
Scheduling Parallel I�O

Operations�

Ravi Jain�

Bellcore

Kiran Somalwar

Digital Equipment Corp�

John Werth and J� C� Browne

Dept� of Computer Sciences� Univ� of Texas at

Austin

Abstract

The I�O bottleneck in parallel computer sys�

tems has recently begun receiving increasing inter�

est� Most attention has focused on improving the

performance of I�O devices using fairly low�level par�

allelism in techniques such as disk striping and inter�

leaving� Widely applicable solutions� however� will

require an integrated approach which addresses the

problem at multiple system levels� including applica�

tions� systems software� and architecture� We pro�

pose that within the context of such an integrated

approach� scheduling parallel I�O operations will be�

come increasingly attractive and can potentially pro�

vide substantial performance bene�ts�

We describe a simple I�O scheduling problem

and present approximate algorithms for its solution�

The costs of using these algorithms in terms of ex�

ecution time� and the bene�ts in terms of reduced

time to complete a batch of I�O operations� are com�

pared with the situations in which no scheduling is

used� and in which an optimal scheduling algorithm

is used� The comparison is performed both theoret�

ically and experimentally� We have found that� in

exchange for a small execution time overhead� the

approximate scheduling algorithms can provide sub�

stantial improvements in I�O completion times�

�This research was performed while the �rst two authors

were at the University of Texas� and was partially supported

by the IBM Corporation through grant ����� and by the State

of Texas through TATP Project �����	
����
�Address correspondence to Ravi Jain� Applied Research�

Bellcore� 

� South St� Morristown� NJ ������ e
mail�

rjain�thumper�bellcore�com

� Introduction

The performance of parallel computers for many in�

teresting classes of applications is often limited by the

speed of I�O rather than the speed of computation�

Technology and application trends indicate that this

I�O bottleneck is likely to become increasingly impor�

tant in the future ��� 	� and references therein
� While

this problem has been receiving increasing attention

in the past few years� most solutions have focused

on improving the performance of a few components

of the parallel computer system� Typically� attention

has been paid to improving the performance of I�O

devices using fairly low�level parallelism in techniques

such as disk striping and interleaving ���� �� and refer�

ences therein
� It seems likely� however� that� just as

is the case for sequential computers� widely applica�

ble solutions to the I�O bottleneck in parallel systems

will require an integrated approach which addresses

the problem at all levels of the system� including ap�

plications� systems software� and architectures�

Explicit scheduling of parallel I�O operations

is a potentially signi�cant contributor to an inte�

grated approach towards solving the the I�O bottle�

neck� Scheduling becomes increasingly attractive as

the I�O bottleneck becomes more severe� the process�

ing overhead for generating good schedules decreases

while the importance of performing data transfers ef�

�ciently increases� However� scheduling parallel I�O

operations has received relatively little attention�

Much of the previous work on scheduling deals

with tasks which each require only a single resource

at any given time �	
� and is not relevant for I�O op�

erations which each require multiple resources 
e�g�

a processor� channel� and disk� simultaneously in or�

der to execute� Serial acquisition of multiple resource

does not� in general� lead to optimal schedules� al�

gorithms which simultaneously schedule multiple re�

sources are required� Previous work on simultaneous

resource scheduling has either considered very general

resource requirements� leading to problems known to

be NP�complete or requiring linear programming so�

lutions of high time complexity� or made assumptions

which are not relevant for scheduling parallel I�O op�

erations 
see �	
 for a survey�� In contrast� we seek to

exploit the special structure and requirements of par�

allel I�O tasks to obtain polynomial�time algorithms

�



and simple heuristics which are e�ective for our app�

lication� In previous work we have developed a family

of such algorithms for scheduling data transfers un�

der various architectural and logical constraints in the

context of a general model for specifying scheduling

problems ���� �� 	
�

In section �� we sketch the role of parallel I�O

scheduling and describe a simple parallel I�O sch�

eduling problem and a scenario in which it may be

likely to arise� We have previously designed algo�

rithms which provide optimal solutions to this pr�

oblem ��
� Here we present fast algorithms which

provide approximate solutions to the problem� and

examine their performance both theoretically and ex�

perimentally� We compare the lengths of the sched�

ules produced by these algorithms to those produced

when scheduling is not employed� i�e�� those in which

I�O operations are performed on a �rst�come �rst�

served basis� Our experimental results indicate that

the approximate scheduling algorithms can poten�

tially provide signi�cant reductions in the maximum

time to complete a batch of transfers� while paying

only a small overhead to generate the schedule� In

sec� � we end with some conclusions�

� The role of scheduling

In this section we discuss the role of scheduling and

describe an application in which a parallel I�O sched�

uling problem may arise� We show that the problem

can be formulated naturally as a problem of coloring

the edges of a graph� We then state some theoreti�

cal results which characterize the solutions to these

problems�

The performance bottleneck created by the de�

lays in the movements of mechanical devices is an old

problem in sequential computer system design� and

has motivated many signi�cant innovations� includ�

ing the introduction of memory hierarchies� multi�

programming� and pipelining via bu�ering ��	
� One

important innovation was to schedule the I�O oper�

ations by reordering the requests in the queues at

devices ��� �	� and references therein
� We propose

that a scheduling approach be applied to I�O op�

erations in parallel computer systems also� and in

this paper consider centralized batch scheduling� In

Figure �� Parallel I�O scheduling example

���� �
 we discuss the structure of applications and

I�O request streams for which batch scheduling is ap�

plicable� and the capabilities required in the system

software and architecture to make it feasible� We ob�

serve that these capabilities are also required in order

to address the I�O bottleneck at higher levels of the

system� The following simple example illustrates the

potential bene�ts of parallel I�O scheduling�

Example� Consider the I�O operations T� �

T� which are required between a set of processors

and a set of disks 
Fig� ��� The I�O transfer re�

quests are numbered in the order they arrived at the

system� Assume each processor and each disk can

participate in at most one data transfer at any given

time� and each transfer is of unit length� In addi�

tion� we are given that the transfers may occur in

any order� Clearly the minimumnumber of time slots

required to complete the transfers� corresponding to

an optimal schedule� is less than that required if the

transfer requests are simply serviced in the order they

arrive�

�



��� Application� image visualization

Consider a scenario where users� who may be physi�

cians� health care workers� scientists� etc�� need to

share and access a large image database� The images

may consist of medical information 
e�g� Computer�

Aided Tomography scans�� or oil prospecting infor�

mation 
e�g� seismic data from acoustical depth

soundings� etc� The database is processed and stored

at a parallel computer site� and users view the images

by requesting image �les to be displayed on their

graphics workstations� The parallel computer is a

shared�bus system� in which processors and disks are

connected to a set of common buses 
or a single high�

speed system bus that is shared in a time�multiplexed

fashion�� which allow multiple I�O transfers to pro�

ceed in parallel� In order to provide a reasonable

response time for the users� the workstations are also

connected to the common buses� possibly via a trans�

parent high�speed interface card� A user request for

an image �le is processed by the CPUs at the parallel

computer� and results in image data being transferred

from the system disks to the user�s workstation across

the common buses�

In this scenario� the parallel computer�s op�

erating system batches the image �le requests and

schedules the resulting I�O transfers� Files are read

from disks in �xed�size blocks� and the blocks may be

sent in any order to the workstations� which are ca�

pable of assembling them and generating the image�

The workstations also o��load some low�level image�

processing tasks from the parallel computer� such as

shading� etc�

��� Problem statement

The speci�c I�O problem we will consider can now

be stated� as a decision problem� as follows� Since�

in principle� the problem may arise between any two

levels of the memory hierarchy� it is stated in terms

of processors and I�O devices� Given a set of I�O

transfers� where

�� all transfers are of the same length�

�� each transfer requires a speci�ed pair of re�

sources� one a processor and the other an I�O

device� from two given sets of processors and I�O

devices�

�� each processor can communicate via a direct ded�

icated link with each I�O device� and

�� the transfers may occur in any order�

is there a preemptive schedule for performing the

transfers whose total length is at most some given

bound�

We call this problem the Unit�Length Simple

I�O Scheduling 
UnitSimpleIOS� problem� 
When

the problem is stated as an optimization problem the

objective is to minimize the schedule length�� It is

applicable to systems such as the Sequent ���
 where

I�O devices are connected to processors via a single

shared bus�

In this paper we also consider an extension to

UnitSimpleIOS that is useful for modeling some prac�

tical parallel I�O architectures� We call this prob�

lem UnitIOS� and it is identical to UnitSimpleIOS

except that the system architecture di�ers� only a

�xed limited number k of I�O operations may take

place at any given time� The UnitIOS problem arises

in multiple�bus systems such as the IBM RP�� where

k parallel buses connect processor and I�O devices

���
� In general� such multiple parallel bus architec�

tures are attractive for future high�performance par�

allel computers as they not only allow more than one

data transfer to be in progress at any given time� but

also allow more processors and devices to be intercon�

nected and improve the system�s fault tolerance ���
�

In general� UnitIOS may also arise in a shared�bus

architecture where the e�ective bandwidth of the bus

is a limiting factor�

��� De�nitions and problem formula�

tion

Def� An edge coloring of a graph G � 
V�E� is a

function c � E � f�� �� �� ���g which associates a color

with each edge such that no two edges of the same

color have a common vertex�

Consider a collection of vertices representing

processors and I�O devices� each of which can par�

ticipate in at most one data transfer at any given

time� Then an edge coloring for a graph G� where

each edge of G represents a data transfer requiring

one time unit� corresponds to a schedule for the data

transfers� and vice versa� To see this� note that all

�



edges of G colored with the same color are indepen�

dent in that they have no common vertex� Hence

the data transfers they represent can be performed

simultaneously� An edge coloring of G represents a

schedule� where all edges e with c
e� � i� for some

i� represent data transfers that take place at time

i� and vice versa� The number of colors required to

edge�color G equals the length of the schedule� and

vice versa� To model the UnitIOS problem� we add

the restriction that each color can be used to color at

most k edges� An instance of the simple I�O sched�

uling problem is given in Fig� ��

Notation� Let G � 
A�B�E� denote a bi�

partite graph where A and B are two disjoint sets

of vertices and E � A � B is the set of edges� Let

jAj� jBj � n and jEj � m�

We have been able to use this more abstract

formulation of the scheduling problem to show� using

a general model for specifying scheduling problems

���� ��� 	
� that UnitIOS is identical to the problem of

obtaining optimal time�slot assignments in a satellite

switching system ��
�

We state some de�nitions and known results

which we will draw upon� sketching proofs where they

provide intuition for results later in the paper�

Def� The degree of a vertex is the number of

edges incident upon it� The degree of a graph is the

maximum of the degrees of its vertices� A critical

vertex is one of maximum degree�

Def� A matching M � E is a set of edges such

that no two edges have a common vertex� A max�

imum matching is one such that no other matching

has a larger cardinality� An edge in a matching is

said to cover the vertices that are its endpoints�

Def� A critical matching is one which covers

all critical vertices�

Lemma ��� ��� Every bipartite graph has a critical

matching�

Lemma ��� Exactly d colors are necessary and suf�

�cient to color a bipartite graph of degree d�

proof� ��
 Clearly� at least d colors are necessary�

since a critical vertex requires that each incident edge

have a di�erent color� The proof of su�ciency is by

induction� sketched as follows� Find a critical match�

ing M � which� from Lemma ���� must exist� Color

the edges in M a single color and delete them from

the graph� The remaining graph has degree d � ��

and by the induction hypothesis can be colored using

d� � colors� Hence the graph can be colored with d

colors� �

Def� A k�coloring of a graph is an edge�coloring

in which each color may be used to color at most k

edges�

Lemma ��� ��� At least p � max
d� dm�ke� colors

are necessary to k�color a bipartite graph withm edges

and degree d�

� Heuristics for scheduling

parallel I�O

Algorithms for constructing minimum length sched�

ules for UnitIOS have been designed� These are

the algorithm KT ��
 which takes time O
mn
m �

n��� Somalwar�s algorithm ���
 which takes time

O
mn��� logn�� and algorithm A� ��
 which takes

time O
mn��� logn�� For a survey of optimal algo�

rithms� and an experimental evaluation of the perfo�

rmance of these algorithms� see Jain �	
�

While the optimal algorithm A� is faster than

previous optimal algorithms we would like to have

even faster algorithms� since in most applications

scheduling algorithms are executed repeatedly� and

any gain in speed helps overall system performance�

Thus we consider heuristics for the UnitIOS problem�

which are essentially approximation algorithms for k�

coloring the edges of a bipartite graph� and present

some theoretical results�

��� Greedy Heuristics for

UnitSimpleIOS

An algorithm is called �greedy� if� for each color�

it attempts to color as many edges as possible with

that color� it is a heuristic� or approximation algo�

rithm� if it is not guaranteed to use the minimum

number of colors� Since we will be presenting several

greedy heuristics� we establish a template for describ�

ing them using pseudo�code as follows�

�



Algorithm Greedy Heuristic

Input� Bipartite graph G � 
A�B�E�

Output� An edge�coloring of G

�� F �� Order
A�B�E��

�� F is some ordering of the edges in E ��

�� i �� ��

�� while F �� h if

�� M �� f g�

�� Edges which are assigned color i ��

�� for each e read in sequence from F f

�� if neither endpoint of e is colored i f

	� color
e� �� i�

�� E �� E � feg�

�� M �� M � feg�

��� g

��� g

��� i �� i � ��

��� F �� Order
A�B�E��

�� Re�order remaining edges of the graph ��

��� g

We assume that when the algorithm is called�

the transfer requests have been added to the edge list

of a bipartite graph in the order in which the requests

arrived�

The simplest heuristic is the greedy First�Come

First�Served heuristic FCFS� which� for each color�

examines the edges in the order they are presented

and tries to color as many edges as possible� For

FCFS� the Order
� function is thus simply the iden�

tity function� i�e�� edges are processed in the order

that they arrived at the operating system�

The heuristics we will investigate can be de�

�ned� assuming the template above� as

�� First�Come First�Served� FCFS� Order
� is the

identity function�

�� Highest Degree First� HDF� Order
� sorts the

vertices by descending degree� and for each ver�

tex in turn� chooses edges incident upon it ar�

bitrarily� Ties between vertices are broken arbi�

trarily�

�� Highest Combined Degree First� HCDF�

Order
� sorts the edges in descending order of

the sum of the degrees of their endpoints� Ties

between edges are broken arbitrarily�

We can now state some theoretical results

which apply to all the greedy heuristics above� omit�

ting proofs for brevity 
see ���
��

Lemma ��� �	
 �� For a bipartite graph of degree d


a greedy heuristic produces a coloring using at most

�d� � colors�

Lemma ��� For a bipartite graph with m edges and

degree d
 the greedy algorithms take time O
md� to

solve UnitSimpleIOS
 and produce a schedule of

length at most �� �

d
times the optimal length�

It can be shown that the upper bound on the

schedule length is �tight� for the heuristics above i�e��

for any given d� it is always possible to construct

degree d graphs for which� if the heuristic makes

the �worst� choices� 
or Order
G� produces a worst�

possible ordering�� the heurisitic uses exactly �d � �

colors� For FCFS� this construction �	� �
 is rela�

tively straightforward� For HDF and HCDF it is

quite involved�

Lemma ��� ���� For both the HDF and HCDF al�

gorithms
 for any positive integer d there exists a bi�

partite graph G of degree d and a sequence of choices

made by the algorithm
 such that exactly �d�� colors

are used to edge�color G�

From the theoretical results above we see that

in the worst case� processing I�O requests in the order

in which they appear 
i�e�� FCFS�� produces sched�

ule lengths which are no longer than those produced

by the heuristics 
HDF and HCDF� which actually

perform some intelligent scheduling� However� an ex�

perimental evaluation of these algorithms shows that

the heuristics are preferable to FCFS as they exhibit

far less variability in the schedule lengths produced�

We will present experimental results for the heuristics

as well as a divide�and�conquer optimal algorithm in

section ��

��� Greedy Heuristics for UnitIOS

The program for implementing the greedy heuristics

for when a color may be used to color at most k � n

edges is a slight modi�cation of the program given

above� We add the following line 
the break state�

ment exits the smallest enclosing loop� i�e�� the for

loop��

���� if jM j � k� break�

�



That is� after every edge is added to M � the

program checks if jM j � k� and if so� does not add

any more edges to M for the current color� We call

the resulting algorithms modi�ed greedy algorithms�

MFCFS�MHDF� MHCDF�

Lemma ��� ���� For a graph of n vertices
 m edges

and degree d
 if at most k � n edges may be colored

with a single color
 a modi�ed greedy algorithm pro�

duces a coloring using at most bm�kc�
�d��� colors


and run in time O
m��k �md��

� Experimental evaluation

We have experimentally evaluated the performance

of the greedy algorithms on instances of the

UnitSimpleIOS and UnitIOS problems� We com�

pare their behavior to that of the exact algorithmA�

which is a special case of A� ��
 for unit�weight edges

implemented by Somalwar ���
� We also compare

their behavior to the theoretical bounds discussed in

the previous section�

The algorithms were implemented as C pro�

grams and evaluated for two criteria� the CPU time

taken to produce a schedule� and the length of the

schedule produced� Several experiments were carried

out in which the the total number of data sources and

sinks n� the number of transfers m� and the maximum

number of simultaneous transfers k were varied� For

brevity we describe here the results for only one ex�

periment� results for the other experiments are qual�

itatively similar and can be found in ���
�

The algorithms were compiled using the DEC

C compiler for Ultrix on RISC� Release V��� with all

optimizations enabled� The programs were executed

on a DECstation �������� workstation in single�user

mode running the Ultrix Release ��� 
Rev� ��� oper�

ating system� Each program and its data structures

occupied less than � MB of the �� MB main memory

of the system� and so the programs did not perform

any I�O during execution except to read input graph

�les and write result �les� The CPU time was mea�

sured using the gettimeofday�
 Ultrix system call�

In the following we report the results for

the modi�ed approximation algorithms in terms

of the UnitIOS problem only� the results for

UnitSimpleIOS are similar or are subsumed by these

results�

Expt� �� E�ect of varying number of tr�

ansfers	 m� In this experiment� the number of disks

and workstations was �xed at n � �� 
i�e�� �� vertices

in each partition�� and it was assumed that the I�O

channel transfer capacity was relatively low 
k � ���

One hundred input graphs were generated for each

value of m� For each set of input graphs correspond�

ing to a given value of m� the CPU time required to

calculate a schedule for each graph was recorded� and

the mean over all graphs in a set was calculated� In

Fig� � the mean CPU time 
in milliseconds� taken by

each of the algorithms is plotted as a function of m�

The standard deviations of the CPU time are typi�

cally around ���� of the mean� and are not shown

on the plot for clarity� It is clear that the heuristics

run much faster than the optimal algorithm A�

The improvement in CPU time for the approx�

imation algorithms comes at the expense of worse

schedules� To evaluate this� for each input graph�

the percentage increase in the schedule length over

the optimum schedule length for that graph was cal�

culated� The mean and maximum values of this

percentage increase� over all one hundred input in�

stances� were then calculated� We observed that the

mean schedule length produced by the approximat�

ion algorithms does not di�er signi�cantly from the

optimal or from each other� However� the maximum

schedule length may� In Fig� � the maximum per�

centage increase is plotted as a function of m� The

schedule produced by MFCFS can be almost �� 

longer than optimal� On the other hand� the sched�

ules produced byMHDF andMHCDF were found

to be always of minimum length� for this experiment�

In Expt� � the execution time of all the al�

gorithms increases with the number of transfers to

be scheduled 
Fig� ��� As expected� this increase

is close to linear with m� It is interesting to see

that MHDF�s execution time is slightly less than

MFCFS� This is because of two e�ects� Firstly� the

schedule lengths MHDF produces are shorter than

those produced by FCFS� so that the number of it�

erations of the while loop is smaller� Secondly� the

implementation of MHDF takes advantage of the

fact that only the vertices are sorted� and edges in�

�



Figure �� CPU time 
ms� versus number of transfers

for n � ��� k � �

Figure �� Percentage increase in schedule length ver�

sus number of transfers for n � ��� k � �

cident upon a selected vertex are chosen arbitrarily�

so that it su�ces to implement F as a list of vertices

rather than edges�

� Previous related work

The only relevant previous work� to our knowl�

edge� deals with approximate edge�coloring of general

graphs and multigraphs� An algorithm using no more

than 
����d colors� and running in time O
m
n� d��

was developed ��
� This algorithm uses an �inter�

change approach� as its basis� for each edge� check if

some �simple� recoloring of the colored edges would

eliminate the need for an additional color� As the au�

thors say� �in order to prove better bounds� the !sim�

ple� recolorings become more complicated� ��
� Note

that their algorithm does not consider the practical

constraint of a limited number of simultaneous data

transfers� i�e�� k � n� For our applications� this con�

straint corresponds to the realistic situation of lim�

ited bus bandwidth being available in the system�

Also� since the MHDF and MHCDF heuristics do

not perform any backtracking or recoloring� they are

likely to have smaller constants for their time comp�

lexity� and are likely to be simpler to implement� than

the interchange heuristic� Their performance for our

set of experiments also seems satisfactory considering

their simplicity�

Note that MFCFS� MHDF� MHCDF and

the interchange heuristic form a sequence of heuris�

tics which tend to produce shorter schedules at the

expense of increasing time complexity� One can envi�

sion a range of heuristics that could be systematically

designed to cover the gap between MFCFS and the

optimal algorithm�

� Conclusions

In this paper we have de�ned a simple parallel I�O

scheduling problem which may arise in practice� For

this problem� we compared the costs and bene�ts

of using simple approximate batch scheduling algo�

rithms with the situation in which no scheduling is

employed� and found that� in our investigation� sch�

eduling can provide signi�cant improvements in the

	



times to complete I�O transfers for a small execution

overhead�

In our experiments we found that the simple

greedy MHDF and MHCDF approximation algo�

rithms produced schedules at most �� longer than

optimal� for execution times which are close to the

execution times of the MFCFS algorithm� On the

other hand� while the mean length increase in sched�

ules produced by MFCFS may not be very large�

the maximum may be �� over the optimal sched�

ule� More importantly� the dependence of MFCFS

on various input parameters� especially k� is quite

large and hard to predict�

Our work on scheduling I�O has been carried

out in the context of a general scheduling model �	


which we have used to address more complex sched�

uling problems� including I�O scheduling in the pres�

ence of precedence constraints� mutual exclusion con�

straints� and hierarchical system architectures� We

are currently investigating algorithms for scheduling

synchronized data transfers which arise in applica�

tions such as multimedia systems� and on�line I�O

scheduling�

Acknowledgements

The �rst author thanks Ramesh Govindan� Peter

Newton and Mark Sullivan for many helpful com�

ments and discussions�

References

��� A� Bar�Noy� R� Motwani� and J� Naor� The greedy

algorithm is optimal for on�line edge coloring� Inf�

Proc� Lett�� pages ���	��
� Dec� �����

��� Claude Berge� Graphs� North�Holland� �����

�
� G� Bongiovanni� D� Coppersmith� and C� K� Wong�

An optimum time slot assignment algorithm for

an SS
TDMA system with variable number of

transponders� IEEE Trans� Comm�� ���������	����

May �����

��� P� J� Denning� E�ects of scheduling on �le mem�

ory operations� In Proc� AFIPS Spring Joint Comp�

Conf�� pages �	��� �����

��� G� A� Gibson� Redundant disk arrays� Reliable� par�

allel secondary storage� PhD thesis� Univ� of Calif��

Berkeley� Comp� Sci� Div� ����� Also available as

Tech� Rep� UCB
CSD ��
��
�

��� D� S� Hochbaum� T� Nishizeki� and D� B� Shmoys� A

better than �best possible� algorithm to edge color

multigraphs� SIAM J� Comput�� ����	���� �����

��� Ravi Jain� Scheduling data transfers in parallel

computers and communications systems� Technical

Report TR��
��
� Univ� Texas at Austin� Dept� of

Comp� Sci�� Feb� ���
�

��� Ravi Jain� Kiran Somalwar� John Werth� and J� C�

Browne� Scheduling parallel I
O operations in

multiple�bus systems� J� Par� and Distrib� Comp��

Dec� ����� Special Issue on Scheduling and Load

Balancing�

��� Ravi Jain� Kiran Somalwar� John Werth� and J� C�

Browne� Requirements and heuristics for scheduling

parallel I
O operations� May ���
� Submitted for

publication�

���� Ravi Jain� Kiran Somalwar� John Werth� and J� C�

Browne� Scheduling parallel I
O operations� In Proc�

Workshop on I�O in Par� Comp� Sys�� Apr� ���
�

���� Ravi Jain and John Werth� Analysis of approximate

algorithms for edeg�coloring bipartite graphs� May

���
� Submitted for publication�

���� Ravi Jain� John Werth� and J� C� Browne� A general

model for scheduling of parallel computations and its

application to parallel I
O operations� In Proc� Intl�

Conf� Par� Proc�� �����

��
� T� Lovett and S� Thakkar� The Symmetry multipro�

cessor system� In Proc� Intl� Conf� Par� Proc�� pages


�
	
��� �����

���� T� N� Mudge� J� P� Hayes� and D� C� Winsor� Multi�

ple bus architectures� Computer� ��������	��� June

�����

���� D� A� Pattreson� G� A� Gibson� and R� H� Katz�

A case for redundant arrays of inexpensive disks

�RAID�� In Proc� SIGMOD� �����

���� G� P�ster� W� C� Brantley� D� A� George� S� L� Har�

vey� W� J� Kleinfelder� K� P� McAuli�e� E� A� Melton�

V� A� Norton� and J� Weiss� The IBM research paral�

lel processor �RP
�� Introduction and architecture�

In Proc� Intl� Conf� Par� Proc�� pages ���	���� �����

���� A� Silberschatz and J� Peterson� Operating systems

concepts� Addison�Wesley� �����

���� Kiran Somalwar� Data transfer scheduling� Technical

Report TR����
�� Univ� Texas at Austin� Dept� of

Comp� Sci�� �����

�


