Scheduling Parallel 1/0

Operations'

Ravi Jain?

Bellcore

Kiran Somalwar
Digital Equipment Corp.

John Werth and J. C. Browne

Dept. of Computer Sciences, Univ. of Texas at

Austin

Abstract

The I/0 bottleneck in parallel computer sys-
tems has recently begun receiving increasing inter-
est. Most attention has focused on improving the
performance of I/O devices using fairly low-level par-
allelism 1n techniques such as disk striping and inter-
leaving. Widely applicable solutions, however, will
require an integrated approach which addresses the
problem at multiple system levels, including applica-
tions, systems software, and architecture. We pro-
pose that within the context of such an integrated
approach, scheduling parallel 1/O operations will be-
come increasingly attractive and can potentially pro-

vide substantial performance benefits.

We describe a simple I/O scheduling problem
and present approximate algorithms for its solution.
The costs of using these algorithms in terms of ex-
ecution time, and the benefits in terms of reduced
time to complete a batch of I/O operations, are com-
pared with the situations in which no scheduling is
used, and in which an optimal scheduling algorithm
is used. The comparison is performed both theoret-
ically and experimentally. We have found that, in
exchange for a small execution time overhead, the
approximate scheduling algorithms can provide sub-

stantial improvements in 1/O completion times.

1This research was performed while the first two authors
were at the University of Texas, and was partially supported
by the IBM Corporation through grant 61653 and by the State
of Texas through TATP Project 003658-237.

2 Address correspondence to Ravi Jain, Applied Research,
Bellcore, 445 South St, Morristown, NJ 07960.

rjain@thumper.bellcore.com

e-mail:

1 Introduction

The performance of parallel computers for many in-
teresting classes of applications is often limited by the
speed of 1/O rather than the speed of computation.
Technology and application trends indicate that this
I/0 bottleneck is likely to become increasingly impor-
tant in the future [5, 7, and references therein]. While
this problem has been receiving increasing attention
in the past few years, most solutions have focused
on improving the performance of a few components
of the parallel computer system. Typically, attention
has been paid to improving the performance of /0
devices using fairly low-level parallelism in techniques
such as disk striping and interleaving [15, 5, and refer-
ences therein]. It seems likely, however, that, just as
is the case for sequential computers, widely applica-
ble solutions to the I/O bottleneck in parallel systems
will require an integrated approach which addresses
the problem at all levels of the system, including ap-

plications, systems software, and architectures.

Explicit scheduling of parallel I/O operations
is a potentially significant contributor to an inte-
grated approach towards solving the the I/O bottle-
neck. Scheduling becomes increasingly attractive as
the /O bottleneck becomes more severe: the process-
ing overhead for generating good schedules decreases
while the importance of performing data transfers ef-
ficiently increases. However, scheduling parallel 1/0O

operations has received relatively little attention.

Much of the previous work on scheduling deals
with tasks which each require only a single resource
at any given time [7], and is not relevant for I/O op-
erations which each require multiple resources (e.g.
a processor, channel, and disk) simultaneously in or-
der to execute. Serial acquisition of multiple resource
does not, in general, lead to optimal schedules; al-
gorithms which simultaneously schedule multiple re-
sources are required. Previous work on simultaneous
resource scheduling has either considered very general
resource requirements, leading to problems known to
be NP-complete or requiring linear programming so-
lutions of high time complexity, or made assumptions
which are not relevant for scheduling parallel 1/O op-
erations (see [7] for a survey). In contrast, we seek to
exploit the special structure and requirements of par-

allel T/O tasks to obtain polynomial-time algorithms

and simple heuristics which are effective for our app-
lication. In previous work we have developed a family
of such algorithms for scheduling data transfers un-
der various architectural and logical constraints in the
context of a general model for specifying scheduling
problems [12, 8, 7].

In section 2, we sketch the role of parallel /O
scheduling and describe a simple parallel /O sch-
eduling problem and a scenario in which it may be
likely to arise. We have previously designed algo-
rithms which provide optimal solutions to this pr-
oblem [8].

provide approximate solutions to the problem, and

Here we present fast algorithms which

examine their performance both theoretically and ex-
perimentally. We compare the lengths of the sched-
ules produced by these algorithms to those produced
when scheduling is not employed, i.e., those in which
I/O operations are performed on a first-come first-
served basis. Qur experimental results indicate that
the approximate scheduling algorithms can poten-
tially provide significant reductions in the maximum
time to complete a batch of transfers, while paying
only a small overhead to generate the schedule. In

sec. 6 we end with some conclusions.

2 The role of scheduling

In this section we discuss the role of scheduling and
describe an application in which a parallel /O sched-
uling problem may arise. We show that the problem
can be formulated naturally as a problem of coloring
the edges of a graph. We then state some theoreti-
cal results which characterize the solutions to these

problems.

The performance bottleneck created by the de-
lays in the movements of mechanical devices is an old
problem in sequential computer system design, and
has motivated many significant innovations, includ-
ing the introduction of memory hierarchies, multi-
programming, and pipelining via buffering [17]. One
important innovation was to schedule the 1/O oper-
ations by reordering the requests in the queues at
devices [4, 17, and references therein]. We propose
that a scheduling approach be applied to I/O op-
erations in parallel computer systems also, and in

this paper consider centralized batch scheduling. In

Figure 1: Parallel 1/O scheduling example

[10, 9] we discuss the structure of applications and
I/0 request streams for which batch scheduling is ap-
plicable, and the capabilities required in the system
software and architecture to make it feasible. We ob-
serve that these capabilities are also required in order
to address the I/O bottleneck at higher levels of the
system. The following simple example illustrates the
potential benefits of parallel 1/O scheduling.

Example. Consider the I/O operations T1 -
T4 which are required between a set of processors
and a set of disks (Fig. 1). The I/O transfer re-
quests are numbered in the order they arrived at the
system. Assume each processor and each disk can
participate in at most one data transfer at any given
time, and each transfer is of unit length. In addi-
tion, we are given that the transfers may occur in
any order. Clearly the minimum number of time slots
required to complete the transfers; corresponding to
an optimal schedule, is less than that required if the
transfer requests are simply serviced in the order they

arrive.

2.1 Application: image visualization

Consider a scenario where users, who may be physi-
cians, health care workers, scientists, etc., need to
share and access a large image database. The images
may consist of medical information (e.g. Computer-
Aided Tomography scans), or oil prospecting infor-
mation (e.g. seismic data from acoustical depth
soundings) etc. The database is processed and stored
at a parallel computer site, and users view the images
by requesting image files to be displayed on their
graphics workstations. The parallel computer is a
shared-bus system, in which processors and disks are
connected to a set of common buses (or a single high-
speed system bus that is shared in a time-multiplexed
fashion), which allow multiple I/O transfers to pro-
ceed in parallel. In order to provide a reasonable
response time for the users, the workstations are also
connected to the common buses, possibly via a trans-
parent high-speed interface card. A user request for
an image file is processed by the CPUs at the parallel
computer, and results in image data being transferred
from the system disks to the user’s workstation across

the common buses.

In this scenario, the parallel computer’s op-
erating system batches the image file requests and
schedules the resulting I/O transfers. Files are read
from disks in fixed-size blocks, and the blocks may be
sent in any order to the workstations, which are ca-
pable of assembling them and generating the image.
The workstations also off-load some low-level image-
processing tasks from the parallel computer, such as

shading, etc.

2.2 Problem statement

The specific I/O problem we will consider can now
be stated, as a decision problem, as follows. Since,
in principle, the problem may arise between any two
levels of the memory hierarchy, it is stated in terms
of processors and I/O devices. Given a set of 1/0

transfers, where

1. all transfers are of the same length,

2. each transfer requires a specified pair of re-
sources, one a processor and the other an I1/0
device, from two given sets of processors and 1/0

devices,

3. each processor can communicate via a direct ded-
icated link with each T/O device, and
4. the transfers may occur in any order,

is there a preemptive schedule for performing the
transfers whose total length is at most some given
bound?

We call this problem the Unit-Length Simple
I/O Scheduling (UnitSimpleIOS) problem. (When
the problem is stated as an optimization problem the
objective is to minimize the schedule length). Tt is
applicable to systems such as the Sequent [13] where
I/O devices are connected to processors via a single

shared bus.

In this paper we also consider an extension to
UnitSimplelOS that is useful for modeling some prac-
tical parallel I/O architectures. We call this prob-
lem UnitIOS, and 1t is identical to UnitSimplelOS
except that the system architecture differs: only a
fixed limited number k of I/O operations may take
place at any given time. The UnitI0S problem arises
in multiple-bus systems such as the IBM RP3, where
k parallel buses connect processor and I/O devices
[16]. In general, such multiple parallel bus architec-
tures are attractive for future high-performance par-
allel computers as they not only allow more than one
data transfer to be in progress at any given time, but
also allow more processors and devices to be intercon-
nected and improve the system’s fault tolerance [14].
In general, Unit/OS may also arise in a shared-bus
architecture where the effective bandwidth of the bus

is a limiting factor.

2.3 Definitions and problem formula-
tion

Def. An edge coloring of a graph G = (V, E) is a
function ¢ : E— {0,1,2,...} which associates a color
with each edge such that no two edges of the same

color have a common vertex.

Consider a collection of vertices representing
processors and I/O devices, each of which can par-
ticipate in at most one data transfer at any given
time. Then an edge coloring for a graph G, where
each edge of GG represents a data transfer requiring
one time unit, corresponds to a schedule for the data

transfers, and vice versa. To see this, note that all

edges of G colored with the same color are indepen-
dent in that they have no common vertex. Hence
the data transfers they represent can be performed
simultaneously. An edge coloring of G represents a
schedule, where all edges e with ¢(e) = 4, for some
¢, represent data transfers that take place at time
¢, and vice versa. The number of colors required to
edge-color GG equals the length of the schedule, and
vice versa. To model the UnitIOS problem, we add
the restriction that each color can be used to color at
most k edges. An instance of the simple I/O sched-
uling problem is given in Fig. 1.

Let G = (A, B, E) denote a bi-
partite graph where A and B are two digjoint sets
of vertices and £ C A x B is the set of edges. Let
|A| + |B] = n and |E| = m.

Notation.

We have been able to use this more abstract
formulation of the scheduling problem to show, using
a general model for specifying scheduling problems
[18, 12, 7], that UnitIOS is identical to the problem of
obtaining optimal time-slot assignments in a satellite
switching system [3].

We state some definitions and known results
which we will draw upon, sketching proofs where they

provide intuition for results later in the paper.

Def. The degree of a vertex is the number of
edges incident upon it. The degree of a graph is the
maximum of the degrees of its vertices. A critical

vertezx 1s one of maximum degree.

Def. A matching M C E is a set of edges such
that no two edges have a common vertex. A maaz-
tmum matching 1s one such that no other matching
has a larger cardinality. An edge in a matching is

said to cover the vertices that are 1ts endpoints.

Def. A critical matching is one which covers

all critical vertices.

Lemma 2.1 [2] Every bipartile graph has a critical

matching.

Lemma 2.2 FEzactly d colors are necessary and suf-

ficient to color a bipartite graph of degree d.

proof. [2] Clearly, at least d colors are necessary,
since a critical vertex requires that each incident edge

have a different color. The proof of sufficiency is by

induction, sketched as follows. Find a critical match-
ing M, which, from Lemma 2.1, must exist. Color
the edges in M a single color and delete them from
the graph. The remaining graph has degree d — 1,
and by the induction hypothesis can be colored using
d — 1 colors. Hence the graph can be colored with d
colors. ad

Def. A k-coloring of a graph is an edge-coloring
in which each color may be used to color at most &

edges.

Lemma 2.3 [3] At least p = max(d, [m/k]) colors
are necessary to k-color a bipartite graph with m edges
and degree d.

3 Heuristics for scheduling

parallel I/0

Algorithms for constructing minimum length sched-
ules for UnitIOS have been designed. These are
the algorithm KT [3] which takes time O(mn(m +
n)), Somalwar’s algorithm [18] which takes time
O(mn'®logn), and algorithm A2 [8] which takes
time O(mn®%logn). For a survey of optimal algo-
rithms, and an experimental evaluation of the perfo-

rmance of these algorithms, see Jain [7].

While the optimal algorithm A2 is faster than
previous optimal algorithms we would like to have
even faster algorithms, since in most applications
scheduling algorithms are executed repeatedly, and
any gain in speed helps overall system performance.
Thus we consider heuristics for the UnitIOS problem,
which are essentially approximation algorithms for k-
coloring the edges of a bipartite graph, and present

some theoretical results.

3.1 Greedy Heuristics for

UnitStmplelOS

An algorithm is called “greedy” if, for each color,
it attempts to color as many edges as possible with
that color; it 18 a heuristic, or approximation algo-
rithm, if it is not guaranteed to use the minimum
number of colors. Since we will be presenting several
greedy heuristics, we establish a template for describ-

ing them using pseudo-code as follows.

Algorithm Greedy Heuristic
Input: Bipartite graph G = (A4, B, E)
Output: An edge-coloring of G
1. F := Order(A, B, E);
/* F is some ordering of the edges in E */
2. 1:=0;
3. while I/ # { }{
4. M =1}

/* Edges which are assigned color i */

9. for each e read in sequence from F' {
6. if neither endpoint of e is colored ¢ {
7. color(e) := i;
8. E:=F—{e};
9. M = M U {e};
10. }
11. }
12. v =1+ 1;

13. F = Order(A, B, E);
/* Re-order remaining edges of the graph */
14.)

We assume that when the algorithm is called,
the transfer requests have been added to the edge list
of a bipartite graph in the order in which the requests

arrived.

The simplest heuristic 1s the greedy First-Come
First-Served heuristic FCFS, which, for each color,
examines the edges in the order they are presented
and tries to color as many edges as possible. For
FCF'S, the Order() function is thus simply the iden-
tity function, i.e., edges are processed in the order

that they arrived at the operating system.

The heuristics we will investigate can be de-
fined, assuming the template above, as

1. First-Come First-Served, FCFS. Order() is the
identity function.

2. Highest Degree First, HDF. Order() sorts the
vertices by descending degree, and for each ver-
tex 1n turn, chooses edges incident upon it ar-
bitrarily. Ties between vertices are broken arbi-
trarily.

3. Highest First, HCDF.
Order() sorts the edges in descending order of

Combined Degree

the sum of the degrees of their endpoints. Ties

between edges are broken arbitrarily.

We can now state some theoretical results
which apply to all the greedy heuristics above, omit-
ting proofs for brevity (see [11]).

Lemma 3.1 [7, 1] For a bipartite graph of degree d,
a greedy heuristic produces a coloring using at most
2d — 1 colors.

Lemma 3.2 For a bipartite graph with m edges and
degree d, the greedy algorithms take time O(md) to
solve UnitSimplelOS,
length at most 2 — % times the optimal length.

and produce a schedule of

It can be shown that the upper bound on the
schedule length 1s “tight” for the heuristics above i.e.,
for any given d, 1t is always possible to construct
degree d graphs for which, if the heuristic makes
the “worst” choices, (or Order(G) produces a worst-
possible ordering), the heurisitic uses exactly 2d — 1
colors. For FCFS, this construction [7, 1] is rela-
tively straightforward. For HDF and HCDF it is

quite involved.

Lemma 3.3 [11] For both the HDF and HCDF al-
gorithms, for any positive integer d there exists a bi-
partite graph G of degree d and a sequence of choices
made by the algorithm, such that exactly 2d—1 colors

are used to edge-color .

From the theoretical results above we see that
in the worst case, processing 1/O requests in the order
in which they appear (i.e., FCFS), produces sched-
ule lengths which are no longer than those produced
by the heuristics (HDF and HCDF') which actually
perform some intelligent scheduling. However, an ex-
perimental evaluation of these algorithms shows that
the heuristics are preferable to FCFS as they exhibit
far less variability in the schedule lengths produced.
We will present experimental results for the heuristics
as well as a divide-and-conquer optimal algorithm in

section 4.

3.2 Greedy Heuristics for Unit/OS

The program for implementing the greedy heuristics
for when a color may be used to color at most £ < n
edges is a slight modification of the program given
above. We add the following line (the break state-
ment exits the smallest enclosing loop, i.e., the for

loop):

10.5 if |M| = k, break;

That is, after every edge 1s added to M, the
program checks if |M| = k, and if so, does not add
any more edges to M for the current color. We call
the resulting algorithms modified greedy algorithms,
MFCFS, MHDF, MHCDF.

Lemma 3.4 [11] For a graph of n vertices, m edges
and degree d, if at most k < n edges may be colored
with a single color, a modified greedy algorithm pro-
duces a coloring using at most |m/k|+(2d—1) colors,
and run in time O(m? [k + md).

4 Experimental evaluation

We have experimentally evaluated the performance
of the greedy algorithms on instances of the
UnitSimpleIOS and UnitIOS problems. We com-
pare their behavior to that of the exact algorithm A,
which is a special case of A2 [8] for unit-weight edges
implemented by Somalwar [18]. We also compare
their behavior to the theoretical bounds discussed in

the previous section.

The algorithms were implemented as C pro-
grams and evaluated for two criteria: the CPU time
taken to produce a schedule, and the length of the
schedule produced. Several experiments were carried
out in which the the total number of data sources and
sinks n, the number of transfers m, and the maximum
number of simultaneous transfers k& were varied. For
brevity we describe here the results for only one ex-
periment; results for the other experiments are qual-

itatively similar and can be found in [10].

The algorithms were compiled using the DEC
C compiler for Ultrix on RISC, Release V1.0 with all
optimizations enabled. The programs were executed
on a DECstation 5000/200 workstation in single-user
mode running the Ultrix Release 4.2 (Rev. 96) oper-
ating system. Each program and its data structures
occupied less than 3 MB of the 32 MB main memory
of the system, and so the programs did not perform
any I/O during execution except to read input graph
files and write result files. The CPU time was mea-

sured using the gettimeofday() Ultrix system call.

In the following we report the results for
the modified approximation algorithms in terms

of the UnitIOS problem only; the results for

UnitSimpleIOS are similar or are subsumed by these

results.

Expt. 1. Effect of varying number of tr-
ansfers, m. In this experiment, the number of disks
and workstations was fixed at n = 32 (i.e., 16 vertices
in each partition), and it was assumed that the I/O
channel transfer capacity was relatively low (k = 4).
One hundred input graphs were generated for each
value of m. For each set of input graphs correspond-
ing to a given value of m, the CPU time required to
calculate a schedule for each graph was recorded, and
the mean over all graphs in a set was calculated. In
Fig. 2 the mean CPU time (in milliseconds) taken by
each of the algorithms is plotted as a function of m.
The standard deviations of the CPU time are typi-
cally around 2-10% of the mean, and are not shown
on the plot for clarity. It i1s clear that the heuristics

run much faster than the optimal algorithm A.

The improvement in CPU time for the approx-
imation algorithms comes at the expense of worse
schedules. To evaluate this, for each input graph,
the percentage increase in the schedule length over
the optimum schedule length for that graph was cal-
culated. The mean and maximum values of this
percentage increase, over all one hundred input in-
stances, were then calculated. We observed that the
mean schedule length produced by the approximat-
ion algorithms does not differ significantly from the
optimal or from each other. However, the mazimum
schedule length may. In Fig. 3 the maximum per-
centage increase is plotted as a function of m. The
schedule produced by MFCFS can be almost 40%
longer than optimal. On the other hand, the sched-
ules produced by MHDF and MHCDF were found

to be always of minimum length, for this experiment.

In Expt.

gorithms increases with the number of transfers to

1 the execution time of all the al-

be scheduled (Fig. 2). As expected, this increase
is close to linear with m. It 1s interesting to see
that MHDZF’s execution time is slightly less than
MFCFS. This is because of two effects. Firstly, the
schedule lengths MHDF produces are shorter than
those produced by FCFS, so that the number of it-
erations of the while loop is smaller. Secondly, the
implementation of MHDF takes advantage of the

fact that only the vertices are sorted, and edges in-

Figure 2: CPU time (ms) versus number of transfers

forn =32k =4

Figure 3: Percentage increase in schedule length ver-

sus number of transfers for n = 32, k = 4

cident upon a selected vertex are chosen arbitrarily,
so that it suffices to implement F' as a list of vertices

rather than edges.

5 Previous related work

The only relevant previous work, to our knowl-
edge, deals with approximate edge-coloring of general
graphs and multigraphs. An algorithm using no more
than (4/3)d colors, and running in time O(m(n + d))
was developed [6]. This algorithm uses an “inter-
change approach” as its basis: for each edge, check if
some “simple” recoloring of the colored edges would
eliminate the need for an additional color. As the au-
thors say, “in order to prove better bounds, the ‘sim-
ple’ recolorings become more complicated” [6]. Note
that their algorithm does not consider the practical
constraint of a limited number of simultaneous data
transfers, i.e., k < n. For our applications, this con-
straint corresponds to the realistic situation of lim-
ited bus bandwidth being available in the system.
Also, since the MHDF and MHCDPF heuristics do
not perform any backtracking or recoloring, they are
likely to have smaller constants for their time comp-
lexity, and are likely to be simpler to implement, than
the interchange heuristic. Their performance for our
set of experiments also seems satisfactory considering
their simplicity.

Note that MFCFS, MHDF, MHCDF and
the interchange heuristic form a sequence of heuris-
tics which tend to produce shorter schedules at the
expense of increasing time complexity. One can envi-
sion a range of heuristics that could be systematically
designed to cover the gap between MFCFS and the

optimal algorithm.

6 Conclusions

In this paper we have defined a simple parallel /0
scheduling problem which may arise in practice. For
this problem, we compared the costs and benefits
of using simple approximate batch scheduling algo-
rithms with the situation in which no scheduling is
employed, and found that, in our investigation, sch-

eduling can provide significant improvements in the

times to complete I/O transfers for a small execution

overhead.

In our experiments we found that the simple
greedy MHDF and MHCDF approximation algo-
rithms produced schedules at most 10% longer than
optimal, for execution times which are close to the
execution times of the MFCFS algorithm. On the
other hand, while the mean length increase in sched-
ules produced by MFCFS may not be very large,
the maximum may be 50% over the optimal sched-
ule. More importantly, the dependence of MFCFS
on various input parameters, especially k, is quite

large and hard to predict.

Our work on scheduling I/O has been carried
out in the context of a general scheduling model [7]
which we have used to address more complex sched-
uling problems, including I/O scheduling in the pres-
ence of precedence constraints, mutual exclusion con-
We

are currently investigating algorithms for scheduling

straints, and hierarchical system architectures.

synchronized data transfers which arise in applica-
tions such as multimedia systems, and on-line I/0O

scheduling.

Acknowledgements

The first author thanks Ramesh Govindan, Peter
Newton and Mark Sullivan for many helpful com-

ments and discussions.

References

[1] A. Bar-Noy, R. Motwani, and J. Naor. The greedy
algorithm is optimal for on-line edge coloring. Inf.
Proc. Lett., pages 251-253, Dec. 1992.

—
(V)
4

Claude Berge. Graphs. North-Holland, 1985.

—
w
[t

G. Bongiovanni, D. Coppersmith, and C. K. Wong.
An optimum time slot assignment algorithm for
an SS/TDMA system with variable number of
transponders. [EEE Trans. Comm., 29(5):721-726,
May 1981.

P. J. Denning. Effects of scheduling on file mem-
ory operations. In Proc. AFIPS Spring Joint Comp.

Conf., pages 9-21, 1967.

G. A. Gibson. Redundant disk arrays: Reliable, par-
allel secondary storage. PhD thesis, Univ. of Calif.,

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Berkeley, Comp. Sci. Div, 1990. Also available as

Tech. Rep. UCB/CSD 91/613.

D. S. Hochbaum, T. Nishizeki, and D. B. Shmoys. A
better than “best possible” algorithm to edge color
multigraphs. STAM J. Comput., 7:79-104, 1986.

Ravi Jain. Scheduling data transfers in parallel
computers and communications systems. Technical
Report TR-93-03, Univ. Texas at Austin, Dept. of

Comp. Sci., Feb. 1993.

Ravi Jain, Kiran Somalwar, John Werth, and J. C.
Browne. Scheduling parallel 1/O operations in
J. Par. and Distrib. Comp.,

Special Issue on Scheduling and Load

multiple-bus systems.
Dec. 1992.

Balancing.

Ravi Jain, Kiran Somalwar, John Werth, and J. C.
Browne. Requirements and heuristics for scheduling
parallel 1/O operations. May 1993. Submitted for

publication.

Ravi Jain, Kiran Somalwar, John Werth, and J. C.
Browne. Scheduling parallel I/O operations. In Proc.
Workshop on 1/0 in Par. Comp. Sys., Apr. 1993.

Ravi Jain and John Werth. Analysis of approximate
algorithms for edeg-coloring bipartite graphs. May
1993. Submitted for publication.

Ravi Jain, John Werth, and J. C. Browne. A general
model for scheduling of parallel computations and its
application to parallel 1/O operations. In Proc. Intl.
Conf. Par. Proc., 1991.

T. Lovett and S. Thakkar. The Symmetry multipro-
cessor system. In Proc. Intl. Conf. Par. Proc., pages
303-310, 1988.

T. N. Mudge, J. P. Hayes, and D. C. Winsor. Multi-
ple bus architectures. Computer, 20(6):42-48, June
1987.

D. A. Pattreson, G. A. Gibson, and R. H. Katz.
A case for redundant arrays of inexpensive disks

(RAID). In Proc. SIGMOD, 1988.

G. Pfister, W. C. Brantley, D. A. George, S. L. Har-
vey, W. J. Kleinfelder, K. P. McAuliffe, E. A. Melton,
V. A. Norton, and J. Weiss. The IBM research paral-
lel processor (RP3): Introduction and architecture.
In Proc. Intl. Conf. Par. Proc., pages 764-771, 1985.

A. Silberschatz and J. Peterson. Operating systems
concepts. Addison-Wesley, 1988.

Kiran Somalwar. Data transfer scheduling. Technical
Report TR-88-31, Univ. Texas at Austin, Dept. of
Comp. Sci., 1988.

