Also, ifm is
a message we denote byρme the relationρ{m}

e .

LetS be a set of terms. We definehidden(S)
def
= {k ∈ St(S) | k of sortKey, S 6⊢ k}.

Definition 5.2 (Strict key cycle). Let K be a set of keys. We say that a set of termsS
contains astrict key cycleonK if there is a cycle in the restriction of the relationρSe onK.
Otherwise we say thatS is strictly acycliconK.

We define the predicatePskc as follows:L ∈ Pskc if and only if the set{m | Ls ⊢ m}
contains a strict key cycle onhidden(Ls).

We give now the definition induced by Laud’s approach [Laud 2002]. He has showed
in a passive setting that if a protocol is secure when the intruder’s power is given by a
modified Dolev-Yao deduction system⊢∅, then the protocol is secure in the computational
model, without requiring a “no key cycle” condition. Rephrasing Laud’s result in terms of
the standard deduction system⊢ gives rise to the definition of key cycles below, as it has
been proved in [Janvier 2006].

To state the following definition we need a more precise notion than the encrypts re-
lation. We say that an occurrenceq of a keyk is protectedby a keyk′ in a termm if
m|q′ = enc(m′, k′) for some termm′ and some positionq′, and the occurrence ofk at q
in m is a plain-text occurrence ofk in m′, that isq′ · 1 ≤ q. We extend this definition in
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the intuitive way to sets of terms. This can be done for example by indexing the terms in
the set and adding this index as a prefix to the position in the term to obtain the position in
the set.

Definition 5.3 (Key cycle [Janvier 2006]). LetK be a set of keys. We say that a set of
termsS is acyclic on K if there exists a strict partial ordering≺ on K such that for all
k ∈ K, for all occurrencesq of k in plain-text position inS, there isk′ ∈ K such that
k′ ≺ k andq is protected byk′ in S. Otherwise we say thatS contains akey cycleonK.

We define the predicatePkc as follows: for any list of termsL, L ∈ Pkc if and only if
the set{m | Ls ⊢ m} contains a key cycle onhidden(Ls).

We say that a termm contains a (strict) key cycle if the set{m} contains one.

Example5.4. The messagesm = enc(enc(k, k), k′) andm′=〈enc(k1, k2), enc(enc(k2,
k3), k1)〉 are acyclic, while the messagem′′ = 〈〈enc(k1, k2), enc(enc(k2, k1), k3)〉, k3〉
has a key cycle. The orderingsk′ ≺ k andk3 ≺ k2 ≺ k1 prove it form andm′ while for
m′′ such an ordering cannot be found sincek3 is deducible. However, all three messages
have strict key cycles.

5.2 Key orderings

In order to establish soundness of formal models in a symmetric encryption setting, the
requirements on the encrypts relation can be even stronger,in particular in the case of
an active intruder. In [Backes and Pfitzmann 2004] and [Janvier et al. 2005] the authors
require that a key never encrypts a younger key. More precisely, the encrypts relation has
to be compatible with the ordering in which the keys are generated. Hence we also want
to check whether there exist executions of the protocol for which the encrypts relation is
incompatible with ana priori given order on keys.

Definition 5.5 (Key ordering). Let≺ be a strict partial ordering on a set of keysK. We
say that a set of termsS is compatiblewith ≺ onK if

k ρSe k′ ⇒ k′ 6� k, for all k, k′ ∈ K.

Given a strict partial ordering≺ on a set of keys, we define the predicateP≺ as follows:
P≺ holds on a list of termsL if and only if the set{m | Ls ⊢ m} is compatible with≺ on
hidden(Ls).

For example, in [Backes and Pfitzmann 2004; Janvier et al. 2005] the authors choose≺ to
be the order in which the keys are generated:k ≺ k′ if k has been generated beforek′. We
denote byP≺ the negation ofP≺. Indeed, an attack in this context is an execution such
that the encrypts relation is incompatible with≺.

5.3 Properties that are independent of the notion of key cycle

We show how to decide the existence of key cycles or the conformation to an ordering in
polynomial time for solved deducibility constraint systems. Note that the set of messages
on which our predicates are applied usually contains all messages sent on the network and
possibly some additional intruder knowledge.

We start with statements, that do not depend on which notion of key cycle we choose.

LEMMA 5.6. Let S be a set of terms,m be a term andk be a key such thatS ⊢ m
andS 6⊢ k. Then for any plain-text occurrenceq of k in m, there is a plain-text occurrence
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q0 in S such that, if there is keyk′ with S 6⊢ k′, and which protectsq0 in S, thenk′

protectsq in m.

PROOF. We reason by induction on the depth of the proof ofS ⊢ m:

—if the last rule is an axiom, thenm ∈ S. We may simply chooseq0 = q.

—if the last rule is a decryption, thenS ⊢ enc(m, k′′) andS ⊢ k′′ for somek′′ 6= k. Take
the positionq1 = 1 · q in enc(m, k′′). It is an occurrence ofk. Applying the induction
hypothesis we obtain an occurrenceq0 of k in S such that, if there is a keyk′ with S 6⊢ k′

and which protectsq0 in S, thenk′ protectsq1 in enc(m, k′′). SinceS 6⊢ k′, it follows
thatk′′ 6= k′ and hencek′ protectsq in m.

—if the last rule is a another rule, we proceed in a similar wayas above.

As a corollary we obtain the following proposition, which states that, in the passive case,
a key cycle can be deduced from a setS only if it already appears inS.

PROPOSITION 5.7. LetL be a list of ground terms, and≺ a strict partial ordering on
a set of keys. The predicatePkc (respectively,Pskc or P≺) holds onL if and only ifLs

contains a key cycle (respectively,Ls contains a strict key cycle, or the encrypts relation
onLs is not compatible with≺).

PROOF. The right to left direction is trivial sinceLs ⊆ {m | Ls ⊢ m}.
We will prove the left to right direction only for the key cycle property, the other two

properties can be proved in a similar way. Assume that there is no strict partial ordering
satisfying the conditions in Definition 5.3 for{m | Ls ⊢ m}. In other words, for any strict
partial ordering≺ onhidden(Ls) there is a keyk and an occurrenceq of k in {m | Ls ⊢ m}
such that for any keyk′, k′ protectsq in {m | Ls ⊢ m} impliesk′ 6≺ k. Using the previous
lemma we can replace{m | Ls ⊢ m} by Ls in the previous sentence, thus obtaining that
there is a key cycle inLs.

The next lemma will be used to show thathidden(Lsθ) does not depend on the solution
θ of a solved constraintC.

LEMMA 5.8. Let T 
 x be a constraint of a solved constraint systemC, θ a solution
of C andm a non-variable term. IfTθ ⊢ m then there is a non-variable termu with
V(u) ⊆ V(T ) such thatT ∪ V(T ) ⊢ u andm = uθ.

PROOF. We writeC as
∧

i(Ti 
 xi), with 1 ≤ i ≤ n andTi ⊆ Ti+1. Consider the
indexi of the constraintT 
 x, that is such that(Ti 
 ui) ∈ C, Ti = T andui = x. The
lemma is proved by induction on(i, l) (considering the lexicographical ordering) wherel
is the length of the proof ofTiθ ⊢ m. Consider the last rule of the proof:

—(axiom rule)m ∈ Tiθ. Then there isu ∈ Ti such thatm = uθ. If u is a variable
then there isj < i such thatTj 
 u is a constraint ofC. We haveTjθ ⊢ uθ. Then
by induction hypothesis there is a non-variable termu′ with V(u′) ⊆ V(Tj) such that
Tj ∪ V(Tj) ⊢ u′ anduθ = u′θ. Henceu′ satisfies the conditions.

—(decomposition rule) Suppose the rule is the decryption rule. Then the premises of the
rule areTiθ ⊢ enc(m, k) andTiθ ⊢ k for some termk. By induction hypothesis there
are non-variable termsu1 andu2 with V(u1),V(u2) ⊆ V(Ti) such thatTi∪V(Ti) ⊢ u1,
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Ti ∪ V(Ti) ⊢ u2, u1θ = enc(m, k) andu2θ = k. Thenu1 = enc(u, u′
2) with uθ = m

andu′
2θ = k. If u is a variable then, as in the previous case, we find anu′ satisfying

the conditions. Supposeu is not a variable. We still need to show thatTi ∪ V(Ti) ⊢ u.
If u′

2 is a variable thenTi ∪ V(Ti) ⊢ u′
2 sinceu′

2 ∈ V(Ti). If u′
2 is not a variable then

u′
2θ = u′

2 henceu′
2 = u2. In both cases it follows thatTi ∪ V(Ti) ⊢ u. The projection

rule case is simpler and is treated similarly.
—(composition rule) This case follows easily from the induction hypothesis applied on the

premises.

COROLLARY 5.9. LetT 
 x be a constraint of a solved deducibility constraint system
C, andθ, θ′ be two solutions ofC. Then for any keyk, Tθ ⊢ k if and only ifTθ′ ⊢ k.

PROOF. Suppose thatTθ ⊢ k. From the previous lemma we obtain that there is a non-
variableu with V(u) ⊆ V(T ) such thatT ∪ V(T ) ⊢ u andk = uθ. Since keys are atomic
andθ is a ground substitution it follows thatu = k. HenceTθ′ ∪ {xθ′ | x ∈ V(T )} ⊢ k.
SoTθ′ ⊢ k, sinceθ′ is a solution (and thusTθ′ ⊢ xθ′ for all x ∈ V(T )) and by using
Lemma 4.5.

5.4 Decision results

On solved deducibility constraint systems, it is possible to decide in polynomial time,
whether an attacker can trigger a key cycle or not, whatever notion of key cycle we con-
sider:

PROPOSITION 5.10. Let C be a solved deducibility constraint system,L be a list of
messages such thatV(Ls) ⊆ V(C) and lhs(C) ⊆ Ls, and≺ a strict partial ordering on
a set of keys. Deciding whether there exists an attack forC andP (L) can be done in
O(|L|2), for anyP ∈ {Pkc, Pskc, P≺}.

We devote the remaining of this section to the proof of the above proposition.
We know by Proposition 5.7 that it is sufficient to analyze theencrypts (or protects)

relation only onLsθ (and not on every deducible term), whereθ is an arbitrary solution.
We can safely assume that there is exactly one deducibility constraint for each variable.

Indeed, eliminating fromC all constraintsT ′

 x for which there is a constraintT 
 x in

C with T ( T ′ we obtain an equivalent deducibility constraint systemC′ : σ is a solution
of C′ iff it is a solution ofC. Let tx be the term obtained by pairing all terms ofTx (in
some arbitrary ordering). We writeC as

∧

i(Ti 
 xi), with 1 ≤ i ≤ n andTi ⊆ Ti+1. We
construct the following substitutionτ = τ1 . . . τn, andτj is defined inductively as follows:

- dom(τ1) = {x1} andx1τ1 = tx1

- τi+1 = τi ∪ {txi+1
τi/xi+1

}.

The construction is correct by the definition of deducibility constraint systems. It is clear
thatτ is a solution ofC. We show next that it is sufficient to analyze this particularsolution.

Key cycles.We focus first on the propertyPkc.

LEMMA 5.11. LetC be a solved deducibility constraint system,L a list of terms such
thatV(L) ⊆ V(C), lhs(C) ⊆ Ls, and assumeP is interpreted asPkc. Then there is an
attack forC andP (L) if and only ifτ is an attack forC andP (L).
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PROOF. We have to prove that if there is no partial ordering satisfying the conditions in
Definition 5.3 for the setLsθ (according to Proposition 5.7) then there is no partial ordering
satisfying the same conditions forLsτ . Suppose that there is a strict partial ordering≺
which satisfies the conditions forLsτ . We prove that the same partial ordering does the
job forLsθ.

LetC′ = C ∧ (Ls 
 z) wherez is a new variable.C′ is a deducibility constraint system
sincelhs(C) ⊆ Ls. We writeC′ as

∧

i(Ti 
 xi), with 1 ≤ i ≤ n andTi ⊆ Ti+1. We prove
by induction oni that for allk ∈ hidden(Lsθ), for all plain-text occurrencesq of k in Tiθ
there is a keyk′ ∈ hidden(Lsθ) such thatk′ ≺ k andk′ protectsq in Tiθ. It is sufficient to
prove this since fori = n we haveTi = Ls. Remark also that from Corollary 5.9 applied
toLs 
 z we obtain thathidden(Lsθ) = hidden(Lsτ ).

For i = 1 we haveT1 = T1θ = T1τ hence the property is clearly satisfied forθ since it
is satisfied forτ .

Let i > 1. Consider an occurrenceq of a keyk ∈ hidden(Lsθ) in a plain-text position
of w for somew ∈ Tiθ. Let t ∈ Ti such thatw = tθ.

If q is a non-variable position int then it is a position intτ . And sinceτ is a solution
we have that there is a keyk′ ∈ hidden(Lsτ ) (hencek′ ∈ hidden(Lsθ)) such thatk′ ≺ k
andq is protected byk′ in tτ . The keyk′ cannot occur in somexτ , with x ∈ V(t), since
otherwisek′ is deducible (indeedxτ = k′ since the keys are atomic andTxτ ⊢ xτ ). Hence
k′ occurs int. Thenk′ protectsq in t, and thus inw also.

If q is not a non-variable position int then there is a variablexj ∈ V(t) with j < i such
that the occurrenceq in tθ is an occurrence ofk in xjθ (formally q = p ·q′ wherep is some
position ofxj in t andq′ is some occurrence ofk in xjθ). Applying Lemma 5.6 we obtain
that there is an occurrenceq0 of k in Tjθ such that if there is a keyk′ with Tjθ 6⊢ k′ and
which protectsq0 in Tjθ thenk′ protectsq′ in xjθ. The existence of the keyk′ is assured
by the induction hypothesis onTjθ. Hencek′ protectsq′ in xjθ and thusq in w. since
otherwise there isx ∈ V(Ls) such thatxτ = k′, which implies thatk′ /∈ hidden(Ls).
Thenq′ is a position inLsθ. Moreoverq′ protectsq in Lsθ.

If q is not a non-variable position inLs then there is a variablex ∈ V(Ls) such that

Hence we only need to check whetherτ is an attack forC andP (L). Let K =
hidden(Lsτ). We build inductively the setsK0 = ∅ and for alli ≥ 1,

Ki = {k ∈ K | ∀q ∈ Posp(k, Lsτ)∃k
′ s.t.k′ protectsq andk′ ∈ Ki−1}

wherePosp(m,T ) denotes the plain-text positions of a termm in a setT . Observe that for
all i ≥ 0, Ki ⊆ Ki+1. This can be proved easily by induction oni. Moreover, sinceK is
finite andKi ⊆ K for all i ≥ 0, then there isl ≥ 0 such thatKi = Kl for all i > l.

LEMMA 5.12. There existsi ≥ 0 such thatKi = K if and only ifLτ ∈ Pkc.

PROOF. Consider first that there existsi ≥ 0 such thatKi = K. Then take the following
strict partial ordering onK: k′ ≺ k if and only if there isj ≥ 0 such thatk′ ∈ Kj and
k /∈ Kj . Consider a keyk ∈ K and a plain-text occurrenceq of k in Lsτ . Then takel ≥ 1
minimal such thatk ∈ Kl. By the definition ofKl there isk′ ∈ K such thatk′ protectsq
andk′ ∈ Kl−1. Sincel is minimalk /∈ Ki−1. Hencek′ ≺ k. ThusLτ ∈ Pkc.

Consider now thatτ is a solution. Suppose thatKi+1 = Ki ( K. Let k ∈ K \Ki+1.
Sincek 6∈ Ki+1 there is a plain-text occurrenceq of k such that for allk′ ∈ K either
k′ does not protectq, or k′ /∈ Ki. But sinceτ is a solution, there isk′′ ∈ K such that
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k′′ protectsq andk′′ ≺ k. It follows thatk′′ /∈ Ki, and thusk′′ /∈ Ki+1. Hence for an
arbitraryk ∈ K \ Ki+1 we have foundk′′ ∈ K \ Ki+1 such thatk′′ ≺ k. That is, we
can build an infinite sequence. . . ≺ k′′ ≺ k with distinct elements from a finite set –
contradiction. So there existsi ≥ 0 such thatKi = K.

Hence to check whetherLτ ∈ Pkc, we only need to construct the setsKi until Ki+1 =
Ki and then to check whetherKi = K. This algorithm is similar to a classical method
for finding a topological sorting of vertices (and for findingcycles) of directed graphs. It
is also similar to that given by Janvier [Janvier 2006] for the intruder deduction problem
considering the deduction system of Laud [Laud 2002].

Regarding the complexity, there are at most♯K sets to be build and each setKi can
be constructed inO(|Lsτ |). If a DAG-representation of the terms is used then|Lsτ | ∈
O(|Ls|). This gives a complexity ofO(|K| × |Ls|) for the above algorithm.

Strict key cycles and key orderings..For the other two propertiesPskc andP≺ we pro-
ceed in a similar manner.

LEMMA 5.13. LetT 
 x be a constraint of a solved deducibility constraint systemC
andθ be a solution. Letm,u, k be terms such that

Tθ ⊢ m and enc(u, k) ⊑ m andTθ 6⊢ k.

Then there exists a non-variable termv such thatv ⊑ w for somew ∈ T and vθ =
enc(u, k).

PROOF. We writeC as
∧

i(Ti 
 xi), with 1 ≤ i ≤ n andTi ⊆ Ti+1. Consider the
indexi of the constraintT 
 x, that is such thatTi 
 ui ∈ C, Ti = T andui = x. The
lemma is proved by induction on(i, l) (lexicographical ordering) wherel is the length of
the proof ofTiθ ⊢ m. Consider the last rule of the proof:

—(axiom rule)m = tθ for somet ∈ Ti. We can have that either there ist′ ⊑ t such that
t′θ = enc(u, k), or enc(u, k) ⊑ yθ for somey ∈ V(t). In the first case takev = t′,
w = t. In the second case, by the definition of deducibility constraint systems, there
exists(Tj 
 y) ∈ C with j < i. SinceTjθ ⊢ yθ andTjθ 6⊢ k (sinceTj ⊆ Ti), we
deduce by induction hypothesis that there exists a non-variable termv such thatv ⊑ w
for somew ∈ Tj, hencew ∈ Ti andvθ = enc(u, k).

—(decomposition rule) Letm′ be the premise of the rule. We have thatTiθ ⊢ m′ (with
a proof of a strictly smaller length) andm ⊑ m′ thusenc(u, k) ⊑ m′. By induction
hypothesis, we deduce that there exists a non-variable termv such thatv ⊑ w for some
w ∈ Ti andvθ = enc(u, k).

—(composition rule) All cases are similar to the previous one except ifm = enc(u, k) and

the rule is
S ⊢ x S ⊢ y

S ⊢ enc(x, y)
. But this case contradictsTiθ 6⊢ k.

The following simple lemma is also needed for the proof of Lemma 5.15.

LEMMA 5.14. LetT 
 x be a constraint of a solved deducibility constraint systemC,
θ be a solution,k ∈ hidden(Tθ), andm a term such thatTθ ⊢ m. If k ρ1 m then there is
t ∈ T such thatk ρ1 t.
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PROOF. We writeC as
∧

i(Ti 
 xi), with 1 ≤ i ≤ n andTi ⊆ Ti+1. Consider the
indexi of the constraintT 
 x, that is such that(Ti 
 ui) ∈ C, Ti = T andui = x. The
lemma is proved by induction on(i, l) (considering the lexicographical ordering) wherel
is the length of the proof ofTiθ ⊢ m. Consider the last rule of the proof:

—(axiom rule)m ∈ Tiθ or m a public constant. Ifm is a public constant thenk 6= m
sincek ∈ hidden(Tθ). Thus there ist ∈ Ti such thatm = tθ. If k ρ1 t then we’re done.
Otherwise there is a variabley ∈ V(t) such thatk ρ1 yθ. Also, there isj < i such that
Tj 
 y is a constraint ofC. Then, by induction hypothesis, there ist′ ∈ Tj, hence inTi,
such thatk ρ1 t′.

—(composition or decomposition rule) By inspection of all the composition and decom-
position rules we observe that there is always a premiseTiθ ⊢ m′ with k ρ1 m

′ for some
termm′. The conclusion follows then directly from the induction hypothesis.

The following lemma shows that it is sufficient to analyzeτ when checking the proper-
tiesPskc andP≺.

LEMMA 5.15. LetC be a solved deducibility constraint system,L a list of terms such
thatV(L) ⊆ V(C) andlhs(C) ⊆ Ls, andθ a solution ofC. For anyk, k′ ∈ hidden(Lsθ),
if k encryptsk′ in Lsθ thenk encryptsk′ in Lsτ .

PROOF. Remember thathidden(Lsθ) = hidden(Lsτ ) (Corollary 5.9).
Consider two keysk, k′ ∈ hidden(Lsθ) such thatk encryptsk′ in Lsθ. Then there

are termsu, u′ such thatu′ ∈ Lsθ, enc(u, k) ⊑ u′ andk′ ρ1 u. We can have that either
(first case) there arev, w such thatv ⊑ w ∈ Ls, v non-variable andenc(u, k) = vθ, or
(second case)enc(u, k) ⊑ xθ with x ∈ V(Ls). In the second case, consider the constraint
(Tx 
 x) ∈ C. We haveTxθ ⊢ xθ. Hence we can apply Lemma 5.13 forxθ, u andk to
obtain that there exists a non-variable termv such thatv ⊑ w for somew ∈ Tx andvθ =
enc(u, k). Hence, in both cases, we obtained that there is a non-variable termv ∈ St(Ls)
(sinceTx ⊆ Ls) such thatvθ = enc(u, k). Thus there isv0 such thatv = enc(v0, k).
Indeed, otherwisev = enc(v0, y) for somey ∈ V(Ls), hencey ∈ V(C). SinceC is
solved we haveTyσ ⊢ yσ. But yσ = k, contradictingk ∈ hidden(Lsθ).

We havev0θ = u. Sincek′ ρ1 u andk′ is a name or a variable, we can have thatk′ ρ1 v0,
or k′ ρ1 yθ for somey ∈ V(v0). If k′ ρ1 v0 thenk encryptsk′ in Ls, hence inLsτ also.
If k′ ρ1 yθ then from the previous lemmak′ ρ1 t for somet ∈ Ty, and hencek′ ρ1 yτ .
Therefore in both cases we have thatk encryptsk′ in Lsτ .

We deduce that deciding whether there is an attack forC andP (L), whenP is inter-
preted asPskc,can be done simply by deciding whether the restriction of the relationρLsτ

e

toK ×K is cyclic.
Deciding whether there is an attack forC andP (L), whenP is interpreted asP≺, can

be done by deciding whether the restriction toK×K of the relationρLsτ
e has the following

propertyQ: there arek, k′ ∈ K such thatkρLsτ
e k′ andk � k′.

Checking the cyclicity of the relationρLsτ
e reduces to checking the cyclicity of the cor-

responding directed graph, using a classic algorithm inO(|K|2). Then, checking the prop-
ertyQ can be performed by analyzing all pairs(k, k′) ∈ K ×K hence also inO(|K|2).

Verifying any of the three properties requires a preliminary step of computingK =
hidden(Lsτ). Computing deducible subterms can be performed in linear time, hence this
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computation step requiresO(|Lsτ |). |Lsτ | ≤ |Ls|+ |τ | ≤ |Ls|+O(|C|). If lhs(C) ⊆ Ls,
then|Lsτ | = O(|L|). It follows that the complexity of deciding whether there isan attack
for C andP (L) isO(|L|2), whenP is interpreted asPkc, Pskc orP≺.

5.5 NP-completeness

Let C be a deducibility constraint system andL a list of terms such thatV(Ls) ⊆ V(C)
andlhs(C) ⊆ Ls. The NP membership of deciding whether there is an attack forC and
P (L) (for our 3 possible interpretations ofP ) follows immediately from Corollary 4.18
and Proposition 5.10.

NP-hardness is obtained by adapting the construction for NP-hardness provided in [Rusi-
nowitch and Turuani 2003]. More precisely, we consider the reduction of the 3SAT prob-
lem to our problem. For any 3SAT Boolean formula we constructa protocol such that the
intruder can deduce a key cycle if and only if the formula is satisfiable. The construction
is the same as in [Rusinowitch and Turuani 2003] (pages 15 and16) except that, in the
last rule, the participant responds with the termenc(k, k), for some fresh keyk (initially
secret), instead ofSecret. Then it is easy to see that the only way to produce a key cycle
on a secret key is to play this last rule which is equivalent, using [Rusinowitch and Turuani
2003], to the satisfiability of the corresponding 3SAT formula.

6. AUTHENTICATION-LIKE PROPERTIES

We propose a simple decidable logic for security properties. This logic enables in particular
to specify authentication-like properties.

6.1 A simple logic

The logic enables terms comparisons and is closed under Boolean connectives.

Definition 6.1. The logicL is inductively defined by:

φ ::= [m1 = m2] | ¬φ | φ ∨ φ | φ ∧ φ | ⊥ m1,m2 terms

V(φ) is the set of variables occurring in its atomic formulas.

σ |= [m1 = m2] if m1σ andm2σ are identical terms.σ 6|=⊥. This satisfaction relation
is extended to any of the above formulas, interpreting the Boolean connectives as usual.

Example6.2. Let us consider again the authentication property introduced in Exam-
ple 3.8. There is an attack on authentication betweenA andB if A andB do not agree on
the noncen′

a sent byA for B, that is ifx = n′
a at the end of the run of the protocol. This

can be expressed by the following formula

φ1 = [x 6= n′
a]

The substitutionσ1 (assigningx tona) is an attack forC′
1 (defined in Example 3.8) andφ1

and demonstrates a failure of authentication.

More sophisticated properties can be expressed using the logic L. For example, when
two sessions of the same role are executed, one can expressedthat an agent has received
exactly oncethe right noncena, with the following formula.

φ2 = ([x1 = na] ∧ [x2 6= na]) ∨ ([x1 6= na] ∧ [x2 = na])
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wherex1 (resp.x2) represents the nonce received by the agent in the first (resp. second)
session.

We can also express properties of the form: if two agents agree on some termu, they
also agree on some termv. This can be indeed modeled by the formula

φ3 = [u1 = u2] → [v1 = v2]

whereu1 (resp.u2) represents the view ofu by the first (resp. second) agent andv1 (resp.
v2) represents the view ofv by the first (resp. second) agent. The formulaA → B is the
usual notation for the formula¬A ∨B.

6.2 Decidability

THEOREM 6.3. Let C be a deducibility constraint system andφ be a formula ofL.
Deciding whether there is an attack forC andφ can be performed in non-deterministic
polynomial time.

PROOF. First, choosing non-deterministicallyφ1 or φ2 in any subformulaφ1 ∨ φ2, we
may, w.l.o.g. only consider the case whereφ is a conjunction

∧

j [uj = u′
j ] ∧ φd, where

φd =
∧

l[vl 6= v′l].
Let σ be amgu (idempotent, which does not introduce new variables) of

∧

j uj = u′
j.

The deducibility constraint systemC has a joined solution withφ if and only if Cσ and
φdσ have a common solution. As in the previous sections, we choose a representation
of expressions, such that applying amgu of subterms of an expressione on e does not
increase the size of the expressione.

We are now left to the case where we have to decide whether a deducibility constraint
system has a solution together with a property of the formφ =

∧k

i=1[ui 6= vi].
Applying Theorem 4.3, there exists a solutionθ of C andφ if and only if there exist a

deducibility constraint systemC′ in solved form and substitutionsσ, θ′ such thatθ = σθ′,
C  ∗

σ C′ andθ′ is an attack forC′ andφσ. Thus, we are now left to decide whether
there exists a solution to a solved constraint systemC′ and a formulaφσ of the form
φσ =

∧k

i=1[ui 6= vi].
If, for somei, ui is identical tovi, then there is clearly no solution. We claim that,

otherwise, there is always a solution. This is an independence of disequation lemma (as
in [Colmerauer 1984] for instance), and the proof is similarto other independence of dise-
quations lemmas:

LEMMA 6.4. Let C be a solved deducibility constraint system andφ be the formula
t1 6= u1 ∧ . . . ∧ tn 6= un such thatV(φ) ⊆ V(C) and, for everyi, ti is not identical toui.
Then there is always a solutionθ of C andφ.

This is proved by induction on the number of variables ofφ. In the base case, there is no
variable and the result is trivial asφ is a tautology.

Let T0 be the smallest left-hand side ofC. T0 must be a non empty set of ground terms.
Note that there is an infinite set of deducible terms fromT0.

Letx ∈ V(φ). For eachi, eitherti = ui has no solution, in which caseti 6= ui is always
satisfied, or else letS = {xσi | σi = mgu(ti, ui)}. We choosetx such thatT ⊢ tx and
tx /∈ S. This is possible sinceS is finite and there are infinitely many terms deducible
from T . Now, for everyi, ti[tx/x] is not identical toui[

tx/x] by construction. Hence, we
may apply the induction hypothesis toφ[tx/x] and conclude.
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7. TIMESTAMPS

For modeling timestamps, we introduce a new sortTime ⊆ Msg for time and we assume
an infinite number of names of sortTime, represented by rational numbers or integers. We
assume that the only two sorts areTime andMsg. Any value of time should be known to
an intruder, that is why we add to the deduction system the rule

S ⊢ a
for any namea of

sortTime. All the previous results can be easily extended to such a deduction system since
ground deducibility remains decidable in polynomial time.

To express relations between timestamps, we use timed constraints.

Definition 7.1. An integer timed constraintor a rational timed constraintT is a con-
junction of formulas of the form

Σk
i=1αixi ⋉ β,

where theαi andβ are rational numbers,⋉ ∈ {<,≤}, and thexi are variables of sort
Time. A solutionof a rational (resp. integer) timed constraintT is a closed substitution
σ = {c1/x1

, . . . , ck/xk
}, where theci are rationals (resp. integers), that satisfies the con-

straint.

Such timed properties can be used for example to say that a timestampx1 must be
fresher than a timestampx2 (x1 ≥ x2) or thatx1 must be at least 30 seconds fresher than
x2 (x1 ≥ x2 + 30).

Example7.2. We consider the Wide Mouthed Frog Protocol [Clark and Jacob 1997].

A → S : A, enc(〈Ta, B,Kab〉,Kas)
S → B : enc(〈Ts, A,Kab〉,Kbs)

A sends to a serverS a fresh keyKab intended forB. If the timestampTa is fresh enough,
the server answers by forwarding the key toB, adding its own timestamps.B simply
checks whether this timestamp is older than any other message he has received fromS. As
explained in [Clark and Jacob 1997], this protocol is flawed because an attacker can use the
server to keep a session alive as long as he wants by replayingthe answers of the server.

This protocol can be modeled by the following deducibility constraint system:

S1
def
= {a, b, s, 〈a, enc(〈0, b, kab〉, kas)〉} 
 〈a, enc(〈xt1 , b, y1〉, kas)〉, xt2 (6)

S2
def
= S1 ∪ {enc(〈xt2 , a, y1〉, kbs)} 
 〈b, enc(〈xt3 , a, y2〉, kbs)〉, xt4 (7)

S3
def
= S2 ∪ {enc(〈xt4 , b, y2〉, kas)} 
 〈a, enc(〈xt5 , b, y3〉, kas)〉, xt6 (8)

S4
def
= S3 ∪ {enc(〈xt6 , a, y3〉, kbs)} 
 enc(〈xt7 , a, kab〉, kbs) (9)

wherey1, y2, y3 are variables of sortMsg andxt1 , . . . , xt7 are variables of sortTime. We
add explicitly the timestamps emitted by the agents on the right hand side of the constraints
(that is in the messages expected by the participants) sincethe intruder can schedule the
message transmission whenever he wants. Note that on the right hand side of constraints
we do have terms, but by abuse of notation we have omitted the pairing function symbol.

Initially, the intruder simply knows the names of the agentsandA’s message at time 0.
ThenS answers alternatively to requests fromA andB. Since the intruder controls the
network, the messages can be scheduled as slow (or fast) as the intruder needs it. The
serverS should not answer ifA’s timestamp is too old (let’s say older than 30 seconds)
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thusS’s timestamp cannot be too much delayed (no more than 30 seconds). This means
that we should havext2 ≤ xt1 + 30. Similarly, we should havext4 ≤ xt3 + 30 and
xt6 ≤ xt5 + 30. The last rule corresponds toB’s reception. In this scenario,B does not
perform any check on the timestamp since it is the first message he receives.

We say that there is an attack if there is a joined solution of the deducibility constraint
system and the previously mentioned time constraints together withxt7 ≥ 30. This last
constraint expresses that the timestamp received byB is too large to come fromA. Al-
together, the time constraint becomesxt2 ≤ xt1 + 30 ∧ xt4 ≤ xt3 + 30 ∧ xt6 ≤
xt5 + 30 ∧ xt7 ≥ 30. Then the substitution corresponding to the attack is

σ = {kab/y1
, kab/y2

, kab/y3
, kab/y4

, 0/xt1
, 30/xt2

, 30/xt3
, 60/xt4

, 60/xt5
, 90/xt6

, 90/xt7
}.

PROPOSITION 7.3. There is an attack to a solved deducibility constraint system and a
time constraintT iff T has a solution.

PROOF SKETCH. LetC be a solved deducibility constraint system, andT a timed con-
straint. Lety1, . . . , yn be the variables of sortMsg in C andx1, . . . , xk the variables of
sortTime in C. Clearly, any substitutionσ of the formyiσ = ui whereui ∈ Si for some
(Si 
 yi) ∈ C andxiσ = ti for ti any constant of sortTime is a solution ofC. Let σ′ be
the restriction ofσ to the timed variablesx1, . . . , xk.
σ is an attack forC andT if and only if σ′ is a solution toT . Thus there exists an attack

for C andT if and only if T is satisfiable.

COROLLARY 7.4. Deciding whether a deducibility constraint system, together with a
time constraint, has a solution is NP-complete.

PROOF. The NP membership follows from the NP membership of time constraint satis-
fiability, Theorem 4.3 and Proposition 7.3.

NP-hardness directly follows from the NP-hardness of deducibility constraint system
solving, considering an empty timed constraint.

8. CONCLUSIONS

We have shown how, revisiting the approach of [Comon-Lundh and Shmatikov 2003; Rusi-
nowitch and Turuani 2003], we can preserve the set of solutions, instead of only deciding
the satisfiability. We also derived NP-completeness results for some security properties:
key-cycles, authentication, time constraints.

Since the constraint-based approach [Comon-Lundh and Shmatikov 2003; Rusinowitch
and Turuani 2003] has already been implemented in AVISPA [Armando et al. 2005], it is
likely that we can, with only slight efforts, adapt this implementation to the case of key
cycles and timestamps.

More generally, we would like to take advantage of our resultto derive decision proce-
dures for even more security properties. A typical example would be the combinations of
several properties. Also, we could investigate non-trace properties such as anonymity or
guessing attacks, for which there are very few decision results (only [Baudet 2005], whose
procedure is quite complex).

Regarding key cycles, our approach is valid for a bounded number of sessions only. Se-
crecy is undecidable in general [Durgin et al. 2004] for an unbounded number of sessions.
Such an undecidability result could be easily adapted to theproblem of detecting key cy-
cles. Secrecy is decidable for several classes of protocols[Ramanujam and Suresh 2003;

ACM Transactions on Computational Logic, Vol. V, No. N, October 2018.



Deciding security properties for cryptographic protocols · 37

Comon-Lundh and Cortier 2003; Blanchet and Podelski 2003; Verma et al. 2005] and an
unbounded number of sessions. We plan to investigate how such fragments could be used
to decide key cycles.
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