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There is a large amount of work dedicated to the formal verification of security protocols. In this
paper, we revisit and extend the NP-complete decision procedure for a bounded number of sessions.
We use a, now standard, deducibility constraint formalism for modeling security protocols. Our
first contribution is to give a simple set of constraint simplification rules, that allows to reduce
any deducibility constraint system to a set of solved forms, representing all solutions (within the
bound on sessions).

As a consequence, we prove that deciding the existence of key cycles is NP-complete for a
bounded number of sessions. The problem of key-cycles has been put forward by recent works
relating computational and symbolic models. The so-called soundness of the symbolic model
requires indeed that no key cycle (e.g., enc(k, k)) ever occurs in the execution of the protocol.
Otherwise, stronger security assumptions (such as KDM-security) are required.

We show that our decision procedure can also be applied to prove again the decidability of
authentication-like properties and the decidability of a significant fragment of protocols with
timestamps.

Categories and Subject Descriptors: F.3.@dics and M eanings of Programs)]: Verifying and Reasoning about
Programs

General Terms: Security
Additional Key Words and Phrases: formal proofs, security protocols, symbolic constraints, veri-
fication

1. INTRODUCTION

Security protocols are small programs that aim at secummgnaunications over a public

network, like Internet. Considering the increasing sizeetfivorks and their dependence
on cryptographic protocols, a high level of assurance islegén the correctness of such
protocols. The design of such protocols is difficult and ep@ne; many attacks are dis-
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covered even several years after the publication of a pohto€onsequently, there has
been a growing interest in applying formal methods for \atlitg cryptographic protocols
and many results have been obtained. The main advantagé aproach is its rela-
tive simplicity which makes it amenable to automated arnglyiSor example, the secrecy
preservation is co-NP-complete for a bounded number oi@es§Amadio and Lugiez

2000; Rusinowitch and Turuani 2001], and decidable for amounded number of ses-
sions under some additional restrictions [Comon-Lundh @adier 2003; Durgin et al.

1999; Lowe 1998; Ramanujam and Suresh 2005]. Many toolsddawvebeen developed to
automatically verify cryptographic protocols, like [Armdo et al. 2005; Blanchet 2001;
Millen and Shmatikov 2001; Cremers 2008].

Generalizing the constraint system approath.this paper, we re-investigate and ex-
tend the NP-complete decision procedure for a bounded nuafisessions [Rusinowitch
and Turuani 2001]. In this setting (i.e. finite number of g@ss), deducibility constraint
systems have become the standard model for verifying sgquioperties, with a spe-
cial focus on secrecy. Starting with Millen and Shmatikqweper [Millen and Shmatikov
2001] many results (e.g. [Comon-Lundh and Shmatikov 20@3id@t 2005; Bursuc et al.
2007]) have been obtained and several tools (e.g. [Coritcsaite 2002]) have been devel-
oped within this framework. Our first contribution is to prde a generic approach derived
from [Comon-Lundh and Shmatikov 2003] to decide generalsgcproperties. We show
that any deducibility constraint system can be transforing€gossibly several) much sim-
pler deducibility constraint systems that are caketied formspreservingall solutions
of the original system, and not only its satisfiability. Imet words, the deducibility con-
straint system represents in a symbolic way all the possiétpiences of messages that
are produced, following the protocol rules, whatever aeeititruder’s actions. This set
of symbolic traces is infinite in general. Solved forms aréngpte (and finite) represen-
tation of such traces and we show that it is suitable for théigation of many security
properties. We also consider sorted terms, symmetric ayrdragtric encryption, pairing
and signatures, but we do not consider algebraic propdiktesbelian groups or exclu-
sive or. In addition, we prove termination polynomial timeof the (non-deterministic)
deducibility constraint simplification. Compared to [Rusivitch and Turuani 2001], our
procedure preserves all solutions. Hence, we can reprigdnstance, all attacks on the
secrecy and not only decide if there exists one. Moreoves@nting the decision proce-
dure using a small set of simplification rules yields moreilldity for further extensions
and modifications.

The main originality is that the method is applicable to aegwsity property that can
be expressed as a formula on the protocol trace and the agembries. For example, our
decision procedure (published in the LPAR’06 proceediigs{ier and Zalinescu 2006])
has been used in [Cortier et al. 2006] for proving that a netion®f secrecy in presence
of hashes is decidable (and co-NP-complete) for a boundethauof sessions. It has also
been used in [Cortier et al. 2007] in the proof of modularégults for security of proto-
cols. To illustrate the large applicability of our decisiprocedure, we show in this paper
how it can be used for proving co-NP-completeness of thredskof security properties:
the existence of key cycles, authentication-like propsrtand secrecy of protocols with
timestamps.

For authentication properties, we introduce a small logat allows to specify authen-
tication and some similar security properties. Using olvesbforms, we show that any
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property that can be expressed within this logic can be @ecid@he logic is smaller than
NPATRL [Syverson and Meadows 1996]BS-LTL [Corin et al. 2005; Corin 2006], but
we believe that decidability holds for a larger logic, closethe two above ones. How-
ever, the goal of this work is not to introduce a new logic, father to highlight the proof
method. Note also that the absence of key cycles cannot ressaal in any of the three
mentioned logics because it is not only a trace property lsotaproperty of the message
structure (see below).

For timestamps, we actually retrieve a significant fragnoétite decidable class identi-
fied by Bozgaet al[Bozga et al. 2004]. We believe that our result can lead maséyeto an
implementation, since we only need to adapt the procedypeimented in AVISPA [Ar-
mando et al. 2005], while Bozgs alhave designed a completely new decision procedure,
which de factohas not been implemented.

Application to key cyclesOur second main contribution is to use this approach to pro-
vide an NP-complete decision procedure for detecting tineigaion of key cycles during
the execution of a protocol, in the presence of an intruderafbounded number of ses-
sions. To the best of our knowledge, this problem has not bddressed before. The key
cycle problem is a problem that arises from the cryptogmpbinmunity. Indeed, two dis-
tinct approaches for the rigorous design and analysis gitographic protocols have been
pursued in the literature: the so-called Dolev-Yao, synthar formal approach on the
one hand and the cryptographic, computational, or coneggpeoach on the other hand.
In the symbolic approach, messages are modeled as formad that the adversary can
manipulate using a fixed set of operations. In the cryptdgagpproach, messages are
bit strings and the adversary is an arbitrary probabiljstilynomial-time Turing machine.
While results in this model yield strong security guarastéle proofs are often quite in-
volved and only rarely suitable for automation (see, e@qlflwasser and Micali 1984;
Bellare and Rogaway 1993)).

Starting with the seminal work of Abadi and Rogaway [Abadd d&ogaway 2002],
recent results investigate the possibility of bridging tfa@ between the two approaches.
The goal is to obtain the best of both worlds: simple, autechaecurity proofs that entail
strong security guarantees. The approach usually consigt®ving that the Dolev-Yao
abstraction of cryptographic primitives is correct as saserstrong enough primitives are
used in the implementation. For example, in the case of agtnurencryption, it has
been shown [Micciancio and Warinschi 2004b] that the p&dacryption assumptionis a
sound abstraction for IND-CCA2, which corresponds to a‘esthblished security level.
The perfect encryption assumption intuitively states #matryption is a black-box that can
be opened only when one has the inverse key. Otherwise, ammafion can be learned
from a cipher-text about the underlying plain-text.

However, it is not always sufficient to find the right cryptaghic hypotheses. Formal
models may need to be amended in order to be correct abstradf the cryptographic
models. A widely used requirement is to control how keys aaerypt other keys. In a
passive setting, soundness results [Abadi and Rogaway, 20i@2iancio and Warinschi
2004a] require that ney cyclescan be generated during the execution of a protocol.
Key cycles are messages likac(k, k) or enc(kq, k2), enc(ke, k1) where a key encrypts
itself or more generally when the encryption relation betwkeys contains a cycle. Such
key cycles have to be disallowed simply because usual $gddifinitions for encryption
schemes do not yield any guarantees otherwise. In the aetiting, the typical hypotheses
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are even stronger. For instance, in [Backes and Pfitzman; 2a@vier et al. 2005] the
authors require that a kéy never encrypts a key generated befbrer, more generally,
that it is known in advance which key encrypts which one. Mmexisely, the encryption
relation has to be compatible with the order in which keygamerated, or more generally,
it has to be compatible with an a priori giverdering on keys

Related work on key cycle§ome authors circumvent the problem of key cycles by
providing new security definitions for encryptiokey Dependent Messagsscurity, or
KDM in short, that allow key cycles [Adao et al. 2005; Baclatsal. 2007]. However,
the standard security notions do not imply these new deafimsti and ad-hoc encryption
schemes have to be constructed. Most of these construciserthe random oracle model,
which is provably non implementable. Though there was saent progress [Hofheinz
and Unruh 2008] towards constructing a KDM-secure encoypscheme in the standard
model, none of the usual, implemented encryption schemgdban proved to satisfy
KDM-security.

In a passive setting, Laud [Laud 2002] proposed a modifinatfdhe Dolev-Yao model
such that the new model is a sound abstraction even in thernmef key cycles. In his
model the intruder’s power is strengthened by adding nevactazh rules. With the new
rules, from a message containing a key cycle, the intrudeiirdar all keys involved in
the cycle as well as the messages encrypted by these keysedhigntly, Janvier [Janvier
2006] proved that the intruder deduction problem remaingrmmnial for the modified
deduction system. It was also suggested that this appr@ache extended to active in-
truders and incorporated in existing tools, though, to thst lof our knowledge, this has
not been completed yet. Note that the definition of key cyaksd in [Janvier 2006] is
more permissive than in [Abadi and Rogaway 2002] (which isamessarily restrictive)
and it corresponds to the approach of Laud [Laud 2002].

Deciding key cyclesln this paper, we provide an NP-complete decision procefiure
detecting the generation of key cycles during the execuwgfanprotocol, in the presence
of an active intruder, for a bounded number of sessions. @ueeulure works for all
the above mentioned definitions of key cycles: strict keyey@ la Abadi, Rogaway),
non-strict @ la Laud) key cycles, key orderings (a Backes). We therefore provide a
necessary component for automated tools used in provinggtcryptographic security
properties, using existing soundness results. Since quoaph is an extension of the
transformation rules derived from the result of [Rusinaliand Turuani 2001], we believe
that our algorithm can be easily implemented since it candagi@d from the associated
procedure, already implemented in AVISPA [Armando et aD®|(for deciding secrecy
and authentication properties.

Outline of the paperThe messages and the intruder capabilities are modeledcin Se
tion 2. In Section 3.1, we define deducibility constraintteyss and show how they can be
used to express protocol executions. In Section 3.2, weals@ourity properties and their
satisfaction. In Section 4, we show that the satisfactioanyf(in)security property can be
non-deterministically, polynomially reduced to the dadisility of the same problem, this
time on simpler constraint systems. The simplificationsulerived from [Comon-Lundh
and Shmatikov 2003] are provided in Section 4.1. They aneadlgtnot sufficient to en-
sure termination in polynomial time. Thus we introduce irct8® 4.6 a refined decision
procedure, which is correct, complete, and terminatingalyqomial time. We show in
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Section 5 how this approach can be used to obtain our maitt fsP-completeness

for the decision of the key cycles generation. In Section é,imtroduce a small logic

to express authentication-like properties and we show hamtechnique can be used to
decide any formula of this logic. In Section 7, we show howaih de used to derive NP-
completeness for protocols with timestamps. Some conutu@imarks about further work
can be found in Section 8.

2. MESSAGES AND INTRUDER CAPABILITIES
2.1 Syntax

Cryptographic primitives are represented by function sgisibMore specifically, we con-
sider asignature(S, F) consisting in a set a$ortsS = {s, s1 ...} and a set ofunction
symbolsF = {enc, enca, sign, (), priv}. Each function symbol is associated with am
ity: ar is a mapping fromF to S* x S, which we writear(f) = s1 X -+ X 8, — s.
The four first function symbols itF are binary: for each of them there &g s2,s € S
such thatar(f) = s; x s2 — s. The last symbol is unary: there ases’ € S such that
ar(f) =s— .

The symbol{) represents the pairing function. The term(m, k) andenca(m, k)
represent respectively the messagesncrypted with the symmetric (resp. asymmetric)
key k. The termsign(m, k) represents the messagesigned by the key:. The term
priv(a) represents the private key of the agentFor simplicity, we confuse the agents
names with their public key. (Or conversely, we claim thatratg identities are defined by
their public keys).

N = {a,b...} is aset ohamesandX = {z,y...} is a set ofvariables Each name
and each variable is associated with a sort. We assume #ratale infinitely many names
and infinitely many variables of each sort.

The set oterms of sorts is defined inductively by

term of sorts
T variablex of sorts
a nameq of sorts
f(t1,...,t,) application of symbof € F such thatar(f) =s; X --- x 8, = s
and eacht; is a term of sors;.

We assume a special sdfsg that subsumes all the other sorts: any term is of Klag.

Sorts are mostly left unspecified in this paper. They can leel uis applications to
express that certain operators can be applied only to sostrécted terms. For example,
we use sorts explicitly to express that messages are erdrypt atomic keys (only in
Section 5), and to represent timestamps (only in Section 7).

As usual, we writd/’(t) for the set of variables occurringinFor a sefl” of terms,V(T')
denotes the union of the variables occurring in the termis. & term¢ is groundor closed
if and only if V(¢) = (). A positionor anoccurrencen a termt is a sequence of positive
integers corresponding to paths starting from the root énttbe-representation of For
a termt and a positiorp in this term,t|,, denotes the subterm ofat positionp. We write
St(t) and St(T') for the set of subterms of a terimand of a set of term¥, respectively.
Thesizeof a term¢, denotedt|, is defined inductively as usudk| = 1 if ¢ is a variable
oranameand = 1+ Y 1 |t;| if t = f(t1,...,t,) for f € F. If Tis a set of terms
then|T'| denotes the sum of the sizes of its elements. The cardirdléysetT is denoted
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SkFz Sty Stz Sty
Pairing _ Symmetric encryption
SF(x,y) S F enc(z,y)
Stz Sty Sz Sty
Asymmetric encryption Signing

S+ enca(z,y)

S+ sign(z, y)

Stenc(z,y) Sty S+ (z,y)
Symmetric decryption First Projecton —

Stkax Skx
S+ enca(z,y) St priv(y) S+ (z,y)

Asymmetric decryption Second Projection
Stz Sty
S+ sign(z, y)
Unsigningoptional) - Axiom
S,x b x
Stz

Fig. 1. Intruder deduction system.
by §T. By abuse of notation, we sometimes denotdby the setl’ U {u}.

Substitutions are writtea = {*1/,.,,..., !/, } with dom(o) = {x1,...,2z,}. We only
considernwell-sortedsubstitutions, for whichr; andt; have the same sortr is closedif
and only if everyt; is closed. The application of a substitutierio a termt is writteno (¢)
orto. A most general unifier of two termsandv is denoted byngu(u, v).

2.2 Intruder capabilities

The ability of the intruder is modeled by the deduction rudésplayed in Figure 1 and
corresponds to the usual Dolev-Yao rules.

Pairing, signing, symmetric and asymmetric encryptiontheesompositiorrules. The
other rules arelecomposition ruleslntuitively, these deduction rules say that an intruder
can compose messages by pairing, encrypting, and signisgages provided she has
the corresponding keys and conversely, she can decompasages by projecting or de-
crypting provided she holds the decryption keys. For sigrest, the intruder is also able
to verify whether a signatursign(m, k) and a message: match (provided she has the
verification key), but this does not give rise to any new mgsséhis capability needs not
to be represented in the deduction system. We also congidggtenal rule

S+ sign(z, y)
Skax
that expresses the ability to retrieve the whole message fi® signature. This prop-
erty may or may not hold depending on the signature schendethar is why this rule is
optional. Note that this rule is necessary for obtainingsimess properties w.r.t. crypto-
graphic digital signatures. Our results will hold in bottses, whether or not this rule is
considered in the deduction relation.
A proof tree(sometimes simply called a proof) is a tree whose labelseaqeents - «
whereT is a finite set of terms and is a term. A proof tree is inductively defined as
follows:

—if wis atermand, € T, thenT I u is a proof tree whose conclusionst u, using
the axiom;

ACM Transactions on Computational Logic, Vol. V, No. N, Ootw 2018.



Deciding security properties for cryptographic protocols : 7

—if my,...,m, are proof trees, whose respective conclusionsiate uy,...,T F u,
Skt -+ Skt
respectively and ! " is a ruleR of the Figure 1 such that, for some
Skt
Uyt

DY 'ﬂ'
(well-sorted) substitution, t10 = u1, ..., t,0 = Uy, thenTn is a proof tree
to

using R, whose conclusion i’ I to.

We will call subproofa subtree of a proof tree. Astrict subproof(resp. immediate
subproo) of 7 is a subproof ofr distinct fromr (resp. a maximal strict subproof @}.

A termu is deduciblefrom a set of termd’, which we sometimes writ& - « by abuse
of notation, if there exists a proof tree whose conclusidh is u.

Example2.1. The term(ky, ko) is deducible from the sef; = {enc(k1, k2), k2}, as
the following proof tree shows:

Sl H enc(kl,kg) Sl H kz
Sl F /{1 Sl F k2
Sy (k1 ka)

3. DEDUCIBILITY CONSTRAINT SYSTEMS AND SECURITY PROPERTIES

Deducibility constraint systems are quite common (see[®lien and Shmatikov 2001;

Comon-Lundh and Shmatikov 2003]) in modeling security pcots. We recall here their
definition and show how they can be used to specify generatiggproperties. Then we

prove that any deducibility constraint system can be tanséd into simpler ones, called
solved Such simplified constraints are then used to decide theigeptoperties.

3.1 Deducibility constraint systems

In the usual attacker's model, the intruder controls thevodt. In particular she can
schedule the messages. Once such a scheduling is fixed reb#llagplace the messages
with fake ones, which are nevertheless accepted by the hpaeipants. More precisely,
some pieces of messages cannot be analyzed by the parts;ipance can be replaced by
any other piece, provided that the attacker can constreab¥lrall message. This can be
used to mount attacks.

In the formal model, pieces that cannot be analyzed areceglwith variables. Any
substitution of these variables will be accepted, provithed the attacker can deduce (us-
ing the deduction system of Figure 1) the correspondingire. The main problem then
is to decide whether there is such a substitution, yieldimgkation of the security prop-
erty.

Let us give a detailed example recalling how possible exectitaces are formalized.

Example3.1. Consider the famous Needham-Schroeder asymmetrialnentica-
tion protocol [Needham and Schroeder 1978] designed fouatatuthentication:

A — B: enca({Na, A), B)
B — A: enca({(N4,Ng),A)
A— B: enca(Ng,B)

The agentd sends ta3 his name and a fresh nonce (a randomly generated value)eadry
with the public key of B. The agentB answers by copyingl’s nonce and adds a fresh
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8 . Hubert Comon-Lundh et al.

nonceNg, encrypted byA’s public key. The agentl acknowledges by forwarding’s
nonce encrypted bjg’s public key.

Formally, this protocol can be described using two roleand B. The roleA has two
parametersa, b (initiator and responder), and is (informally) specified@bws:

A(a,b) : generate(n,)
Al. send(enca({ng,a),b))
A2. receive(enca (ng,y), a) — send(enca(y, b))

wherey is a variable:a cannot check that this piece of the message is a nonce getherat
by b. Hence it can be replaced by any term (or any term of a givandepending on what
we want to model).

Similarly, the role ofB takes the two parametelisa, and is specified as:

B(b,a) : generate(ny)
B1. receive(enca({(z,a),b)) — send(enca({x,np),a))
B2. receive(enca(ny, b))

Without loss of generality, we may assume tkatd actions are performed as soon as
the correspondineeceive action is completed: this is the best scheduling strategyhi®
attacker, who will get more information for further compgifake messages. For this
reason, we only need to consider the possible schedulingefe events.

Leta, b be honest participants antie a corrupted one. Consider one session, ;) and
one sessioB (b, a). There are three message deliveries to schedileB1, B2 and B2
has to occur afteB1. Assume the chosen schedulingds, A2, B2. In this scenario, the
possible sequences of message delivery are instanees«fz, a), b), enca({ng,y), a),
enca(ny, b). The variables:, y can be replaced by any term, provided that the attacker can
build the corresponding instances from her knowledge aafipeopriate control point.

The initial intruder knowledge can be setfp = {a, b, i, priv(i) }, including the private
key of the corrupted agent.

For the first message delivery, the attacker has to be ableild the first message
instance from this initial knowledge and the message sesteptd1:

U {enca({ny,a),i)} Ik enca({z,a),b) (1)
This notation will be formally defined later on. Informaltis is a formula, which is
satisfied by a substitutiom on z if enca({x,a),b)o is deducible fronil;, expressing the
ability of the intruder to construetnca({x, a),b)o.
Then, the agent replies sending the corresponding instangea({(z, ny),a), which
increases the attacker’'s knowledge, hence enabling itfoudriilding the next message;
we get the second deducibility constraint:

T aef Ty U {enca({(z,np),a)} Ik enca({ng,y),a) (2)
Similarly, we construct a third deducibility constraint the last message delivery:

T, ¥ U {enca(y, %)} IF enca(np,b) (3)

Definition 3.2. Adeducibility constraint systed is a finite set of expressiofsI- u,

calleddeducibility constraintswhereT is a non empty set of terms, called tledt-hand

side of the deducibility constraint and is a term, called theight-hand sideof the de-
ducibility constraint, such that:

ACM Transactions on Computational Logic, Vol. V, No. N, Ootw 2018.



Deciding security properties for cryptographic protocols : 9

(1) the left-hand sides of all deducibility constraints totally ordered by inclusion;
(2) ifx € V(T') for some(T I u) € C then

T, € min{T’ | (T’ IF u') € C,z € V(u/')}

existsandl’, C T.

Informally, the first condition states that the intruder wihedge is always increasing.
The second condition expresses that variables abstramadreceivedmessages: they
have to occur first on the right side of a constrdint «, before occurring in some left side.
Note that, due to poin(l), T;. exists if and only if the sef7” | (T" I+ v') € C,z € V(v')}
is not empty. The linear ordering on left hand sides also iespthe uniqueness of the
minimum. Hence2) can be restated equivalently as:

(2) Vo € V(C), I(T I u) € C, x € V(u) \ V(T)

In what follows, we may use this formulation instead.

Theleft-hand sideof a deducibility constraint syste, denoted byhs(C), is the max-
imal left-hand side of the deducibility constraints@f Theright-hand sideof a deducibil-
ity constraint systend’, denoted byhs(C), is the set of right-hand sides of its deducibility

constraints)’(C') denotes the set of variables occurring’in L denotes the unsatisfiable

system. Theizeof a constraint system is defined |a§ def [lhs(C') U rhs(C)).

A deducibility constraint syster@® is also written as a conjunction of deducibility con-
straints

C= N\ (TFw)
1<i<n
with T; C T;44, foralli with 1 < i <n — 1. The second condition in
Definition 3.2 then implies that if € V(T;) then3; < i suchthafl; = T, andT; C T;.

Definition 3.3. A solutiono of a deducibility constraint systeif¥ is a (well-sorted)
ground substitution whose domairli¢C') and such that, forevef§ I v € C, To |- uo.

Example3.4. Coming back to Example 3.1, the substitutan= {"+/,,™/,} is a
solution of the deducibility constraint system since

To U {enca((nq,a),?)} + enca({(z,a),b)oy
Tioq1 U {enca({x,np),a)o1} F enca({ng,y),a)or
Tyo1 U {enca(y,i)o1} F enca(np,b)

3.2 Security properties

Deducibility constraint systems represent in a symbolit eampact way a possibly infi-
nite set of traces (behaviors), which depend on the att@chetions. Security properties
are formulas, that are interpreted over these traces.

Definition 3.5. Given a set of predicate symbols together with thearpretation over
the set of ground terms, @)security propertyis a first-order formulap built on these
predicate symbols. Aolutionof ¢ is a ground substitutioa of V(¢) such thaio is true
in the given interpretation. (We also write|= ¢).

If C is a deducibility constraint system agds a (in)security property, possibly sharing
free variables withC, a closed substitutiom from V(¢) U V(C) is anattack for¢ andC,
if is a solution of bothC' and¢.
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10 . Hubert Comon-Lundh et al.

Example 3.6. Ifthe security property is simptyue (which is always satisfied) and the
only sort isMsg then we find the usual deducibility constraint system satt&hn problem,
whose satisfiability is known to be NP-complete [Rusinotvidnd Turuani 2003].

Example3.7. Secrecy can be easily expressed by requiring that trets#ata is not
deducible from the messages sent on the network. We coraidén the deducibility
constraint systend’; defined in Example 3.1. The (in)security property then esgge
thatn, is deducible:¢ is the deducibility constrairif; I n;. Note that we may view a
constraint (system) as a first order formula.

Then the substitution; = {"/,, ™/, } is an attack fory andC; and corresponds to the
attack found by G. Lowe [Lowe 1996]. Note that such a deduetiased property can be
directly included in the constraint system by adding a dédlity constraintT’ - n,.

Example 3.8. Let us show here an example of authentication prop@&wy. agentsA
and B authenticate on some messagef wheneverB finishes a sessiopelievinghe has
talked to A then A has indeed finished a session withand they share the same value
for m. Note that the agentd and B have in general a different view of the message
depending e.g. on which nonces they have generated theeasaid on which nonces they
have received. Ifn 4 denotes the view af: from A andm g the view ofm from B, then
the insecurity property states that there is a trace in wiiebe two messages are distinct.

Back to Example 3.1, consider another scenario with twaimsts of the rolel: A(a, )
andA(a, b) and one instance of the roe: B(b,a). The attacker schedules the commu-
nications as in Example 3.1: in particular the expected agesslelivery ind(a, b) is not
scheduled (the message is not delivered). Then the detitycduinstraint systenC’ is
identical toC, except thafly is replaced witil; = Ty U {enca((n/,, a),b)}. The nonce:
received byb should correspond to the nongé sent bya for b; we considerm, = n/,
mp = X.

The failure of authentication can be stated as the simpladtax # n,. The substitu-
tion o1 defined in Example 3.7 is then an attack, sih@ecepts the nonce, instead of
n':xoy £ nl.

In Sections 5, 6, 7 we provide with other examples corresigih time constraints,
more general authentication-like properties, or to exptieat no key cycles are allowed.

4. SIMPLIFYING DEDUCIBILITY CONSTRAINT SYSTEMS

Using simplification rules, solving deducibility consmasystems can be reduced to solv-
ing simpler constraint systems that we call solved. Onemioperty of the transformation
is that it works for any security property.

Definition 4.1. A deducibility constraint system $lvedif it is | or each of its con-
straints are of
the formT IF z, wherez is a variable.

This definition corresponds to the notion of solved form imf@n-Lundh and Shmatikov
2003]. Note that the empty deducibility constraint systersdlved.

Solved deducibility constraint systems with the single 8dsg are particularly simple
in the case of thérue predicate since they always have a solution, as noticed itejv
and Shmatikov 2001]. Indeed, I€} be the smallest (w.r.t. inclusion) left hand side of all
constraints of a deducibility constraint system. From Dtfin 3.2, 7 is non empty and
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Ry CATIFu ~ C ifTU{z| (T IFx)e C, T CT}ru
Ro CATIFu ~g Co A TolFuo if o = mgu(t,u), t € St(T),
t # u, t,u not variables
R3 CANTIFu ~»s Co AN TolFuo if o = mgu(t1,t2), t1,t2 € St(T),
t1 # ta, t1,t2 NOtvariables
RY CATIFu ~y Co A TolFuo if o = mgu(ta,t3), enca(t1,te), priv(ts) € St(T),
ta # t3, to Orts (or both) is a variable
Ry CATIFu ~~ L if V(T,u) =0andT t/ u

Ry CATIFf(u,v) ~» CATIFuATIFv forfe {(),enc,enca,sign}
Fig. 2. Simplification rules.

has no variables. Léte T3. Then the substitutiof defined byxd = ¢ for every variable:
is a solution sincd” + a0 = t for any constrainf’ I z in the solved system.

4.1 Simplification rules

The simplification ruleswe consider are defined in Figure 2. For instance, the Rjle
removes a redundant constraint, i.e., when itis a logicasequence of smaller constraints.
The ruleR3; guesses some identity (confusion) between two sent subages.

Allthe rules are in fact indexed by a substitution: whenéiemno index then the identity
substitution is implicitly assumed. We write ~~7 C" if there areC1, . .., C,, withn > 1,
C'=Cph, C oy Cf gy oo~y Cp,ando = 0103...0,. We writeC' ~2% C7 if
C ~7 ' for somen > 1, or if ¢/ = C ando is the identity substitution.

Example4.2. Let us consider the following deducibility constrasgstemC":

T1 I+ {enca(z,a), enca(y,a))
Ty Ik ks

whereT) = {a, (enca(ki, a), enca(kz,a))} andTs = Ty U {enc(y, «)}. The deducibility
constraint system®’ can be simplified into a solved form using (for example) tHofaing
sequence of simplification rules.

Tl I x

T Ik enca(x, a) Tk
0 Renca ) T11Fa Ry
C ~ Ty lFenca(y,a) <% ~5 ¢ T Ik enca(y, a)
T, I- enca(y, a)
To Ik Ky Tl by To Ik ky

sinceTy + a. Leto = mgu (enca(k1, a), enca(y,a)) = {*/,}. We have

T I+ x Ry
Too IF Ky

T, I+ enca(y,a) %, Ty I+ enca(ky,a) &

T I+ K Too IF Ky

T Ik z Ik z
{ T1 I+ z

sinceT; + enca(ky,a) andTyo U {z} F k. Intuitively, it means that any substitution of
the form{™/,,, ¥/, } such thatn is deducible fronf} is solution ofC'.

The simplification rules are correct and complete: a dedlitgilconstraint systenC
has a solution, which is also a solution of a (in)securitypemy ¢, if and only if there
exists a deducibility constraint systeifi in solved form such thaf’ ~~* C’ and there is a
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12 . Hubert Comon-Lundh et al.

solution of bothC” and¢o. Note that several simplification rules can possibly be iggpl
to a given deducibility constraint system.

THEOREM 4.3. Let C' be a deducibility constraint systerfi,a substitution, and a
(in)security property.
(1) (Correctness) If” ~~* C’ for some deducibility constraint systetti and some sub-
stitutiono, and if6 is an attack forpo andC’, theno6 is an attack forp andC.

(2) (Completeness) ifis an attack forC and¢, then there exist a deducibility constraint
systenC” in solved form and substitutionms 6’ such that) = o6¢’, C ~* C’, and¢’
is an attack forC’ and ¢o.

(3) (Termination) There is no infinite derivation sequentes-,, C1 ~vq, -+ -~ Cp - .

Theorem 4.3 is proved in Sections 4.2, 4.3, and 4.4.

Getting a polynomial bound on the length of simplificatiogq@ences requires however
an additional memorization technique. This is explaine8éction 4.6.
4.2 Correctness
We first give two simple lemmas.

LEMMA 4.4, If T+ uthenV(u) C V(T).

PrROOF The statement follows by induction on the depth of a prodf ¢f u, observing
that no deduction rule introduces new variables. Indé&d), C |J, V(¢;) for deduction
rules of the form

Skt; ... Skt
Skt
with k£ > 0, andV(¢) C V(S) for the axiom (that s, it € S). O

The next lemma shows the “cut elimination” property for tkegldction systert.
LEMMA 4.5. f T FvandT,ut vthenT F v.

PrROOF. Consider a proofr of T+ « and a proofr’ of T,u + v. The tree obtained
from 7’ by

—replacing the nod€s, u - ¢ in " with T' + ¢,
—replacing each new ledf - « (the oldT, u F u) with the treer,

is a proof of ' v. O

As a consequence, ff C T, T’ + v, andT + u, forallu € 7'\ T, thenT | v.
We show now that the simplification rules preserve dedutilbnstraint systems.

LEMMA 4.6. The simplification rules transform a deducibility constresystem into a
deducibility constraint system.

PrROOF. LetC be a deducibility constraint syster@, = A, (7; IF u;) andC ~», C".
SinceT; C T;yq impliesT;oc C T;,10, C' satisfies the first point of the definition of
deducibility constraint systems.

We show that’ also satisfies the second point of the definition of dedutjlzibnstraint
systems. Lef7” I ') € C" andxz € V(T"). We have to prove th&t, existsand, C T".
We distinguish cases, depending on which simplificatioa isiapplied:
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—If the rule R, is applied, eliminating the constraifiti- «. ThenC’ = C\ {T IF u}. If
T, # T thenT, = T, (and thusT, exists andl’’, C T”). Suppose thdf, = T. Then
there is(T" I+ u”) € C such thatr € V(u”). If u # v” then agairll, = T, (since
(T IF u") € C"). Finally, suppose that = «”. By the minimality ofT’, it follows that
x ¢ V(T)andx ¢ {y | (T" IFy) € C,T" C T}. Sincex € V(u), by Lemma 4.4,
TU{y | (T"Fy)eC,T" C T}/ u, which contradicts the applicability of rule;.

—If one of the rulesk,, R3 or R} is applied, then, for each constraifft” I+ v”) € C’,
there is a constraint” I+ u) € C such thatT'oc = T” anduc = u”. Consider
(T Ik u) € C suchthatl'c = T anduc = u'.

If z is not introduced by, thenz € V(T). ThenT,, exists andl, C T. ThusT,o C
To. If Ty,o = To, thenz € V(T,), which contradicts the minimality of,,. Thus
T.o C To. We also have thatT”o | (T" IFvw”) € C,x € V(u")} C{T"c | (T"o I+
u'o) € C',x € V(u'0)}, since, for any term.”, if © € V(u”), thenz € V(u"0). It
follows that7}, exists andl’, C T,,0. HenceT, C T".

Otherwise, assume thatis introduced by: 3y € V(T') such thatr € V(yo). Then
T, existsandl, C T. LetY = {z € V(T) | x € V(z0)} and lety, € Y be such that
T,, =min{T, | y € Y}. Forally’ € Y, we have that

AEAT o | (T" IFu") € O,z € V(u"))
={To|(TlFu)eC,xzeV(uo)}
OD{To | (TFu)eC,3zeV(u),z € V(zo)}
O{To | (TFu)eCy €V(u),z € V(yo)}
( )

={To | (T Fu)eC,y €V(u)} < B,.

ThusT, = min A C min B,y = Tyyo. FromT,, C T, we obtain thatl},,c C To.
Suppose, by contradiction, th&},c = T'o. Thenz € V(T},0) (sincex € V(T0)).
Thatis, there exists € V(T ) such that: € V(zo). From condition 2 of Definition 3.2
applied toz, it follows thatT, C T,,. As z is in Y, this contradicts the choice gf.
ThusT, C Ty,o C To =T".

—If the rule R4 is applied then there is nothing to prove.

—If some ruleR; is applied, then the property is preserved, since,df V(u") for some
termw” such that(T” I+ ") € C’, then there is a term with € V(v) such that
(T IFv) € C.

O

LEMMA 4.7 CORRECTNESS If C' ~, (', then for every solutionr for C’, o7 is a
solution ofC.

ProoF If C' is obtained by applyind?;, then we have to prove thd@tr - ur, where
T IF wis the eliminated constraint. We know tfatU {x | (T" Ik z) € C, 7' C T} F w. It
follows thatT'r U {z7 | (T" IF z) € C,T" C T} F wr. All constraintsT” I- x in C with
T’ C T are also constraints i@”. Thus, for all such constraints, we have tiét + x,
and hencd'r - z7. Then, from Lemma 4.5, we obtain tHBt - ur.

If C' is obtained by applyind?s, R3 or Rj, then, for every constraiff I+ u of C,
(To)r b (uo)t, hencel'(o7) F u(oT).
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If C' is obtained by applying some rulg;, then we obtain thal'r - f(u,v)7 from
Tt + ur andT'7 + vt by applying the corresponding inference rule (e.g. enaoypf
f = enc).

Finally, C’ cannot be obtained by the rulg,, since it is satisfiable.

It follows that, in all casesy satisfiesC. [

4.3 Completeness

LetTy C Ty, C --- C T,. We say that a proof of T; + wu is left minimalif, whenever
there is a proof of; - « for somej < 4, then, replacing’; with 7} in all left members of
the labels ofr, yields a proof off; - u. In other words, the left-minimal proofs are those
that can be performed in a mininigj.

We say that a proof isimpleif all its subproofs are left minimal and there is no repeated
label on any branch. Remark that a subproof of a simple prosifinple.

LEMMA 4.8. If there is a proof off; - u, then there is a simple proof of it.

PROOFE We prove the property by induction on the p@irm) (considering the lexico-
graphic ordering), where: is the size of a proof of; - w.

If ¢ = 1 then any (subproof of any) proof @f; + « is left minimal and there exists a
proof without repeated labels on any path.

If ¢ > 1 and there is g < ¢ such thatl; - u, then we apply the induction hypothesis
to obtain the existence of a simple proofBf - «. This proof is also a simple proof of
Ti F .

If < > 1 and there is ng < ¢ such thatl; + v, then we apply the induction hypothesis
on the immediate subproofs, .. ., m, of the proofr of T; - . If the labelT; - v appears
in one of the resulting proofs;, then replacer with a subproof ofr; whose conclusion
is T; - w. The new proof does not contain any lafiel- u. Otherwise, ifr is obtained
by applying an inference rul® to =4, . . ., 7, then replacer with the proof obtained by
applyingR to i, ..., . In both cases the resulting proof and all of its subprocddei

»n*

minimal by construction, and hence the resulting proofrigpde. O

LEMMA 4.9. Let C be a deducibility constraint systerfi,be a solution ofC, T; be
a left hand side of” such that, for anyT I+ v) € C, if T C T;, thenv is a variable.
Letu be any term. If there is a simple proof @f¢ + w«, whose last inference rule is a
decomposition, then there is a non-variable St(7;) such that6 = w.

PROOF Consider a simple proof of T;60 F u. We may assume, without loss of gen-
erality, thati is minimal. Otherwise, we simply replace everywhere in theopT; with a
minimal T; such thatl’;6 - « is derivable; by left minimality, we get again a proof tree,
whose last inference rule is a decomposition. Su€h & 7; also satisfies the hypotheses
of the lemma.

We reason by induction on the depth of the preofWe make a case distinction, de-
pending on the last rule of:

The last rule is an axiomThenu € T;60 and there ig € T; (thust € St(T;)) such that
tf = u. By contradiction, ift was a variable thef; I+ w, with ¢ € V(w) is a constraint in
C such thatl; C T;. Moreover, by hypothesis of the lemmamust be a variable. Hence
w = t. ThenT;6 I u, which contradicts the minimality af

ACM Transactions on Computational Logic, Vol. V, No. N, Ootw 2018.



Deciding security properties for cryptographic protocols : 15

The last rule is a symmetric decryption.

1 T2
7= Ti0F enc(u,w) T0Fw

By simplicity, the last rule ofr; cannot be a compositiofT;;6# + u would appear twice
on the same path. Then, by induction hypothesis, there ismaadablet € St(T;) such
thattd = enc(u,w). It follows thatt = enc(t',t”) with ¢'6 = w. If ¢’ was a variable,
thenTy 6 + ¢'6 would be derivable. Henc&,.6 + u would be derivable, which again
contradicts the minimality of. Hencet’ is not variable, as required.

The last rule is an asymmetric decryption, (resp. projectiesp. unsigning)The proof
is similar to the above one: by simplicity and by inductiorpbthesis, there is a non-
variablet € St(T;) suchthatf = enca(u, v) (resp.td = (u,v), resp.td = sign(u, priv(v))).
Thent = enca(t',t") (resp.t = (t/,t"), resp.t = sign(¢,t")). t' € St(T;), t'0 = v and,
by minimality of i, ¢’ is not a variable.

O

LEMMA 4.10. LetC be a deducibility constraint system aédbe a solution of”. Let
T; be a left hand side of a constraint @ andu be a term, such that:

(1) forany(T IFv) € C,if T C T;, thenv is a variable;

(2) T; does not contain two distinct non-variable subterms, with ¢10 = ¢56;

(3) T; does not contain two termsica(t;, x) andpriv(t2) wherex is a variable distinct
fromts;

(4) T; does not contain two termsica(ty, t2) andpriv(z) wherez is a variable distinct
fromtsy;

(5) wis anon-variable subterm df;;

(6) T:0 - ub.

ThenT! - u, whereT! =T, U{z | (T I+ z) € C,T C T;}.

PROOF. Letj be minimal such thal’;60 F uf. Thusj < ¢ andT; C T;. Consider a
simple proofr of T;6 + uf. We reason by induction on the depthmf We analyze the
different cases, depending on the last rulerof

The last rule is an axiomSuppose, by contradiction, that¢ T;. Then there is € T;
such thatf = uf andt # u. By hypothesis 5y is not a variable and, by hypothesis 2 of
the lemmat, v cannot be both non-variable subtermslpf It follows thatt is a variable.
ThenT;60 +- t6, which impliesT;6 + u6, contradicting the minimality of, sinceT; C T}.
Henceu € T and theril} - u, as required.

The last rule is the symmetric decryption rulEhere isw such thatl;6 - enc(uf, w),
T]H Fw:

T;0 - enc(uf,w) T;0+ w
Tj9 F ub

By simplicity, the last rule of the proof of’;6 F enc(uf,w) is a decomposition. By
Lemma 4.9, there is € St(T}), ¢ not a variable, such thad = enc(uf,w). Lett =
enc(t1,t2) andt16 = ub, t260 = w. By induction hypothesig | ¢.
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If t1 was a variable, thef;, C T and, by hypothesis 1 of the lemni, must be the
left-hand-side of a solved constrairif;, |- ¢;) € C and therefordy, 6 - uf, contradict-
ing the minimality of;.

Now, by hypothesis 5 of the lemma,is a non-variable subterm @f;, hencet, v are
two non variable subterms @f; such that,6 = u6. By hypothesis 2 of the lemma, this
impliest; = u.

On the other hand, if; is a variablet, € V(T;) impliesT;, C T; and, sinceT; is
minimal unsolved(T;, IF t2) € C, which impliesty € T/. If ¢5 is not a variable, then,
from 76 - t26 and by induction hypothesig; + ¢,. So, in any casel - ¢,.

Now, we have botf - enc(u, t2) andT! + t5, from which we conclude thaf! F w,
by symmetric decryption.

The last rule is an asymmetric decryption rulehere is aw such thatl’;6 + priv(w)
andT;6 F enca(uf, w). As in the previous case, there is a non-variabte St(T;) such
thattf = enca(uf, w). By induction hypothesig/ I ¢. Lett = enca(ty, t2).

As in the previous case; cannot be a variable. Thereforg v are two non-variable
subterms off; such that,6 = u6, which implies that, = u. (We use here the hypothe-
ses 2 and 5).

On the other hand, the last rule in the prooflgp - priv(w) is a decomposition (no
composition rule can yield a term headed wittiv). Then, by Lemma 4.91(; satisfies
the hypotheses of the lemma sifEeC T;), there is a non-variable subterm € St(T5)
such thatw, 0 = priv(w). Letw; = priv(wz). By induction hypothesig; I- priv(wz).

enca(ty, t2)0 priv(ws)6

I |
T;0 - enca(ubf,w) T;60F priv(w)

T;60 b uf

By hypothesis 2 of the lemma; andw, cannot be both non-variable, unless they are
identical. Then, by hypotheses 3 and 4 of the lemma, we musttha= w,. Finally, from
T!  enca(u, t2), T! I priv(tz2) we concludel? + w.

The last rule is a projection rule.

T;0 F (ub, v)
T;60 - uf

As before, by simplicity, the last rule of the proofBf6 - (u6, v) must be a decomposition
and, by Lemma 4.9, there is a non variable teren St(7;) such thatd = (uf,v). We let
t = (t1,t2). By induction hypothesig; - ¢.

Now, as in the previous cases,cannot be a variable, by minimality @; and hypoth-

esis 1 of the lemma. Next, by hypotheses 2 and 5, we musthayeu. Finally, from
T! & (u,t2) we concludel! - u by projection.

The last rule is an unsigning rule.
T;0 + sign(uf, v)
T;60 - uf

This case is identical to the previous one.
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The last rule is a compositiorAssume for example that it is the symmetric encryption
rule.

Tjt? = U1 TJG = V2
T;0 - enc(vy, v2)

with uf = enc(v1,v2). Sinceu is not a variabley = enc(u1, ug), u16 = v1, anduqgf =
va. If uy (resp.us) is a variable them; (resp.us) belongs toV(T;) sinceu € S¢(T;). By
point 2 of Definition 3.2 and hypothesis 1 of the lemma,c T (resp.uz € T7).
Otherwiseu; andus are non-variables. Then, by induction hypothegjsf- «; and
T! F uz. Hence in both cases we haWgéF w; andT/ - ug. ThusT! F w.
The proofis similar for other composition rules.

O

LEMMA 4.11COMPLETENESS If C'is an unsolved deducibility constraint system and
0 is a solution ofC, then there is a deducibility constraint systét a substitutionr, and
a solutionr of C’ such thatC ~~, C’ andf = or.

PrROOF Consider a constraifft; |- «; such that, foranyT I+ v) € C suchthafl” C T;,
v is a variable and assumeg is not a variable. I{C is unsolved, there is such a constraint
inC.

Sinced is a solutionT;0 + ;0. Consider a simple proof df;0 + u;0. We distinguish
cases, depending on the last rule applied in this proof:

The last rule is a compositiorSincew is not a variabley = f(u1,...,u,) andT;6 +
u;0 for everyj = 1,...,n. Then we may apply the transformation rutg to C, yielding
constraintd; |- u; in C’ for everyj. 0 is a solution of the resulting deducibility constraint
systemC’ by hypothesis.

The last rule is an axiom or a decompositidBy Lemma 4.9, there is a non-variable
termt € St(T;) such thatd = u,;0. We distinguish then again between cases, depending
ont, u;:

Caset # u;. Then, sinceé, u; are both non-variable terms, we may apply the simplifica-
tionruleRy to C: C ~~, C' whereC’ = Co ando = mgu(t, u;). Furthermoretf = 0,
hence (by definition of a mgu) there is a substitutroguch that? = o7. Finally, 0 is a
solution ofC, hencer is a solution ofC".

Caset = u;. Thenu; € St(T;).

(1) If there are two distinct non-variable termg to € St(T;) such thatt16 = t26.
Then we apply the simplification rul®s, yielding a deducibility constraint system
C' = Co. As in the previous case, there is a substitutiuch that) = o andr is
a solution ofC".

(2) If there areencaf(t1,t2), priv(ts) € St(T;) such that eithety or ¢3 is a variable,
to # t3 andtof = t36, then we may apply the rulg; and conclude as in the previous
case.

(38) Otherwise, we match all hypotheses of Lemma 4.10 and welede thatl] + w;.
Then the ruleR; can be applied t@, yielding a deducibility constraint system, of
which @ is again a solution.
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4.4 Termination
The simplification rules also terminate, whatever straisgysed for their application:

LEMMA 4.12. The constraint simplification rules of Figure 2 are (stroyglerminat-
ing.

PROOF Interpret any deducibility constraint systathas a pair of non-negative inte-
gersI(C) = (n,m) wheren is the number of variables of the system ands the number
of function symbols occurring in the right hand sides of tiistem (here, we assume no
sharing of subterms). £ ~~, C’, thenI(C) > .. I(C’) where>,., is the lexicographic
ordering on pairs of integers. Indeed, the first componeittlst decreases by applying
Rs, R3, R}, and any other rule strictly decreases the second compaonieite not increas-
ing the first one. The well foundedness of the lexicograpkieresion of a well-founded
ordering implies the termination of any sequence of rulés.

4.5 Proof of Theorem 4.3

Theorem 4.3 follows from Lemmas 4.7, 4.11, and 4.12, by itidnoon the derivation
length, and since deducibility constraint systems on whigtsimplification rule can be
applied must be solved. Note that the extension of the coress and completness lemmas
to security properties is trivial. Indeed,dfis a (in)security property, thefis a solution

of ¢o if and only if o6 is a solution ofp, for any substitutiong ando.

4.6 A decision procedure in NP-time

The termination proof of the last section does not providh wght complexity bounds.
In fact, applying the simplification rules may lead to braesbf exponential length (in the
size of the constraint system). Indeed when applying a diicgtion rule to a deducibility
constraint, the initial constraint is removed from the daaiat system and replaced by
new constraint(s). But this deducibility constraint mayeagr again later on, due to other
simplification rules. It is the case for example when consimgthe following deducibility
constraint system.

To & {enc(a, ko)} IF enc(zo, ko)
def

Ty = To U {enc({(zo, (xo,a)), k1)} I enc(zy, ky)

n—1 U{enc({(zn_1, (xn_1,a)),kn)} IF enc(xy, ky)

Thi1 def T,U{a} I+ x,

def
T, =

The deducibility constraint systetii is clearly satisfiable and its size is linearinWe
have that

To I enc(zg, ko)
2n 0 0, ko
¢~ {Tn+1a IV z,0

with o(z;41) = (x4, (z;,a)) for 0 < i < n — 1. This derivation is obtained by applying
rule Ry and thenR; for each constraint; I+ enc(x;, k;) with 1 < ¢ < n. The ruleR;
cannot be applied t6,, 10 I+ x,0 sincex, and the key#; are not present in or derivable
from T,,410. Note thate’ = o U {%/,,} is a solution ofC' and can be easily obtained by
rule R, on the first constraint and then rulg on both constraints.
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However, there is a branch of lengtf2™ — 1) from T I+ z,,0 leading toT" I+ zq (in
solved form), wherd" denoted’, +10. This is easy to see by induction en It is true for
n = 0. Then using only the ruleB, and R;, we have

Tll-:vajig T IF zp_10 m T IF xg 139
" T Ik (xp_10,a) T Ik (xp_10,a)

T Ik xp_10 ~ T 2, 10 ~" T 2o

T 1F o Rl{le o
T I+ a

with m = 3(2"~! — 1) by induction hypothesis. The length of the branch is 3(2"~! —
1) + 3 = 3(2™ — 1). This shows that there exist branches of exponential leingtie size
of the constraint.

We can prove that it is actually not useful to consider degilityi constraints that have
already been seen before (like the constréitit =, ;o in our example). Thus we mem-
orize the constraints that have already been visited. Thetaint simplification rules,
instead of operating on a single deducibility constrairstesn, rewrite a pair of two con-
straint systems, the second one representing deducitmnlitgtraints that have already been
processed at this stage:Gf~, C’, then

C;D ~, C'"\D;Du(C\C")

The constraints (“memorized”) iy are those which were already analyzed (i.e. trans-
formed or eliminated). The initial constraint systentig).

First, memorization indeed prevents from performing saviémes the same transfor-
mation:

LEMMA 4.13. If C is a deducibility constraint system add () ~* C’; D’ thenC’ N
D' ={.

PROOF
(C'\D)n((C\CYUD)=((C"\D)nD)U((C"'\D)N(C\C")) =0
O

This kind of memorization is correct and complete in a momegel setting. We assume
in this section that the reader is familiar with the usualort of first-order formulas, first-
order structures, and models of first-order logic.

A (general) constraints a (first-order) formula, together with an interpretatgiruc-
ture S. A (general) constraint systedi is a finite set of constraints, whose interpretation
is the same as their conjunction. dfis an assignment of the free variables(to the
domain ofS, o is asolutionof C if o, S | C. In the context of constraint systentsjs
omitted: the satisfaction relatida refers implicitly toS. Itis extended, as usual, to entail-
ment:C' |= " if any solution ofC is also a solution of”’. We may consider constraints
as singleton constraint systems, and thus write for example’ instead of{c} = {c'}.

A (general) constraint system transformatisra binary relation-» on constraints such

that, for any sequence (finite or infinit€) ~» --- ~ C,, ~ ---, there is an ordering
on individual constraints such that, for evéryor everyc € C; \ C;+1, we have
{deCip1ld<c}Ec (4)
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This expresses theorrectnessof the transformations: only redundant formulas are re-
moved. The ordering needs not to be well-founded.

Our deducibility constraint systems and deducibility daoigt simplification rules sat-
isfy these properties. More precisely, we need to consitersubstitutions (partial as-
signments) as part of the constraint system, in order to fi thie above definition: con-
straint systems come in two parts: a set of deducibility tairgs and a set of solved
equations, recording the substitution computed so-faotter words, a sequence of sim-
plification stepg’y ~,, C1 ~~4, ... can be written as a general transformation sequence
Co~ (CiAoy) ~ (Cy Aoy Aog) ~ ..., where substitution§*/,.,, ..., '/, 1 are seen
as conjunctions of solved equatiofns = t1) A -+ A (z, = ty,).

We show next that for any sequen€g ~~,, C1 ~~,, ... of simplification steps there
is an ordering> on the corresponding general constraints such that (4shold

We start by defining the ordering. First, we order the vagalidyx: > y if, for somei,

y € V(zoy...0;). Intuitively, 2 > y if = is instantiated beforg in the considered
derivation. Indeed, let, be the minimum among all indexéssuch thatro; # « if
this minimum exists ando otherwise. Ther > y implies that eithei, < i,, ori, = i,
andy € V(zo;,). (Note that in this last case we cannot have bpte V(zo; ) and
x € V(yo;, ), by the definition of angu.) This observation proves that the relatisron
variables is an ordering. Next, we IgF I- u) > (T” IF o) if

—either the multiset of variables occurringdhis strictly larger than the multiset of vari-
ables occurring iff”’; such multisets are ordered by the multiset extension obtHer-
ing on variables;

—or else the multisets of variables are identical, @hd. T';

—or elseT = T" and the multiset of variables im is strictly larger than the multiset of
variables inu’;

—or else,I" = T, the multisets of variable are identical and the size & strictly larger
than the size of/'.

This is an ordering as a lexicographic composition of orgsi Finally, any solved equa-
tion (i.e. substitution) is strictly smaller than any detthility constraint, and equations are
not comparable.

The ordering we have just defined could have been used fogtimértation proof, as it is
a well-founded ordering. It will now be considered as theadéfordering on constraints,
when a derivation sequence is fixed.

This ordering also satisfies the above required hypothesegheral constraint system
transformations, as shown by the proof of the following msifion.

PROPOSITION 4.14. The simplification rules on deducibility constraint sysseorm a
general constraint system transformation.

PROOF LetCy ~~,, C1 ~4, ... be a simplification sequence. We consider the order-
ing on deducibility constraints (viewed as general conmstsadefined above.

We show next that (4) holds. Note that in (4)zannot be a solved equation, because at
each step solved equations € zo;) may be added but no equation is eliminated. Thus
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let (T Ik u) € C; \ Ciy1, for somei > 0. We need to show that

A T'kd' AN oy E Tlhu (5)
(T'Fu")€C; 11 1<5<i
(T k") < (TIFu)
We investigate the possible transformation rules.

For the rulesRs, Rs, R}, Cit1 = Cio;. We have(T I+ u) > (To; IF uo;) since
either the multiset of variables @fo; is strictly smaller than the multiset of variables of
T, orelsel’ = T'o; and, in the latter case, either the multiset of variablesdsgfis strictly
smaller than the multiset of variables@br elseus; = u. Moreover,co A o = ¢ for all
constraints: and substitutions. Indeed, iff is a solution ofco A o thenzf = xo0 for
anyz € dom(o). It follows thatef = co, and thug is a solution ofc.

Hence, we have in particular théf'o; I+ uo;) A o; = T + u, which shows that (5)
holds for this case.

FortheruleRy, it suffices to notice the{tl” I- w1, ..., T Ik up} = (T IF f(u1,...,un))
and(T IF u;) < (T I+ f(uq,...,uy,)) for everyi.

For the ruleR;, the constrainf” I u is a consequence of the (strictly smaller) con-
straints7” I x for T/ C T.

Finally, the ruleR, only applies to unsatisfiable deducibility constraints]

The memorization strategy can be defined, as above, for amgrgleconstraint system
transformation. The correctness of the memorizationegsatelies on the following in-
variant:

LEMMA 4.15. For any constraint system transformatien, if C;() ~* C’; D’, then
C'ED.

PROOF We prove, by induction on the length of the derivation sexeshe following
stronger resultyd € D', {c € C' | ¢ < d} = d.

The base case is straightforwardiasis empty. Next, assume that D ~» C’; D’. By
definition,D’ = DU (C'\ C"). If d € C'\ C’, by definition of a constraint transformation
rule,{c € C' | ¢ < d} = d. If d € D, by induction hypothesigc € C | ¢ < d} = d.
Hence{c e C' |c < d}U{ce C\ C'| ¢ < d} |= d. But, again by definition of constraint
transformations, any constraint in the second set is a quesee of the first set: we get
{ceC|e<d} =d. O

It follows that the memorization strategy is always corrgben the original constraint
transformation is correct.

Now, the memorization strategy preserves the properti@uptleducibility constraint
systems:

LEMMA 4.16. If C is a deducibility constraint system ad{ §) ~* C’; D’ thenC" is
a deducibility constraint system.

PROOF. Let (Cj; D;) ~o,., (Cit1;Diq1), With 0 < i < n be the sequence of de-
ducibility constraint systems obtained by applying susivedy the simplification rules,
whereCy = C, Dy = 0, C,, = ', andC; ~,,,, C;,, (and thusCiy1 = Cj; \ Dy,
andD;1 = D; U (C; \ Ci,)). We know thatC; is a deducibility constraint system, by
Lemma 4.6.
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First, the left members of’; are linearly ordered by inclusion, as they are a subset of
the left members of’”.

We consider now the other property of deducibility consiraystems. We let be the
ordering on constraints defined before. We show below, bydtidn on: that, for every
x € V(C;), forevery(T IF u) € D; suchthate € V(u) \ V(T), thereis 7" IF v’) € C;
suchthate € V(u/) \ V(T") and(T" I+ «') < (T IF w).

Note that this property implies that; is a deducibility constraint system: For every
variablex € V(C;), there is(T, I+ u) € C] such thatr € V(u) \ V(T,), asC/ is a
deducibility constraint system. (i, I+ ) € C; then we're done, otherwidd’, I+ u) €
D;, and hence, by the stated property, thel(@Jsl- u') € C; suchthat: € V(u')\ V(T5).
This shows tha€’; is a deducibility constraint system.

The property holds trivially foi = 0. For the induction step, let € V(C;;1) and
(T'IFu) € Cf,, besuchthat € V(u) \ V(T'). We investigate three cases:

—if C;41 is obtained by one of the ruleB., Rs, R, thenC; 1 = C;o441 \ D;, and
x ¢ dom(o;y1). We assume w.l.o.g. th&t I « is a minimal constraint irD;; such
thatz € V(u) \ V(T).

There is(T” IF w') € C; such thate € V(u/) \ V(T") and(T” IF «') < (T IF w): if
(T I u) ¢ Cy, then(T I+ w) € D; and by induction hypothesis, there i§& I v’) €
C; suchthate € V(u/) \ V(T") and(T” IF v') < (T I+ ).

LetS = {y € V(T”) | = € V(yoi+1)}. By induction hypothesi§’; is a constraint
system, and hence, for evegye S, there is a (minimal) constrairft, I+ u, € C;
such thaty € V(uy) \ V(Ty). Sincey € V(T"), T, € T'. LetTy I+ u; be a minimal
element in{T}, I u, | y € S}U{T’ IF «'}. Suppose that € V(Th0,11). Since
z ¢ V(T')andT, C T’, it follows thatz ¢ V(T,), and hence there ise V(11) such
thatz € V(z0,41). Itfollows thatz € S andT, ¢ Ty, which contradicts the minimality
of T, IF uy. Hencex € V(ulai_H) \ V(TlUH_l). Also (T10i+1 I U10'i+1) < (Tl I
u) < (T" - o) < (T I+ u). Furthermore, at least one of the inequalities is strict: if
(T I+ u) € D; the lastinequality is strict, otherwis& I- u) € (C;\Cj ) = (C;\Cio)
henCE(TUZ'+1 [+ uai+1) < (T I+ U) It follows that (T10'1'+1 I U10i+1) S OiJrl by
minimality of 7" IF w.

—if C;4; is obtained by am?; rule. We may assume w.l.o.g. thAtIF « is a minimal
constraint inD;, such thatc € V(u) \ V(7).

Either (T IF u) € D;, in which case, by induction hypothesis, ther¢#? I- v') € C;

such thatr € V() \ V(T") and (T" I+ ') < (T IF w). If (T" IF o) € Ciyq,

there is nothing to prove. Otherwis€,= f(u1, ..., u,) and, for everyj, (7" IF u;) €

Ci+1UD;. Moreover, there is an indgxsuch that: € V(u,;)\ V(1) and, by minimality
of T Ik u, (T" IF u;) € Cy11, hence completing this case.

Orelse(T IF u) € C;\ Cj,,, in which caseu = f(u1,...,u,) and (T IF u;) €

Ci+1UD;. As above, we conclude that for some: € V(u; )\ V(T), (T IF u;) € Cit1

and(T' IF u;) < (T IF u).

—if C;41 is obtained by the rul&,, removing a constrairif; IF w, thenD;; = D; U
{T1 IF w1} and, by Lemma 4.6 for any variablee V(u1) \ V(11) there is a strictly
smaller constraintZ I+ us) € C; such thaty € V(uz) \ V(T3). Then we simply apply
the induction hypothesis.

O
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THEOREM 4.17. Let C be a deducibility constraint systerh,a substitution and) a
security property.

(1) (Correctness) It; () ~* C’; D’ for some deducibility constraint systefti and some
substitutiono, if § is an attack forC’ and¢o, thenof is an attack forC' and¢.

(2) (Completeness) ifis an attack forC and¢, then there exist a deducibility constraint
systemC” in solved form, a set of deducibility constraiis and substitutionsr, 6’
such that) = o¢’, C; 0 ~% C'; D', and@’ is an attack forC’ and ¢o.

(3) (Termination) IfC'; @ ~" C’; D’ for some deducibility constraint systeffi and some
substitutions, thenn is polynomially bounded in the size Gf

PROOF For correctness, we rely on Lemmas 4.7, and 4.15: by Lemfrts dny solu-
tion § of C’ is also a solutio’ UD’c and, by Lemma 4.7 (and inductiom)] is a solution
of C.

For completeness, from Lemma 4.11, we know thatifis an unsolved deducibility
constraint system andlis an attack foiC; and ¢, then there is a deducibility constraint
systemC;_ ;, a substitutiorr;, and an attack; for C;, ; and¢o; such thaiC; ~,, C;,
andf = o;7;. Thent; is an attack also fo€’; , \ D; and¢o, for any set of constraints
D;. By Lemma 4.16, we know that whel; represents already visited constraints, then
Ci,1 \ D; is a deducibility constraint system. We can thus concludabyction on the
derivation lengthn, takingCo = C, Do = 0, Ci 1 = Cj; \ D; for all 4, andC,, = C".

Concerning termination, we assume a DAG representatidmeoferms and constraints,
in such a way that the size of the constraint is proportiomdahe number of the distinct
subterms occurring in it. Next, observe that(to) < #(St(t) U U, cqom(s) St(z0))-
Hence, when unifying two subterms tfwith mgu 6, $5¢(t6) < #St(¢) since, for every
variabler € dom(0), 20 is a subterm of. It follows that, for any constraint syste@{; D’
such thaC; ) ~* C’; D', $5t(C") < §St(C).

Next, observe that the number of distinct left hand sidedefdonstraintglhs(C”) is
never increasingflhs(C’) < tlhs(C). Furthermore, as long as we only apply the rules
Ry, Ry, starting fromC”, the left hand sides of the deducibility constraint systeires
fixed: there are at mogths(C") of them. Now, since, thanks to memorization, we cannot
get twice the same constraint, the number of consecitive? ; steps is bounded by

Hlhs(C”) x #St(rhs(C")) < tlhs(C) x §S¢(C)

It follows that the length of a derivation sequence is bouhbg )V (C) x flhs(C) x
15t(C) (for Ry, Ry steps) plugV(C) (for Rq, R3, R steps) pludl (for a possibleR,
step). O

Theorem 4.17 extends the result of [Rusinowitch and TurB@fil] to sorted messages
and general security properties. Handling arbitrary sgcproperties is possible as soon
as we do not forget any solution of the deducibility consiraystems (as we do). If we
only preserve the existence of a solution of the constramtr{ [Rusinowitch and Turuani
2001)), it might be the case that the solution@fthat we kept is not a solution of the
property¢, while there are solutions of both andC, that were lost in the satisfiability
decision ofC. In addition, compared to [Rusinowitch and Turuani 2001g¢genting the
decision procedure using a small set of simplification ruhedkes it more easily amend-
able to further extensions and modifications. For exampheofem 4.17 has been used
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in [Cortier et al. 2006] for proving that a new notion of sexyrén presence of hashes is
decidable (and co-NP-complete) for a bounded number ofosess

Note that termination in polynomial time also requires ttse wf a DAG (Directed
Acyclic Graph) representation for terms.

The following corollary is easily obtained from the previotheorem by observing that
we can guess the simplification rules which lead to a solved fo

COROLLARY 4.18. Any propertye that can be decided in polynomial time on solved
deducibility constraint systems can be decided in nonfdetestic polynomial time on
arbitrary deducibility constraint systems.

4.7 An alternative approach to polynomial-time termination

Inspecting the completeness proof, there is still some rfwyrohoosing a strategy, while
keeping completeness (correctness is independent of tler of the rules application).
To obtain even more flexibility, we slightly relax the corndit on the application of the
rule R, on a constraint” I «: we require unifying a subterme S¢(T") and a subterm
t' € St(u) (instead of unifyingt with u) where, as before, # t/, t, t non-variables.
Remark that this change preserves the completeness ofdbedure.

Let us group the rule®,, R3, R4 and call thensubstitution rulesS. We write.S(u, v)
if the substitution is obtained by unifyingandv. There are some basic observations:

(1) If C ~FBs O 5 C'o, thenC ~5 Co ~fr C'o. Hence we may always move
forward the substitution rules.

(2) If C; ~Bs Cp andCy ~L7 CF, thenCy A Co ~E5 C) A Oy ~T5 O A Ch and
C1 A Cy ~B1 Oy ACh ~11 C) A CY, hence any two consecutive applicationgf
on different constraints can be performed in any order.

(3) The rulesR,, R4 can be applied at any time when they are enabled; we may apply
them eagerly or postpone them until no other rule can be egbpli

4) IfC wff““”l) Coq w§2(“2”1’”2‘”) Co,09, then, for somé,, s,
C ng(ug,vg) o, Wg2(U1917v1‘91) Coos

Hence any two consecutive substitution rules can be peddimany order.
(B) If C ~5 Co ~Lr C'o, andS # Ry, thenC ~£1 C' 5 ',

This provides with several complete strategies. For intgahe following strategy is
complete:

—apply eagerlyR, and postpong?; as much as possible

—apply the substitution rules eagerly (as soon as they aabled). This implies that
all substitution rules are applied at once, since the ridesR,, Ry cannot enable a
substitution.

—whenR, and substitutions rules are not enabled, afpfyto the constraint, whose right
hand side is maximal (in size).

Such a strategy will also yield polynomial length derivagspsince we cannot get twice the
same constraint: in any derivation sequefige~,, - - - ~,, Chp, if (T'IFu) € C;\ Ci1
(we say then thal” I « has been eliminated at this step), then, for any i, (T I u) ¢
C;. Indeed, for the substitution ruleg, I- « is eliminated only wherr € V(T I+ ») and
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x € dom(o;41), in which case for any > ¢, x ¢ V(C;). And, if T IF u is eliminated by
an Ry rule, thenju| = max,cms(c,) [t]. If, for some;j > i, the constraint” I- « was in
Cj+1 and notinCj, then we would havenax;cs(c;) |t| > |u|. Thus the maximum of the
sizes of the right hand sides terms would have increasedhwhinot possible according
to our strategy.

Then the complexity analysis of the proof of Theorem 4.17tmaapplied here.

The above observations can also be used to bound the namaitgten (which is useful
in practice): for instance from (1) and (4), we see that stibiin rules can be applied
“don’t care”: if we use a substitution rule, we do not need @osider other alternatives.
More precisely, ifS (¢, w) is a substitution rule that is applicabledq let ®(C) be the set
of substitution rulesS (¢, «’), which are applicable t¢' and such that there is rfbother
than the identity such thatgu(¢, «)0 = mgu(¢',«’). Then

f=C — \/ 3060 =mgu(t',u)¢
St u)ed(C)

Similarly, from (5), a right-hand side member that is notfiafile with a non-variable
subterm of the corresponding left hand side, can be “don&’cdecomposed:

0= CA(TIF flur,...,un)) = OECATIFu)A...AN(TIF uy)

if f(ui,...,uy)is notunifiable with any non-variable subtermf

5. DECIDABILITY OF ENCRYPTION CYCLES

Using the general approach presented in the previous sestifying particular prop-

erties like the existence of key cycles or the conformat@maria priori given ordering

relation on keys can be reduced to deciding these propenie®lved deducibility con-
straint systems. We deduce a new decidability result, Usefuodels designed for proving
cryptographic properties.

To show that formal models (like the one presented in thislejtare sound with respect
to cryptographic ones, the authors usually assume thatynoyikde can be produced during
the execution of a protocol or, even stronger, assume tedethcrypts” relation on keys
follows ana priori given ordering.

For simplicity, and since there are very few papers constrgithe key relations in an
asymmetric setting, in this section we restrict our attantd key cycles and key orders on
symmetric keys. Moreover, we consider atomic keys for syinimencryption since there
exists no general definition (with a cryptographic intetatien) of key cycles in the case
of arbitrary composed keys and soundness results are yisbtdlined for atomic keys.

More precisely, we assume a s#ti¢y C Msg and we assume that the sortefc is
Msg x Key — Msg. All the other symbols are of soksg x - -- x Msg — Msg. Hence
only names and variables can be of déety. In this section we calkeya variable or a
name of sorKey. Finally, for any list of termd., L, is the set of terms that are members
of the list.

In this section, we consider (in)security properties offtiren P(L) whereP is a pred-
icate symbol and. is a list of terms. Informallyg will be a solution of P(L) if Lo
contains a key cycle. The precise interpretatiolPadepends on the notion of key-cycle:
this is what we investigate first in the following section.
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5.1 Key cycles

Many definitions of key cycles are available in the literatuFhey are stated in terms of an
“encryption” relation between keys or occurrences of kes.early definition proposed
by Abadi and Rogaway [Abadi and Rogaway 2002], identifiesyadsele with a cycle
in the encryption relation, with no conditions on the oceunxes of the keys. However,
the definition induced by Laud’s approach [Laud 2002] cqroesls to searching for such
cycles only in the “visible” parts of a message. For exammatnessagenc(enc(k, k), k')
contains a key cycle using the former definition but does ri@nwsing the latter one and
assuming thak’ is secret. It is generally admitted that the Abadi-Rogawetfynition is
unnecessarily restrictive and hence we will say that theesponding key cycles astrict.
However, for completeness reasons, we treat both cases.

There can still be other variants of the definition, depegdin whether the relation
“k encryptsk’” is restricted or not to keyg’ that occur in plain-text. For example,
enc(enc(a, k), k) may or may not contain a key cycle. As above, even if occugenc
of keys used for encrypting (&sin enc(m, k)) need not be considered as encrypted keys,
and hence can safely be ignored when defining key cycles, wsder both cases. Note
that the initial Abadi-Rogaway setting considers that(enc(a, k), k) has a key cycle.

We write s < t if and only if s is a subterm of. C is the least reflexive and transitive
relation satisfying:s; T (s1,82), s2 T (s1,82), and, ifs C ¢, thens C enc(t,t).
Intuitively, s C ¢t if s is a subterm of that either occurs (at least once) in clear (i.e. not
encrypted) or occurs (at least once) in a plain-text pasitid positionp is a plain-text
positionin a termu if there exists an occurrengeof an encryption in; such tha- 1 < p.

Definition 5.1. Let p; be a relation chosen ifi<:, C}. Let S be a set of terms and
k, k' be two keys. We say thatencryptsk’ in S (denotedk pS k') if there existm € S
and a termn’ such that

k' pym’ and enc(m’, k) C m.

For simplicity, we may write, instead ofp?, if S is clear from the context. Also, if. is
a message we denote py the relatior;oim}.

Let S be a set of terms. We defirhﬁjden(S)déf{k € St(S) | k of sortKey, S t/ k}.

Definition 5.2 (Strict key cycle) Let K be a set of keys. We say that a set of tei$ns
contains astrict key cycleon K if there is a cycle in the restriction of the relatipfi on K.
Otherwise we say thé is strictly acyclicon K.

We define the predicati;y,. as follows:L € Py, if and only if the sef{m | Ls - m}
contains a strict key cycle dridden(Ly).

We give now the definition induced by Laud’s approach [Lau682Z0 He has showed
in a passive setting that if a protocol is secure when theidigrs power is given by a
modified Dolev-Yao deduction systeny, then the protocol is secure in the computational
model, without requiring a “no key cycle” condition. Repsirag Laud’s result in terms of
the standard deduction systeéngives rise to the definition of key cycles below, as it has
been proved in [Janvier 2006].

To state the following definition we need a more precise motian the encrypts re-
lation. We say that an occurrengeof a keyk is protectedby a keyk’ in a termm if
m|y = enc(m/, k') for some termm’ and some position’, and the occurrence é@fat g
in m is a plain-text occurrence dfin m/, thatisq’ - 1 < ¢. We extend this definition in
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the intuitive way to sets of terms. This can be done for exarbplindexing the terms in
the set and adding this index as a prefix to the position ingha to obtain the position in
the set.

Definition 5.3 (Key cycle [Janvier 2006]) Let K be a set of keys. We say that a set of
termsS is acyclicon K if there exists a strict partial ordering on K such that for all
k € K, for all occurrenceg of & in plain-text position inS, there isk’ € K such that
k' < k andgq is protected by:’ in S. Otherwise we say thaft contains &ey cycleon K.

We define the predicatB. as follows: for any list of termd., L. € Py if and only if
the set{m | Ls - m} contains a key cycle ohidden(L;).

We say that a termm contains a (strict) key cycle if the sétn} contains one.

Example5.4. The messages = enc(enc(k, k), k') andm’ = (enc(k1, k2), enc(enc(ks,
k3), k1)) are acyclic, while the message’ = ({(enc(k1, k2), enc(enc(ka, k1), k3)), k3)
has a key cycle. The orderings < k andks < ko < ky prove it form andm’ while for
m/" such an ordering cannot be found siriges deducible. However, all three messages
have strict key cycles.

5.2 Key orderings

In order to establish soundness of formal models in a syneneticryption setting, the
requirements on the encrypts relation can be even stromgearticular in the case of
an active intruder. In [Backes and Pfitzmann 2004] and [&aret al. 2005] the authors
require that a key never encrypts a younger key. More prgcibe encrypts relation has
to be compatible with the ordering in which the keys are gateet. Hence we also want
to check whether there exist executions of the protocol foictvthe encrypts relation is
incompatible with ara priori given order on keys.

Definition 5.5(Key ordering) Let < be a strict partial ordering on a set of keys We
say that a set of term$ is compatiblewith < on K if

kpSk! = K £k, forallk, k' € K.

Given a strict partial ordering; on a set of keys, we define the predic&teas follows:
P_ holds on a list of term4, if and only if the sef{m | L, F m} is compatible with< on
hidden(Ly).

For example, in [Backes and Pfitzmann 2004; Janvier et abj2@@ authors choose to

be the order in which the keys are generateek &’ if k£ has been generated befdre We
denote byP_, the negation ofP.. Indeed, an attack in this context is an execution such
that the encrypts relation is incompatible with

5.3 Properties that are independent of the notion of key cycle

We show how to decide the existence of key cycles or the cordtion to an ordering in
polynomial time for solved deducibility constraint systeniNote that the set of messages
on which our predicates are applied usually contains alkangss sent on the network and
possibly some additional intruder knowledge.

We start with statements, that do not depend on which nofikeycycle we choose.

LEMMA 5.6. LetS be a set of termsn be a term and: be a key such that - m
andS I/ k. Then for any plain-text occurrengeof k in m, there is a plain-text occurrence
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qo in S such that, if there is key’ with S ¥ K/, and which protectgy in S, thenk’
protectsg in m.

PROOF We reason by induction on the depth of the proofaf m:

—if the last rule is an axiom, them < S. We may simply choosg, = q.

—if the last rule is a decryption, thef- enc(m, k") andS + k" for somek” # k. Take
the positiong; = 1 - ¢ in enc(m, k”). Itis an occurrence of. Applying the induction
hypothesis we obtain an occurrergef k in S such that, if there is a kel with S t/ £’
and which protectg, in S, thenk’ protectsg; in enc(m, k”). SinceS t/ k', it follows
thatk” # k' and hencé’ protectsg in m.

—if the last rule is a another rule, we proceed in a similar aaabove.

O

As a corollary we obtain the following proposition, whiclats that, in the passive case,
a key cycle can be deduced from a Satnly if it already appears .

PROPOSITION 5.7. Let L be a list of ground terms, and a strict partial ordering on
a set of keys. The predicaf®,. (respectively,P... or P_) holds onL if and only if L
contains a key cycle (respectively, contains a strict key cycle, or the encrypts relation
on L, is not compatible with<).

PROOF The right to left direction is trivial sincés C {m | Ls - m}.

We will prove the left to right direction only for the key cycproperty, the other two
properties can be proved in a similar way. Assume that treem®istrict partial ordering
satisfying the conditions in Definition 5.3 f¢rm | L - m}. In other words, for any strict
partial ordering< onhidden(L;) there is a key: and an occurrenagof kin {m | Ls - m}
such that for any key', k¥’ protectsy in {m | Ls; - m} impliesk’ £ k. Using the previous
lemma we can replacen | Ls - m} by Ly in the previous sentence, thus obtaining that
thereis akey cycleids. O

The next lemma will be used to show thédiden(L6) does not depend on the solution
0 of a solved constrainf'.

LEMMA 5.8. LetT I z be a constraint of a solved constraint systéy¥ a solution
of C and m a non-variable term. IfI'60 = m then there is a non-variable term with
V(u) CV(T) such thatl' UV(T) - uwandm = uf.

ProOF We writeC' as \,(T; |- z;), with 1 < i < n andT; C Tjy,. Consider the
indexi of the constrainf” I z, that is such tha{T; I+ w;) € C, T; = T andu; = z. The
lemma is proved by induction ofd, /) (considering the lexicographical ordering) whére
is the length of the proof df;0 - m. Consider the last rule of the proof:

—(axiom rule)m € T;0. Then there iax € T; such thatn = uf. If v is a variable
then there igi < ¢ such thatl; I- v is a constraint ofC. We haveT;0 F uf. Then
by induction hypothesis there is a non-variable termwvith V(v’) C V(7}) such that
T; UV(T}) F « anduf = v'6. Henceu' satisfies the conditions.

—(decomposition rule) Suppose the rule is the decryptite rihen the premises of the
rule areT;0 + enc(m, k) andT;0 - k for some termk. By induction hypothesis there
are non-variable terms, andus with V(u1), V(uz2) C V(T;) such thafl; UV(T;) F g,
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T; UV(T;) b ug, u10 = enc(m, k) andugf = k. Thenu; = enc(u, uy) with uf = m
andu,f = k. If u is a variable then, as in the previous case, we find'asatisfying
the conditions. Supposeis not a variable. We still need to show tatu V(7;) + w.
If u} is a variable thefT; U V(T;) b u} sinceu) € V(T;). If u, is not a variable then
ubf = ufy henceul, = uz. In both cases it follows thal; U V(T;) F u. The projection
rule case is simpler and is treated similarly.

—(composition rule) This case follows easily from the intloic hypothesis applied on the
premises.

O

COROLLARY 5.9. LetT IF z be a constraint of a solved deducibility constraint system
C, andf, 6’ be two solutions of’. Then for any ke¥, T0 +- k if and only if 70" k.

PROOF Suppose thdl'd - k. From the previous lemma we obtain that there is a non-
variableu with V(u) C V(T') such thal’ U V(T') - v andk = uf. Since keys are atomic
andd is a ground substitution it follows that = k. HenceT' ¢’ U {z0' | x € V(T)} + k.
SoTd + k, sinced’ is a solution (and thug'd’ + 26’ for all € V(T')) and by using
Lemma4.5. O

5.4 Decision results

On solved deducibility constraint systems, it is possilolelécide in polynomial time,
whether an attacker can trigger a key cycle or not, whategtom of key cycle we con-
sider:

PROPOSITION 5.10. Let C' be a solved deducibility constraint systembe a list of
messages such tha{(L,) C V(C) andlhs(C) C L,, and=< a strict partial ordering on
a set of keys. Deciding whether there exists an attaciCf@nd P(L) can be done in
O(|L|?), forany P € {Pi¢, Pse, P<}-

We devote the remaining of this section to the proof of thevalpyoposition.

We know by Proposition 5.7 that it is sufficient to analyze #@merypts (or protects)
relation only onL 6 (and not on every deducible term), whéres an arbitrary solution.

We can safely assume that there is exactly one deducibditgtcaint for each variable.
Indeed, eliminating frond' all constraintsl” I+ x for which there is a constraifit I+ z in
C with T'C T’ we obtain an equivalent deducibility constraint systém o is a solution
of C" iff it is a solution of C. Lett, be the term obtained by pairing all termsBf (in
some arbitrary ordering). We writ€ as A, (T; IF x;), with 1 < ¢ <n andT; C T;,. We
construct the following substitution= 7 . .. 7,, andr; is defined inductively as follows:

- dom(my) = {z1} andx1my = t,,
- Tiy1 =T U {tIH]Ti/zHl}'

The construction is correct by the definition of deducipitibnstraint systems. It is clear
thatr is a solution of”. We show next that it is sufficient to analyze this particslzlution.

Key cycles.We focus first on the propertk;...

LEMMA 5.11. LetC be a solved deducibility constraint systema list of terms such
thatV(L) C V(C), lhs(C) C L, and assume is interpreted asP,.. Then there is an
attack forC and P(L) if and only ifr is an attack forC' and P(L).
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PROOF We have to prove that if there is no partial ordering satigfythe conditions in
Definition 5.3 for the sef ;6 (according to Proposition 5.7) then there is no partial dnde
satisfying the same conditions fér,7. Suppose that there is a strict partial ordering
which satisfies the conditions fdr,7. We prove that the same partial ordering does the
job for L 6.

LetC' = C A (L, IF z) wherez is a new variableC” is a deducibility constraint system
sincelhs(C') C L,. We writeC” as\,(T; IF z;), with1 < i < nandT; C T; ;. We prove
by induction oni that for allk € hidden(L,#), for all plain-text occurrencegof k in ;6
there is a keyt’ € hidden(L;6) such that’ < k andk’ protectsy in T;6. Itis sufficient to
prove this since fof = n we havel; = L,. Remark also that from Corollary 5.9 applied
to L, I+ z we obtain thahidden(Ls6) = hidden(L,7).

Fori = 1 we havel} = T10 = Ty hence the property is clearly satisfied fosince it
is satisfied forr.

Leti > 1. Consider an occurrengeof a keyk € hidden(L0) in a plain-text position
of w for somew € T;6. Lett € T; such thatw = ¢6.

If ¢ is a non-variable position inthen it is a position irnt7. And sincer is a solution
we have that there is a kdy € hidden(L,s7) (hencek’ € hidden(L,#)) such tha’ < k
andgq is protected byt in t7. The keyk’ cannot occur in somer, with z € V(t), since
otherwisek’ is deducible (indeedr = k' since the keys are atomic afiglr - 27). Hence
k'’ occurs int. Thenk’ protects; in ¢, and thus inw also.

If ¢ is not a non-variable position inthen there is a variable; € V(¢) with j < i such
that the occurrencgin ¢6 is an occurrence df in z;6 (formally ¢ = p- ¢’ wherep is some
position ofz; in ¢ andg’ is some occurrence @fin x,;0). Applying Lemma 5.6 we obtain
that there is an occurrengg of k in T;0 such that if there is a kel with T;6 t# k' and
which protectsy, in T;6 thenk’ protectsy’ in ;0. The existence of the ke is assured
by the induction hypothesis dfi;6. Hencek’ protectsy’ in x;6 and thusg in w. since
otherwise there i € V(L,) such thater = £/, which implies thatt’ ¢ hidden(L;).
Theng' is a position inL 6. Moreoverqg’ protectsy in L 6.

If ¢ is not a non-variable position ib, then there is a variable € V(L,) such that O

Hence we only need to check whetheris an attack forC and P(L). Let K =
hidden(Ls7). We build inductively the set&, = () and for alli > 1,

K; ={k € K |Vq € Posy(k, Ls7) 3k s.t.k’ protectsy andk’ € K;_1}

wherePos,, (m, T') denotes the plain-text positions of a tenmin a setl’. Observe that for
alli > 0, K; C K;,1. This can be proved easily by induction arMoreover, sinces is
finite andK; C K for all 7 > 0, then there i$ > 0 such thatk; = K forall ¢ > 1.

LEMMA 5.12. There existg > 0 such thatK; = K if and only if L7 € Pj..

PrROOF Consider first that there exists> 0 such thatk; = K. Then take the following
strict partial ordering or: k£’ < k if and only if there isj > 0 such that’ € K; and
k ¢ K;. Consider a key € K and a plain-text occurrengeof k in Ly7. Then takd > 1
minimal such that € K. By the definition ofK there isk’ € K such that:’ protectsy
andk’ € K;_1. Sincel is minimalk ¢ K;_;. Hencek’ < k. ThusLt € P,.

Consider now that is a solution. Suppose thaf;; = K; C K. Letk € K\ K;41.

Sincek ¢ K,y there is a plain-text occurrengeof k£ such that for all’ € K either
k' does not protect, or k’ ¢ K. But sincer is a solution, there i&” € K such that
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k" protectsg andk” < k. It follows thatk” ¢ K;, and thusk” ¢ K,.,. Hence for an
arbitraryk € K \ K;41 we have found:” € K \ K, such that” < k. Thatis, we
can build an infinite sequence. < k” < k with distinct elements from a finite set —
contradiction. So there exists> 0 such thatk; = K. O

Hence to check whethdrr € Py, we only need to construct the séts until K, =
K, and then to check whethéf; = K. This algorithm is similar to a classical method
for finding a topological sorting of vertices (and for findiogcles) of directed graphs. It
is also similar to that given by Janvier [Janvier 2006] fog thtruder deduction problem
considering the deduction system of Laud [Laud 2002].

Regarding the complexity, there are at mppkt sets to be build and each skt can
be constructed ifO(|Ls7|). If a DAG-representation of the terms is used thépr| €
O(|Ls]). This gives a complexity oD (| K| x |Ls|) for the above algorithm.

Strict key cycles and key orderingsor the other two propertieB, .. andP_ we pro-
ceed in a similar manner.

LEMMA 5.13. LetT I+ z be a constraint of a solved deducibility constraint systém
and# be a solution. Letn, u, k be terms such that

T6+ mandenc(u, k) C mandT0t/ k.

Then there exists a non-variable tenmsuch thatv C w for somew € T andvf =
enc(u, k).

ProOF We writeC' as \,(T; |- z;), with 1 < i < n andT; C T;;,. Consider the
index: of the constrainf” I z, that is such that; IF v; € C, T; = T andu; = z. The
lemma is proved by induction ofi, ) (lexicographical ordering) whereis the length of
the proof ofT;0 - m. Consider the last rule of the proof:

—(axiom rule)m = t6# for somet € T;. We can have that either theretisC ¢ such that
t'0 = enc(u, k), orenc(u, k) C y6 for somey € V(t). In the first case take = ¢/,
w = t. In the second case, by the definition of deducibility caxietrsystems, there
exists(T; IF y) € C with j < 4. SinceT;0 - y0 andT;0 t/ k (sinceT; C T;), we
deduce by induction hypothesis that there exists a nomabirtermv such that C w
for somew € T}, hencew € T; andvf = enc(u, k).

—(decomposition rule) Letn’ be the premise of the rule. We have tfiaf - m’ (with
a proof of a strictly smaller length) and T m’ thusenc(u, k) C m’. By induction
hypothesis, we deduce that there exists a non-variabledesuch that) C w for some
w € T; andvf = enc(u, k).

—(composition rule) All cases are similar to the previous ercept ifm = enc(u, k) and

SFenc(z,y) But this case contradicigo I k.

the rule is
O
The following simple lemma is also needed for the proof of bearb.15.

LEMMA 5.14. LetT IF = be a constraint of a solved deducibility constraint systém
0 be a solutionk € hidden(7'0), andm a term such thaf’d - m. If k p; m then there is
t € T such thatk p; t.
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ProOF We writeC' as \,(T; |- z;), with 1 < i < n andT; C T;;,. Consider the
index: of the constrainf I «, that is such tha{T; I+ v;) € C, T; = T andu; = «. The
lemma is proved by induction ofi, /) (considering the lexicographical ordering) whére
is the length of the proof df’;0 - m. Consider the last rule of the proof:

—(axiom rule)m € T;6 or m a public constant. Ifn is a public constant theh # m
sincek € hidden(7'6). Thus there ig € T; such thatn = ¢6. If k p; t then we're done.
Otherwise there is a variablee V(t) such that: p; y0. Also, there isj < 4 such that
T; I y is a constraint o€. Then, by induction hypothesis, there'iss T}, hence ir;,
such that p; t'.

—(composition or decomposition rule) By inspection of &k tcomposition and decom-
position rules we observe that there is always a preffiigé- m’ with k p; m’ for some
termm’. The conclusion follows then directly from the inductiorpmghesis.

O

The following lemma shows that it is sufficient to analyzehen checking the proper-
ties Py, andP.

LEMMA 5.15. LetC be a solved deducibility constraint systema list of terms such
thatV(L) C V(C) andlhs(C) C L, and@ a solution ofC. For anyk, k&’ € hidden(L6),
if £ encryptsk’ in L,6 thenk encryptsk’ in L.

PROOF Remember thatidden(L.6) = hidden(Ls7) (Corollary 5.9).

Consider two keys:, &’ € hidden(Ls0) such thatk encryptsk’ in Ls6. Then there
are termsu, v’ such that'’ € L6, enc(u, k) C v andk’ p; u. We can have that either
(first case) there are, w such thaty C w € Lg, v non-variable andnc(u, k) = v, or
(second casednc(u, k) T 26 with z € V(L;). In the second case, consider the constraint
(T, I+ x) € C. We haveT,.0 - z6. Hence we can apply Lemma 5.13 foff, v andk to
obtain that there exists a non-variable tarsuch thaty C w for somew € T, andvf =
enc(u, k). Hence, in both cases, we obtained that there is a non-Vatednv € St(L,)
(sinceT, C L,) such thatw® = enc(u, k). Thus there iy such thatv = enc(vy, k).
Indeed, otherwise = enc(vg,y) for somey € V(L,), hencey € V(C). SinceC is
solved we havd o - yo. Butyo = k, contradictings € hidden(Ls6).

We havevyf = u. Sincek’ p; v andk’ is a name or a variable, we can have that; vy,
or k" py y6 for somey € V(vg). If &’ p1vo thenk encryptsk’ in L, hence inL,7 also.
If k' p1 y6 then from the previous lemmi p, t for somet € T,, and hence’ p, yr.
Therefore in both cases we have thancryptst’ in Lyr. O

We deduce that deciding whether there is an attaclCfand P(L), when P is inter-
preted asP;x.,can be done simply by deciding whether the restriction efrédationpl ="
to K x K is cyclic.

Deciding whether there is an attack fGrand P(L), whenP is interpreted a® -, can
be done by deciding whether the restrictiorifoc K of the relationp’=™ has the following
propertyQ: there arek, k' € K such thatp="k" andk < k.

Checking the cyclicity of the relatiop=™ reduces to checking the cyclicity of the cor-
responding directed graph, using a classic algorith(j¥|?). Then, checking the prop-
erty  can be performed by analyzing all pajés k') € K x K hence also itO(|K|?).

Verifying any of the three properties requires a prelimynsiep of computingk’ =
hidden(Ls7). Computing deducible subterms can be performed in lineze,thence this
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computation step requir€3(|Ls7|). |Ls7| < |Lg|+|7] < |Ls| +O(C|). If Ins(C) C Ly,
then|Ls7| = O(|L|). It follows that the complexity of deciding whether thereisattack
for C andP(L) is O(|L|?), whenP is interpreted a$.., Psy. or P.

5.5 NP-completeness

Let C be a deducibility constraint system ahda list of terms such that(L;s) C V(C)
andlhs(C) C L,. The NP membership of deciding whether there is an attack'fand
P(L) (for our 3 possible interpretations @f) follows immediately from Corollary 4.18
and Proposition 5.10.

NP-hardness is obtained by adapting the construction fen&tEness provided in [Rusi-
nowitch and Turuani 2003]. More precisely, we consider trauction of the 3SAT prob-
lem to our problem. For any 3SAT Boolean formula we constaugtotocol such that the
intruder can deduce a key cycle if and only if the formula is§able. The construction
is the same as in [Rusinowitch and Turuani 2003] (pages 15l8h@xcept that, in the
last rule, the participant responds with the tenm(k, k), for some fresh key (initially
secret), instead ofecret. Then it is easy to see that the only way to produce a key cycle
on a secret key is to play this last rule which is equivalesipg[Rusinowitch and Turuani
2003], to the satisfiability of the corresponding 3SAT foteau

6. AUTHENTICATION-LIKE PROPERTIES

We propose a simple decidable logic for security properfiéss logic enables in particular
to specify authentication-like properties.

6.1 A simple logic
The logic enables terms comparisons and is closed undeeBoabnnectives.
Definition 6.1. The logicL is inductively defined by:
¢u=[mi=ms]| ¢ |dVe|dNG|L mi, ma terms
V() is the set of variables occurring in its atomic formulas.

o E [m1 = me] if mio andmsyo are identical termse £ L. This satisfaction relation
is extended to any of the above formulas, interpreting thel®&m connectives as usual.

Example6.2. Let us consider again the authentication propertypéhiced in Exam-
ple 3.8. There is an attack on authentication betwéemdB if A andB do not agree on
the noncen, sent byA for B, that is ifz = n/, at the end of the run of the protocol. This
can be expressed by the following formula

¢1 = [z # ny

The substitutiorr; (assigninge ton,) is an attack foC'; (defined in Example 3.8) angh
and demonstrates a failure of authentication.

More sophisticated properties can be expressed using ghedo For example, when
two sessions of the same role are executed, one can expthaseah agent has received
exactly oncehe right nonce,,, with the following formula.

$2 = ([r1 = na] A [r2 # na]) V ([21 # 16 A [12 = n4])
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wherez; (resp.xzs) represents the nonce received by the agent in the first. (segond)
session.

We can also express properties of the form: if two agentseagnesome termu, they
also agree on some terim This can be indeed modeled by the formula

¢3 = [u1 = u2] = [v1 = V2]

whereu; (resp.uz) represents the view af by the first (resp. second) agent andresp.
v9) represents the view af by the first (resp. second) agent. The formdla— B is the
usual notation for the formulaA v B.

6.2 Decidability

THEOREM 6.3. Let C be a deducibility constraint system agdbe a formula ofZ.
Deciding whether there is an attack far and ¢ can be performed in non-deterministic
polynomial time.

PROOF First, choosing non-deterministicalfyy or ¢- in any subformula, V ¢-, we
may, w.l.0.g. only consider the case wherés a conjunction/\ ;[u; = uj| A ¢4, where
ba = N\lor # vf).

Let o be amgu (idempotent, which does not introduce new variables\oi; = u’.
The deducibility constraint systei has a joined solution witk if and only if Co and
¢q0 have a common solution. As in the previous sections, we haogpresentation
of expressions, such that applyingrau of subterms of an expressienon e does not
increase the size of the expression

We are now left to the case where we have to decide whetherucitidity constraint
system has a solution together with a property of the form /\f:1 [u; # v

Applying Theorem 4.3, there exists a solutiéof C and¢ if and only if there exist a
deducibility constraint systerf?’ in solved form and substitutions 6’ such that) = ¢¢’,

C ~* (" and§ is an attack forC’ and¢o. Thus, we are now left to decide whether
there exists a solution to a solved constraint syst@éhand a formulago of the form
g0 = Ni_ylui # vil.

If, for somei, u; is identical tov;, then there is clearly no solution. We claim that,
otherwise, there is always a solution. This is an indepecelef disequation lemma (as
in [Colmerauer 1984] for instance), and the proof is simiteother independence of dise-
guations lemmas:

LEMMA 6.4. Let C be a solved deducibility constraint system afhthe the formula
t1 £ ul A ... At, # uy, Such thatV(¢) C V(C) and, for eveny, ¢; is not identical tou;.
Then there is always a solutighof C' and ¢.

This is proved by induction on the number of variablegoln the base case, there is no
variable and the result is trivial asis a tautology.

Let T, be the smallest left-hand side ©f T, must be a non empty set of ground terms.
Note that there is an infinite set of deducible terms ffGm

Letxz € V(¢). For each, eithert; = u; has no solution, in which case# u; is always
satisfied, or else le¥ = {zo; | 0; = mgu(¢;,u;)}. We choosé,, such thatl' + ¢, and
t, ¢ S. This is possible sincg is finite and there are infinitely many terms deducible
from T. Now, for everyi, t;[*=/,] is not identical tou,[*=/.] by construction. Hence, we
may apply the induction hypothesis¢di-/,] and conclude. O
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7. TIMESTAMPS

For modeling timestamps, we introduce a new Jonie C Msg for time and we assume
an infinite number of names of sdftme, represented by rational numbers or integers. We
assume that the only two sorts drame andMsg. Any value of time should be known to
an intruder, that is why we add to the deduction system t@ﬁkﬂf for any namex of

a
sortTime. All the previous results can be easily extended to such aali&h system since
ground deducibility remains decidable in polynomial time.
To express relations between timestamps, we use timedraorst

Definition 7.1. Aninteger timed constrainbr arational timed constrainfl” is a con-
junction of formulas of the form

k
Yoy X 3,

where thew; and g are rational numbersy € {<, <}, and thex; are variables of sort
Time. A solutionof a rational (resp. integer) timed constrainis a closed substitution

o ={Yuy,.-.,%/, }, where the; are rationals (resp. integers), that satisfies the con-
straint.

Such timed properties can be used for example to say thatestémpz; must be
fresher than a timestam (z1 > x2) or thatz; must be at least 30 seconds fresher than
T2 (Il Z To + 30)

Example7.2. We consider the Wide Mouthed Frog Protocol [Clark arodBd 997].

A— S: Ajenc({Ty, B, Kap), Kas)
S — B: enc({Ts, A, Kab), Kps)

A sends to a servet a fresh keyK ,;, intended forB. If the timestam, is fresh enough,

the server answers by forwarding the keyRg adding its own timestampsB simply

checks whether this timestamp is older than any other medsabas received fro. As

explained in [Clark and Jacob 1997], this protocol is flawedduse an attacker can use the

server to keep a session alive as long as he wants by repldagramswers of the server.
This protocol can be modeled by the following deducibilipnstraint system:

Sy % fa,b, s, (a,enc({0,b, kap), kas)V} I (@, enc((ze,, b, y1), kas))s 2, (6)

( as))

Sz € Sy U {enc((wiz, a.y1) ko)) IF (benc((@e, @ y) ko)) e, (7)

S5 € s, U {enc({z¢,, b, y2), kas)} Ik {a,enc({xty,b,y3), kas))» Ttg (8)

Sy aef Sz U {enc({zs,, a,ys3), kvs)} IF enc((zs,, a, kap), kps) (9)

wherey, y2, y3 are variables of solsg andz,,, ..., z., are variables of soffime. We
add explicitly the timestamps emitted by the agents on tite fiand side of the constraints
(that is in the messages expected by the participants) Hiecmtruder can schedule the
message transmission whenever he wants. Note that on titehegd side of constraints

we do have terms, but by abuse of notation we have omittedainmg function symbol.
Initially, the intruder simply knows the names of the ageartd A's message at time O.
Then S answers alternatively to requests frofnand B. Since the intruder controls the

network, the messages can be scheduled as slow (or fasty astrihder needs it. The
serverS should not answer ifi’s timestamp is too old (let's say older than 30 seconds)
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thus S’s timestamp cannot be too much delayed (no more than 30 defomhis means
that we should have;, < z;, + 30. Similarly, we should have;, < z;, + 30 and
xi; < 4, + 30. The last rule corresponds #8's reception. In this scenarid; does not
perform any check on the timestamp since it is the first meshageceives.

We say that there is an attack if there is a joined solutiornefdeducibility constraint
system and the previously mentioned time constraints begetith z,. > 30. This last
constraint expresses that the timestamp receives liyy too large to come froml. Al-
together, the time constraint becomas < x;, + 30 A zy, < z, +30 A x4y <
xt, + 30 A x¢, > 30. Then the substitution corresponding to the attack is

0= {kab/@n ) kab/ygv kab/ym kab/y4a O/ztl ’ 30/1t2 ’ 30/%:3 ’ 60/1t4 ’ GO/It5 ’ 90/%:6 ’ 90/1t7 }

PROPOSITION 7.3. There is an attack to a solved deducibility constraint systend a
time constrain” iff 7" has a solution.

PROOF SKETCH LetC be a solved deducibility constraint system, &nd timed con-
straint. Letys,...,y, be the variables of soNlsg in C andzq, ...,z the variables of
sortTime in C. Clearly, any substitution of the formy;o = u; whereu; € S; for some
(Si Ik y;) € C andx;o = t; for ¢; any constant of soffime is a solution ofC. Let o’ be
the restriction ob to the timed variables, ..., xx.

o is an attack fo” andT if and only if o’ is a solution tdl". Thus there exists an attack
for C andT if and only if T is satisfiable. O

COROLLARY 7.4. Deciding whether a deducibility constraint system, togethith a
time constraint, has a solution is NP-complete.

PrROOF The NP membership follows from the NP membership of timest@mt satis-
fiability, Theorem 4.3 and Proposition 7.3.

NP-hardness directly follows from the NP-hardness of dadlity constraint system
solving, considering an empty timed constrairil

8. CONCLUSIONS

We have shown how, revisiting the approach of [Comon-LumahShmatikov 2003; Rusi-
nowitch and Turuani 2003], we can preserve the set of saistimstead of only deciding
the satisfiability. We also derived NP-completeness redalt some security properties:
key-cycles, authentication, time constraints.

Since the constraint-based approach [Comon-Lundh and t#uwm@003; Rusinowitch
and Turuani 2003] has already been implemented in AVISPA{@xdo et al. 2005], it is
likely that we can, with only slight efforts, adapt this irephentation to the case of key
cycles and timestamps.

More generally, we would like to take advantage of our resutterive decision proce-
dures for even more security properties. A typical exammeld be the combinations of
several properties. Also, we could investigate non-traopgrties such as anonymity or
guessing attacks, for which there are very few decisiontegnly [Baudet 2005], whose
procedure is quite complex).

Regarding key cycles, our approach is valid for a boundedosumof sessions only. Se-
crecy is undecidable in general [Durgin et al. 2004] for ahaunded number of sessions.
Such an undecidability result could be easily adapted t@tbblem of detecting key cy-
cles. Secrecy is decidable for several classes of protfiRalmanujam and Suresh 2003;
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Comon-Lundh and Cortier 2003; Blanchet and Podelski 20@8m+ et al. 2005] and an
unbounded number of sessions. We plan to investigate howfsagments could be used
to decide key cycles.
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